
Trends
Antiviral monoclonal antibodies (mAbs)
are promising, high-added-value
biotherapeutics. During recent years,
the number of antiviral mAbs devel-
oped against both acute and chronic
viruses has grown exponentially, some
of them being currently tested in clinical
trials.

Antiviral mAbs can be used to blunt
viral propagation through direct effects.
They can also engage the host's
immune system, leading to the induc-
tion of long-lasting protective vaccine-
like effects.

The assessment of mechanisms at play
in the induction of vaccine-like effects
by antiviral mAbs will help in improving
antiviral treatments.

Exploiting this effect will translate into
therapeutic benefit for patients. The
benefit will also help healthcare sys-
tems through the reduction of treat-
ment costs.
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Monoclonal antibodies (mAbs) are increasingly being considered as agents to
fight severe viral diseases. So far, they have essentially been selected and used on
the basis of their virus-neutralizing activity and/or cell-killing activity to blunt viral
propagation via direct mechanisms. There is, however, accumulating evidence
that they can also induce long-lasting protective antiviral immunity by recruiting
the endogenous immune system of infected individuals during the period of
immunotherapy. Exploiting this property may revolutionize antiviral mAb-based
immunotherapies, with benefits for both patients and healthcare systems.

The Increasing Promise of Antiviral mAbs
Although mAbs currently constitute the main class of biotherapeutics, the possibility of using them
to treat viral infections has received limited attention until recently. This contrasts with cancer and
inflammatory diseases against which they are now widely utilized [1–3]. This is also paradoxical if
one considers that the first commercial mAb was an anti-respiratory syncytial virus (RSV) antibody
used to fight a pediatric respiratory illness. This situation, however, is reversing. Indeed, a flurry of
human, or humanized, mAbs against H5N1 influenza virus, human immunodeficiency virus (HIV),
herpes simplex virus (HSV), cytomegalovirus (CMV), hepatitis C virus (HCV), Ebola virus, Marburg
virus, severe acute respiratory syndrome (SARS) virus, dengue virus, rabies virus, Hendra virus,
Nipah virus, yellow fever virus, and West Nile virus have been described in the past few years [4–
17]. Some of these mAbs are currently being tested in the clinic and include second-generation
mAbs with improved neutralizing activity and/or novel target specificities [6,7,18–22]. This is
especially true for HIV, which has dominated most of the reports dedicated to broadly neutralizing
mAbs during the past 2 years. Finally, antiviral mAbs have already demonstrated partial efficacy
when administered after HIV, HCV, or Ebola virus established infections [11,23,24], fueling the idea
that they represent promising, high-added-value therapeutic agents.

Direct Mechanisms of Action of Antiviral mAbs
mAb therapy is a form of passive immunotherapy (see Glossary) that is classically intended to
blunt viral infections via direct and rapid targeting of the infectious agent rather than via the
triggering of a long-term immune response against it. This therapeutic approach contrasts with
vaccine approaches that aim to stimulate the endogenous immune response of the host, in
order to provide sustained protective immunity.

mAbs can diminish viral dissemination by direct action involving both their antigen-binding
activity and the effector functions borne by their Fc fragment. So far, most antiviral mAbs with
therapeutic potential have initially (and logically) been selected for their ability to neutralize virions
via the recognition of viral surface antigens essential for receptor binding and/or entry into host
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Glossary
Antibody-dependent cell-
mediated cytotoxicity (ADCC): a
mechanism of cell-mediated immunity
whereby effector cells of the immune
system lyse a target cell that has
been bound by specific antibodies.
The Fc portions of the coating
antibodies interact with Fc receptors
that are expressed on immune
effector cells (mainly natural killer cells
or NKs), thereby initiating signalling
cascades that result in the release of
cytotoxic granules which induce the
death of the antibody-coated cells.
Antibody-dependent cellular
phagocytosis (ADCP): a
mechanism of cell-mediated immunity
whereby cells of the immune system
phagocytose target cells that have
been bound by specific antibodies.
Similar to ADCC, the Fc portions of
the coating antibodies interact with
Fc receptors that are expressed on
phagocytes (i.e., macrophages,
granulocytes, and dendritic cells).
cells. Furthermore, direct recognition has also been shown to inhibit cell–cell transmission of
virions in certain settings.

