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Abstract

Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition
for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically,
docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM).
Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular
junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive
formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM
macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular
junctions, we found that ,10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules
attached by narrow projections, nubs, to the vesicle membrane at ,25 sites. The assembly’s chiral, bilateral shape is nearly
the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules
that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the
presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most
nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM
macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also
attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular
arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM
macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM
macromolecules for docking to proceed.
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Introduction

Initial events in the synaptic transmission of nerve impulses at

chemical synapses occur at active zones on the plasma membrane

of axon terminals of the presynaptic neuron [1–4]. The arrival of

an impulse at an active zone causes calcium channels concentrated

in the presynaptic plasma membrane to open. The influx of

calcium into the cytosol triggers protein-mediated fusion of the

membrane of synaptic vesicles with the presynaptic membrane

and release of the vesicles’ neurotransmitter into the synaptic cleft

to act on the postsynaptic cell. Prior to these events, the vesicles

move toward and become held at the presynaptic membrane by a

process known as docking. Biochemistry has shown that docking

involves the interaction of proteins of the vesicle membrane with

stable proteins of the active zone [5]. Such interactions include

those formed by, for example, the cytosolic portion of the vesicle

membrane proteins synaptobrevin with the cytosolic portion of the

presynaptic membrane proteins syntaxin and SNAP-25 [6,7]. The

results of electron tomography on the structure and function of the

simply arranged active zones of axon terminals at neuromuscular

junctions (NMJ’s) indicate that most, if not all, proteins involved in

vesicle docking contribute to the common active zone organelle,

active zone material (AZM) [8–11]. The structure of AZM and the

manner in which vesicles connect to it during docking provide

particular insights about the sequence of steps involved in the

process.

AZM is a dense aggregate of macromolecules. As viewed in the

2-dimensional (2D) images obtained by conventional transmission

electron microscopy on sections from fixed and stained tissue, it is

attached to the cytoplasmic surface of the presynaptic membrane

[3,11,12]. It extends several tens of nanometers vertical to the
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membrane into the cytoplasm. Its shape and distribution within an

active zone vary among animal species and from one neuron type

to another within a species [13]. Nevertheless, the AZM is typically

next to synaptic vesicles docked on the presynaptic membrane.

Because AZM macromolecules are much thinner than the thinnest

tissue sections that can be cut (,30 nm) and overlap each other in

a section’s depth axis, they are difficult to study by conventional

electron microscopy. However, they can be examined in

considerable detail by electron tomography. Electron tomography

relies on multiple 2D transmission electron microscope images of a

specimen collected at different tilt angles to generate a 3-

dimensional (3D) reconstruction of the specimen [14]. For such

reconstructions of sections containing active zones, serial virtual

slices thinner than AZM macromolecules are made through the

volume. The AZM macromolecules can, then, be studied in 3D

either alone or together with other structures by using the serial

slices for segmenting them from the reconstructed volume and

generating surface models of them (e.g. [8–11,15–18]).

Electron tomography on the active zones of frog NMJ’s

routinely fixed and stained with glutaraldehyde, osmium tetroxide

and uranyl acetate at room temperature has shown that the

AZM’s macromolecules are elongate, and that most of them are

constituents of a highly ordered network [8,11]