Most antiviral mAbs studied to date are immunoglobulin Gs (IgGs), that is, antibodies efficiently
recognized by both the complement and the Fcg receptors (FcgRs) borne by many cells of the
immune system. In addition to complement-mediated inactivation of viral particles, and/or their
phagocytosis, this also permits complement-dependent cytotoxicity (CDC), antibody-
dependent cellular phagocytosis (ADCP), and antibody-dependent cell-mediated cyto-
toxicity (ADCC) to eliminate infected cells displaying viral antigens at their surface (Figure 1A).
This, for instance, is the case of mAbs targeting the envelope glycoprotein (Env) of HIV (and other
lenti-/retroviruses) that is exposed at the surface of virus-producing cells. Finally, Fc–FcgR
interactions can also directly impact viral propagation via a mechanism called antibody-
dependent, cell-mediated virus inhibition (ADCVI) (see [19,25–27] for more information
on direct Fc-mediated antiviral effects). Thus, during immunotherapies, mAbs can impact viral
propagation via a variety of direct mechanisms, possibly varying according to the virus, the viral
antigen recognized and the antibody itself. However, there is now accumulating evidence that
antiviral mAbs, upon interaction with different components of the immune system, can also
operate via indirect mechanisms, that is, engagement of the host immune response, with effects
lasting well beyond the treatment itself. Thus, similarly to vaccine approaches, mAb treatment
could lead to the stimulation of the endogenous humoral and cellular immune responses in such
a manner as to provide protective immunity (‘vaccine-like effects’).
Antibody-dependent cell-
mediated virus inhibition (ADCVI):
a mechanism of antibody-mediated
immunity wherey an infected target
cell interacts with an effector cell
expressing one or several FcgRs via a
viral-specific antibody. ADCVI is a
measure of the impact of antibody
and FcgR-bearing effector cells on
virus output from infected target cells
and includes both lytic (i.e., ADCC)
and non-lytic (i.e., production of
chemokines) mechanisms leading to
decreased viral spread.
Complement-dependent
cytotoxicity (CDC): a mechanism of
antibody-mediated immunity whereby
antibody binding to the complement
component C1q activates the
classical complement cascade,
leading to the formation of the
membrane attack complex (the
cytolytic end product of the
complement cascade) and lysis of
cells targeted by the antibody.
Fab fragment: the region of an
antibody that binds to antigens. It is
composed of one constant and one
variable domain of each of the heavy
and light chains (VH and VL,
respectively).
F(ab0)2: two Fab fragments linked by
a short fragment of the constant
parts of the antibody (hinge region). It
has the same affinity as the whole
antibody and it is divalent.
Fc-engineered glycovariants:
engineered antibodies in which the
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Figure 1. Fc Fragment(Fc)-Mediated Activities of Antiviral Monoclonal Antibodies (mAbs). (A) Upon adminis-
tration, an antiviral mAb can opsononize virus, as well as infected cells if the viral antigen is also expressed on their surface.
This can lead to virus elimination by complement activation and/or phagocytosis mediated by cells of the innate immune
system. Infected cells can also be eliminated by complement-dependent cytotoxicity (CDC) as well as by antibody-
dependent cell-mediated cytotoxicity (ADCC) and/or antibody-dependent cellular phagocytosis (ADCP) mediated by FcgR-
bearing effector cells. (B) Immune complexes (IC), constituted by mAb-coated virions or infected cells, can be recognized by
FcgRs expressed on antigen-presenting cells such as dendritic cells (DC). Such IC recognition leads to enhanced antigen
uptake and presentation, allowing induction of stronger humoral and cellular antiviral immune responses. Abbreviation: NK
cells, natural killer cells.
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glycosylation pattern has been
modified to enhance its effector
functions.
Fc fragment: the fragment
crystallizable region (Fc region) is the
tail region of an antibody that
interacts with cell-surface receptors
called Fc receptors and some
proteins of the complement system.
This property allows antibodies to
activate the immune system.
Fc receptors (FcRs): receptors for
the Fc portion of immunoglobulins.
They constitute a family of cell-
surface molecules expressed on
many cells of the immune system.
There are several different types of
FcR, which are classified based on
the type of antibody that they
recognize. For example, those that
bind the most common class of
antibody, IgGs, are called Fc-gamma
receptors (FcgR).
Immune checkpoints: a number of
different inhibitory pathways of the
immune system necessary to
maintain self-tolerance and to
modulate the duration and magnitude
of immune responses in order to
minimize collateral tissue damage.
Many such immune checkpoints
involve ligand–receptor interactions
between T cells and antigen-
presenting cells (i.e., PD1–PD1L/
PD2L; CTLA4–CD86/CD80).
Neonatal FcR (FcRn): an Fc
receptor that is structually related to
MHC class I molecules and protects
IgG from degradation, resulting in a
long serum half-life. Additionally,
FcRn mediates IgG transfer from a
mother to her fetus, thereby providing
passive immunity.
Passive immunotherapy: the
transfer to nonimmune patients of
active antibodies (or other immune-
system components) that are
produced outside of the body (i.e., in
the laboratory or isolated from
immunized donors). This approach
can help combat diseases for which
no treatments or vaccines are
available by providing short-term
immunity.
Regulatory T cells (Treg): a
subpopulation of T cells with
immunosuppressive activities. These
cells are observed in all cases of
chronic viral infections and lead to
dampened antiviral immune
responses.
Vaccine: a biological preparation that
confers protective immunity against a
specific disease. It usually employs
an innocuous form of the disease
Reasons to Suspect Indirect Long-Lasting Effects of Antiviral mAbs on
Infected, Immunotreated Individuals’ Immunity
During the immunotherapy period, antiviral mAbs form immune complexes (ICs) with virions and,
in some cases, infected cells. Such ICs can then be recognized by antigen-presenting cells
(APCs) such as dendritic cells (DCs), which are central for any adaptive immune responses
(Figure 1B). Surprisingly, until recently, the scientific and medical communities have largely failed
to take into consideration that this could impact the endogenous immunity (i.e., the enhance-
ment of antibody responses as well as cytotoxic T-cell responses) of infected, immunotherapy-
treated patients. This is all the more puzzling as positive immunomodulatory (vaccine-like)
effects, which strengthen the patients’ immune defenses against viral infections, would translate
into obvious benefits, not only for the patients, but also for healthcare systems that would benefit
from both reduced cost and duration of treatment.

Several objective reasons might explain this situation. First, most antiviral mAbs (if not all) were
initially selected on the basis of their blunting effects on viral propagation. Second, models of viral
infections in immunocompetent animals, allowing in-depth analyses of endogenous immune
responses in the context of passive mAb-based immunotherapies, are scarce. This is especially
true for relevant models of chronic infections by viruses such as HIV or HCV, against which most
antiviral mAbs available to date were raised. Indeed, anti-HIV (and to a lesser extent anti-HCV)
mAb activity was assessed mainly in immunocompromized, humanized mice reconstituting only
partially the human immune system [28–32] and/or nonhuman primates (NHPs). Although NHPs
are extremely useful for assessing the protective effects of anti-HIV mAbs, their use in the study
of immunity is limited due to both technical and cost reasons. In contrast, mouse infection
systems offer numerous immunologic tools and permit cost-effective experimentation on large
cohorts. Third, most often antiviral mAbs have been generated in species different from those
used in the in vivo experiments and therefore Fc-associated effector functions were not, or not
fully, preserved. Finally, ethical, technical, and economic reasons, together with the low number
of ongoing clinical trials, still limit this type of investigation in humans.

Despite this apparently unfavorable context, however, evidence gained in various animal models
has recently demonstrated that vaccine-like effects can be induced by short mAb therapies.
These experiments are reviewed below before potential improvements of the approach are
discussed.

Lessons From the FrCasE Retrovirus Mouse Model
FrCasE retrovirus is a murine leukemia virus (MLV). FrCasE infection of newborn mice is
reminiscent of perinatal infection by HIV, in that viral expansion occurs in an organism with
developing immunity. It provides one of the rare models of chronic viral infection, in an
immunocompetent animal, for which neutralizing mAbs of the same species (mouse) are
available [33]. It was the first experimental system to permit the unambiguous demonstration
of the possibility of inducing vaccine-like effects by mAb-based immunotherapy [34–37].

When inoculated into 8-day-old pups, FrCasE induces a fatal erythroleukemia (or neurodegen-
eration if inoculated earlier) associated with weak non-protective humoral and cellular antiviral
immune responses. However, short treatments (a few days) with a neutralizing IgG2a (equivalent
to IgG1 in humans) mAb, recognizing viral Env, shortly after infection allow infected mice to
survive in good health and with a normal lifespan. Survival is associated with decreased viral
propagation and, importantly, is strictly dependent on the development of a life-long protective
endogenous antiviral immune response. This immunity is of the Th1 type with a humoral arm
directed against the virus and a cytotoxic T-cell arm directed against infected/leukemic cells,
both of them displaying strong memory responses in challenge experiments. Detailed analyses
indicate that the induction of protective immunity is not the mere result of the reduction of the viral
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agent (such as killed or weakened
bacteria or viruses) to stimulate the
body's immune system to recognize
the agent as foreign and destroy it. It
also confers immunological memory
against such an agent.
load during the immunotherapy but the consequence of a genuine immunomodulatory action of
the therapeutic mAb involving various FcgR-dependent mechanisms [36,37]. In particular, the
mAb induces Env-expressing infected cell lysis through a natural killer (NK) cell-dependent
ADCC mechanism. This most likely provides an inflammatory environment favoring the induction
of the antiviral immune response. Moreover, ICs formed with infected cells are more efficiently
captured by DCs than infected cells alone, leading to stronger functional DC activation and
elicitation of a potent antiviral cytotoxic T lymphocyte (CTL) response (Figure 2, Key Figure).
Importantly, the endogenous antiviral antibodies generated by the immunotherapy allow con-
tainment of viral propagation and contribute to the maintenance of a T-cell memory response
once the therapeutic antibody has been eliminated from treated mice [36,37]. A third FcgR-
dependent effect described is the inhibition of the expansion of regulatory T cells (Treg), which
is essential for the induction of protective immunity [38] (Figure 2). Such a finding is, in fact, not
Key Figure

Induction of Life-Long Protective Immunity Against FrCasE by
Neutralizing Antiviral Monoclonal Antibodies (mAbs)
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Figure 2. The administration, to FrCasE-infected mice, of a neutralizing antiviral IgG2a mAb directed to the viral Env
glycoprotein limits viral propagation through neutralization of virus (a) and elimination of infected cells (b). At the same time,
the immune complexes (ICs) formed with the virus, and probably more importantly with infected cells expressing Env at their
surface, prevent the expansion of regulatory T cells (Treg cells) (c), which is necessary for the development of protective
humoral (d) and cellular (e, f) responses by the host. In particular, the ICs formed between the therapeutic mAbs and infected
cells activate dendritic cells (DCs), leading to an enhanced virus-specific CD8 T-cell response ( f). Once the therapeutic
antibody has been eliminated from treated mice, both arms of the adaptive immune system contribute to viral propagation
control, as the endogenous antiviral antibodies, induced by the immunotherapy, control viral propagation (g, h) and
contribute to the maintenance of a T-cell memory response. This requires the formation of ICs engaging residual infected
cells and activation of DCs (i). Abbreviation: ADCC, antibody-dependent cell-mediated cytotoxicity.
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surprising as Treg expansion is associated with all types of chronic viral infections and leads to
dampening of the antiviral immune response, promoting chronicity and subsequent pathologic
manifestations.

Thus, the FrCasE model has provided the proof of concept that short mAb-based antiviral
therapies can induce life-long protective immunity permitting an infected organism to survive in
good health. Yet, a number of issues are still pending. In particular, it will be crucial to identify all of
the cell types and molecular effectors involved in this process as well as to elucidate the
mechanisms whereby long-term immunity is maintained in order to apply it to the treatment
of human disease.

Can mAbs Directed to Human Viruses Also Generate Vaccine-like Effects?
Antiviral immune responses induced, or strengthened, by antiviral mAb-based immunotherapies
have also been observed in various chronic and acute life-threatening human viruses (see
summary in Table 1). This is most notable in preclinical NHP models of HIV infection using
second-generation, broadly neutralizing antibodies (bnAbs). Such observations are all the more
important now that these mAbs are being tested in clinical trials.

Simian Immunodeficiency Virus (SIV)
Infection of macaques by different strains of SIV is widely used in NHP models of HIV infection, as
well as in immunotherapy experiments. Several reports now indicate that short treatments of
SIV-infected macaques with neutralizing antibodies can lead to enhanced antiviral immunity
[39,40]. However, these experiments were performed with SIV-specific, highly neutralizing,
polyclonal immune globulins (SIVIG) prepared from SIV-infected animals and not mAbs. In a
first study, the SIVIG treatment could both significantly delay disease onset and increase the
survival rate of SIVsmE660-infected Macaca mulatta macaques, with the long-term survivors
showing accelerated de novo production of anti-SIV-neutralizing antibodies [39]. In another set
of experiments, rhesus macaques treated with SIVIG shortly after SIVmac239 infection resulted
in transiently detectable neutralizing-antibody responses followed by reduction in viral loads as
compared to untreated macaques [41]. Interestingly, a virus-specific polyfunctional CD4+ T-cell
response was also induced during the acute phase of infection and maintained elevated during
the following chronic phase together with a CD8+ T-cell antiviral response measured by the
appearance of CTLs specific to capsid (Gag). Intriguingly, no neutralizing antibodies could be
measured during the latter phase (i.e., after SIVIG had disappeared) [40], underlining a striking
difference with the M. mulata macaque and FrCasE models for reasons that will have to be
elucidated. Moreover, DCs stimulated in vitro with SIVIG-preincubated SIV were shown to activate
virus-specific CD4+ T lymphocytes in an Fc-dependent manner, suggesting that enhanced T-cell
priming during the immunotherapy period is dependent on antibody-mediated virion uptake by
these APCs [41]. Such a conclusion is consistent with a former observation that MHC class I-
restricted cross-presentation of SIV capsid protein (Gag) is enhanced by anti-Gag antibodies to
generate stronger Gag-specific CD8+ T-cell responses in SIV-infected macaques [42].

Thus, taken together, these experiments suggest that the administration of neutralizing anti-
bodies can strengthen the antiviral immunity of lentivirus-infected organisms. Some of them also
point to a crucial role for viral ICs in the observed effects.

Simian HIV
SHIV (simian HIV) is a chimeric virus in which HIV Env substitutes for that of SIV. Its use is
pertinent to the assessment of the effects of HIV-neutralizing mAbs in NHP. Interestingly, 1-
month-old pigtail macaques treated with the human HIV-neutralizing mAb b12 (one of the first to
be generated) combined with polyclonal SHIVIG before oral challenge with the SF162P3 SHIV
strain, developed an accelerated neutralizing antibody response and showed reduced plasma
Trends in Microbiology, October 2015, Vol. 23, No. 10 657



Table 1. Antiviral Immune Responses Induced by Antiviral Monoclonal Antibodies (mAbs) Against Life-Threatening Human Virusesa

Animal Model Virus Therapeutic
Antibody

Administration Clinical Outcome Cellular Response Humoral Response Refs

Rhesus monkeys
(Macaca mulatta)

SIV smE660
(i.v.)

SIVIG i.v.
(1 and 14 days post-infection)

Delayed disease, increased survival rate;
control of viremia (5-year follow-up)

No difference in CD4+ T-cell counts,
30% animals develop an
antiviral CTL response

Acceleration of de novo
nAb production

[39]

Rhesus monkeys
(Macaca mulatta)

SIV mac239
(intramuscular)

SIVIG i.v.
(7 days post-infection)

Reduction of viral loads Polyfunctional Gag-specific
T-cell response

Transient nAb response [40,41]

Pigtail macaques
(Macaca nemestrina)

SHIVSF162P3
(oral)

SHIVIG +
IgG1b12

s.c.
(24 h before challenge)

Transient reduction in plasma viremia
(6 months)

No difference in CD4+ T-cell counts Rapid appearance of nAb [43]

Rhesus monkeys
(Macaca mulatta)

SHIVSF162P3
(oral)

SHIVIG s.c.
(24 h before challenge)

Protection from disease No difference in total
Gag-specific CD8+ T-cell response

Preservation of B cells:
de novo nAb production
(ADCVI)

[44]

Rhesus monkeys
(Macaca mulatta)

SHIVSF162P3
(Intrarectal)

PGT121+
3BNC117+
b12;
PGT121+
3BNC117;
PGT121

i.v.
(9 months post-infection)

Decline in plasma viremia Improved functionality of
Gag-specific T-cell response

de novo nAb to
SHIV-SF162P3

[23]

Rhesus monkeys
(Macaca mulatta)

SHIV-1157ipEL-p
(Intrarectal)

HGN194 i.v.
(1 day before
infection and
7 days post-infection)

Aviremia,
protection not reported

Gag-specific T-cell response N.D. [46]

BALB/c mice RSV r19F
(Intranasal)

131-2G mAb i.p.
(2 days before infection)

Decreased virus replication Increased Thf counts;
decreased IL4, increased IFN-g+ T cells;
high counts of virus-specific CD8+ T cells

Enhanced humoral
response

[47]

African Green monkeys
(Chlorocebus aethiops)

HeV
(Intratracheally)

m102.4 i.v.
(10 h, 24 h or 72 h
post-infection and 48 h later)

Reduced viral loads N.D. Anti-HeV humoral
response

[50]

African Green monkeys
(Chlorocebus aethiops)

NiV
(Intratracheally)

m102.4 i.v.
(24 h, 72 h, 60 h
post-infection and 48 h later)

Protection N.D. Antiviral humoral
response

[51]

aAbbreviations: ADCVI, antibody-dependent cell-mediated viral inhibition; CTL, cytotoxic T lymphocyte; IL-4, interleukin-4; IFN-g: interferon-g; i.p., intraperitoneal; i.v., intravenous; nAbs, neutralizing antibodies; N.D.,
not determined; RSV, respiratory syncytial virus; SIVIG/SHIV, highly neutralizing polyclonal immune globulin prepared from hyperimmune SIV/SHIV-infected animals; s.c., subcutaneous; Tfh, follicular helper T cells.
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viremia for at least 6 months [43]. However, in this infection model, despite very high persistent
viremia, there was no evidence of pathogenesis in the 6-month period of the study precluding
the assessment of viral disease protection by the mAb-induced B-cell response. In contrast,
such a study was performed using oral infection of 1-month-old rhesus macaques with the same
virus, which leads to disease manifestation within 12 weeks. In this model, passive immuno-
therapy with polyclonal SHIVIG, 24 h prior to infection, reduced viral propagation, accelerated de
novo neutralizing antibody production (also translating into ADCVI), and was associated with
protection from disease [44]. These data are consistent with the concept of protective immu-
nomodulatory effects induced by passive immunotherapies with neutralizing antibodies, at least
when administered at the time of infection. These effects, however, also seem possible upon
mAb treatment at a much later time. For example, the administration of either a cocktail of HIV-1-
specific mAbs (PGT121, 3BNC117, and b12), or of the PGT121 mAb alone, 9 months after
SHIV-SF162P3 infection of rhesus macaques resulted in the rapid decline of plasma viremia to
undetectable levels correlating with a slight increase in neutralizing antibody titers. Interestingly,
this humoral response was complemented by a T-cell response characterized by a significant
improvement of the functionality of Gag-specific CD8+ and CD4+ T lymphocytes (manifested by
a decreased expression of the exhaustion marker PD-1) despite there being no change in their
numbers. Moreover, if virus rebounded in the majority of animals when serum mAb had
disappeared, a subset of animals maintained long-term virological control in the absence of
further mAb infusions [23]. Overall, these data demonstrate a strong therapeutic effect of potent
neutralizing HIV-1-specific mAb in SHIV-infected rhesus monkeys as well as a positive impact on
their immune response. These findings are potentially important, as very recently the 3BNC117
mAb has been shown to be safe and effective in reducing HIV-1 viremia in a phase 1 human
clinical trial [45].

The notion that neutralizing mAb treatments can enhance antiviral immune responses is further
supported by other experiments. For example, treating SHIV-1157pEL-p strain-infected rhesus
macaques with the neutralizing mAb HGN194 led to both undetectable virus levels and the
development of CD4+ and CD8+Gag-specific responses, although disease progression was not
assessed on the long term [46]. In addition, a single bnAb can control SHIV infection in immune-
competent macaques but not in SHIV-infected humanized mice, suggesting that the macaque
host immune response can contribute to viremia control and to immunotherapy success by
preventing the resurgence of bnAb escape variants [30].

Thus, SHIV infection models strongly suggest that neutralizing anti-HIV antibody therapy may, at
least to a certain extent, recruit the infected host immune system to generate an antiviral effect. An
important issue is now to maximize this effect for efficient treatment of HIV-infected humans (see
below).

Respiratory Syncytial Virus (RSV)
There is evidence that neutralizing mAb immunotherapies can affect endogenous antiviral
immune response not only in chronic infections but also in acute infections. For example,
the prophylactic treatment of RSV, an acute cytopathic virus, by a neutralizing mAb (131-2G)
directed towards its G attachment protein (that also has strong immunosuppressive activity) can
shift the adaptive immune response from the Th2- to the Th1-type [47]. Thus, 131-2G mAb-
treated mice infected with the RSV r19F strain show an enhanced and sustained humoral
response characterized by an increased ratio of anti-RSV IgG2a to IgG1, as compared with non-
treated, infected mice. Moreover, the stimulation and skewing of the humoral response also
correlate with an increase in follicular helper T cells (Tfh) and a higher frequency of CD8+ T cells
directed to infected cells. It should be noted, however, that the effects on B-cell and T-cell
responses are not Fc-dependent, as the 131-2G F(ab0)2 fragment leads to the same shift of the
adaptive immune response as the whole mAb [48,49]. These data suggest that neutralizing a
Trends in Microbiology, October 2015, Vol. 23, No. 10 659



virus via targeting one of its immunosuppressive proteins may represent an attractive approach
to induce protective antiviral immunity.

Hendra and Nipah Henipaviruses
Hendra (HeV) and Nipah (NiV) are related acute and fatal henipaviruses against which therapeutic
mAbs have also been developed. HeV challenge of African Green monkeys mirrors fatal human
infection leading to death by day 8 post-infection. Upon rapid infusion of the human HeV-
neutralizing mAb m102.4, infected monkeys survive after having transiently displayed neurologic
symptoms [50]. Recovery from disease correlates with the mounting of a protective humoral
immune response reducing the viral load. Interestingly, the 102.4 mAb cross-reacts with NiV and
using it in post-exposure therapy of NiV-infected African green monkeys also leads to the
development of an antiviral humoral response, which, most likely, both limits viral dissemination
and contributes to protection from NiV disease [51]. Thus, the cross-reactive m102.4 mAb,
which is currently being developed for human use as a Nipah- and Hendra-virus countermea-
sure [52], shows exceptional efficacy, not only because of its direct antiviral action, but probably
also through its ability to affect endogenous immunity.

Improving Vaccine-like Effects of mAbs: Possible Future Directions
An important issue now is to translate the newly established concept of vaccine-like effects of
antiviral mAbs into actual and efficient human medical applications. In-depth analysis of the
underlying cellular and molecular mechanisms at play in the experimental settings already at
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Immunos�mulatory agents
Latent virus reversal agents

An�gen expressed
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Figure 3. Possible Improvements in Monoclonal Antibody(mAb)-Based Antiviral Immunotherapies. The
identification of the molecular and cellular mechanisms responsible for the induction of vaccine-like effects by antiviral
mAbs will be paramount to the improvement of future antiviral passive immunotherapies. They are currently the object of
intense research. Furthermore, several possibilities pertaining to the conditions of mAb administration, the mAbs them-
selves, and their targets, can already be considered. These include combined therapies affecting viral propagation and/or
enhancing immune responses; engineering mAbs to improve their effector functions, i.e., increasing their binding to Fcg
receptors (FcgRs) by affecting their glycosylation or their amino acid sequence; pertinent selection of their isotype; taking into
account FcgR polymorphisms in patients to be treated; and selecting the most appropriate viral antigens.
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hand (whether in rodents or in NHP) will certainly help towards this aim. However, three obvious
lines of immunotherapy improvement can already be considered (Figure 3).

Combined Therapies
There are reasons to suspect that combining mAb treatments with other therapies may
strengthen or induce antiviral vaccine-like effects. A first approach might rely on inhibiting
immunosuppressor mechanisms of infected, treated individuals, for example via depressing
Tregs by treatments entailing either their depletion and/or loss of their activity (reviewed in [53]).
This would be all the more pertinent because Treg expansion dampens antiviral immunity in a
number of infections (see above). Targeting ‘immune checkpoints’ may represent another
option. This could be achieved using the anti-PD-1 or anti-CTLA-4 mAbs that are currently used
to treat cancer (reviewed in [54,55]. The fact that inhibiting the PD-1–PD-1L interaction enhances
virus-specific cellular immune responses in different animal models of HCV [56], hepatitis B virus
(HBV) [57,58], HIV [59], SIV [60], and murine retrovirus [61] infections provides support for this
idea, as well as the observations that PD-1 blockade stimulates anti-HBV cellular immunity in
HBV-infected patients [62,63] and is associated with the cure of a small subset of HCV-infected
patients [64].

Combining antiviral mAbs with immunostimulatory agents can also be considered. Agonistic
mAbs targeting T-cell costimulatory receptors such as CD40, OX40, GITR, and CD137
(reviewed in [65]) currently tested in the clinic may serve such a purpose, as the engagement
of such costimulatory receptors is already known to enhance antiviral cellular immunity in
different infection settings [66–69]. Alternatively, agonists of Toll-like receptors (TLRs) could
be used, as, on one hand, activation of TLRs is essential for the development of many natural
antiviral responses and, on the other hand, TLR7/8 and -9 agonists have already been shown to
cooperate to enhance the anti-HIV-1 Env humoral response in rhesus macaques [70]. Further
support for this idea comes from the observation that combining antitumor mAbs with different
TLR agonists improves several cancer immunotherapies [71].

Lastly, combining mAb therapy with latency reversal agents to flush out viruses from reservoirs
might be used to stimulate anti-HIV immunity, as the release of viral antigens should favor the
formation of ICs and, thereby, subsequent stimulation of APCs. Supporting the idea of possible
cooperation between these two therapeutics, broadly neutralizing mAbs have already been
shown capable of cooperating with several viral inducers to decrease the rebound of HIV-1 from
its latent reservoirs in humanized mice [72]. Vaccine-like effects, however, could not be studied in
this case.

Improving Fc-borne Effector Functions
Fc-borne effector functions are known to be essential for antiviral protection by various mAbs
[27,37,73–77]. This suggests that Fc engineering could represent an avenue to not only improve
direct mAb antiviral efficacy but also to induce stronger vaccine-like effects. In particular,
enhancing the affinity of mAbs for the FcgRs displayed by APCs could be achieved via the
modification of the FcgRs’ peptide-binding motifs or via the production of mAbs with altered
glycosylation (which can enhance binding to FcgR) [78–82]. Indeed, Fc-engineered glyco-
variants were shown to enhance Fc-mediated reduction of viral replication and FcgR binding in
different in vitro infection settings for Ebola virus and HIV [82,83]. Also supporting this idea,
spontaneous control of HIV and improved antiviral activity correlated with a dramatic shift in the
global antibody-glycosylation profile toward agalactosylated glycoforms [84]. Another interest-
ing possibility of Fc engineering may aim at enhancing the binding to the neonatal Fc receptor
(FcRn) expressed by various adult cell types [85]. Not only could this lead to increased mAb half-
life in vivo [85] but also to stronger vaccine-like effects. Indeed, FcRn cross-linking on APCs by
multivalent ICs has been shown to entail stronger humoral and cellular adaptive responses in
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Outstanding Questions
What are the cellular types and molec-
ular effectors involved in the induction
of vaccine-like effects by antiviral
monoclonal antibodies (mAbs)?

Which Fc-dependent effector functions
is/are needed or involved in the induc-
tion of vaccine-like effects?

Can genetic engineering improve
vaccine-like effects of antiviral mAbs?

Can combination therapies improve
vaccine-like effects of antiviral mAbs?

When should mAb therapy be
commenced?

Should mAb therapy be combined with
other therapies?

What is the best approach to counter-
act immunosuppressive responses?

What is the best target for antiviral
mAbs: virus and/or infected cells?

Can FcgR polymorphisms be used as a
predictive factor for vaccine-like effects
of antiviral mAbs?
certain infection settings [86,87]. In addition, an enhanced FcRn function of the broadly
neutralizing mAb VRC01 improved protection against SHIV infection in macaques [88].

As not all IgG isotypes display equivalent effector functions, another possibility may reside in
either antibody subclass selection or subclass switching via genetic engineering. Most human
antiviral mAbs studied so far are IgG1s that display strong affinity for both FcgRs and comple-
ment. However, recent data suggest that other human IgG subtypes may exert stronger antiviral
effects, at least under certain conditions. Thus, IgG2 antibodies to HIV Gag have been
suggested to contribute to immune control of HIV infection by broadening and enhancing
the function of IgG antibodies [89]. Moreover, increased vaccine efficacy and decreased risk of
HIV-1 infection, in one of two clinical trials (RV144 and VAX003), was correlated with the
development of highly functional anti-HIV IgG3 [90–92].

Clearly, further work is still needed to establish how alteration of antibody effector function or
isotype selection may be exploited to enhance or induce mAb-induced antiviral vaccine-like
effects. This task will be complicated because different FcgRs are expressed at various levels by
the different APCs and show functional polymorphism. Supporting this possibility, FcgRIIa
polymorphism represents a genetic risk factor for latent Epstein–Barr virus (EBV) infection
and expression of its oncogenic latency proteins [93]. Furthermore, FcgRIIa and FcgRIIIa
polymorphisms are associated with variations in HIV disease progression [94], and progression
of HIV infection has been associated with decreased expression of FcgRIIa [76]. In addition,
FcgRIIc polymorphism has been shown to impact HIV-1 vaccine protection [95].

Infected Cells as Targets for Antiviral mAbs
Targeting viral antigens expressed on infected cells, rather than only on virions, might be
rewarding in terms of induction of vaccine-like effects. This approach would mainly concern
enveloped viruses, as they display their viral receptor-binding proteins at the surface of virus-
producing cells. The fact that cellular ICs are crucial for inducing long-lasting immunity against
FrCasE by neutralizing mAbs (see above) [36] substantiates this idea. In addition, HIV-infected
cells are stronger inducers of innate immunity than cell-free virions [96], and HCV-infected
hepatocytes have been reported to affect DC maturation and the subsequent activation of NK
cells and T cells, whereas free virus could not [97], indicating that infected cells may be stronger
inducers of immunity compared to virions. It is now important to establish whether the antigenic
potential of such infected cells can be further enhanced upon opsonization with antiviral mAbs,
as in the case of FrCasE.

Concluding Remarks
Over the past years, mounting evidence has revealed that antiviral mAbs may be used to recruit
the endogenous immune systems of infected organisms to induce long-lasting vaccine-like
effects. A major issue is now to translate this observation into human applications for the benefit
of both patients and society (see Outstanding Questions). Much more research towards this aim
is, however, still necessary. In particular, it will be essential to identify the molecular and cellular
mechanisms whereby viral and cellular ICs formed during immunotherapy induce protective
immunity and, then, determine the best means to exploit them therapeutically. It is also likely that
improving the effector function of antiviral mAbs and/or combining them with other therapeutics
will be necessary to achieve sterilizing immunity against infecting agents or, at least, their long-
term containment.
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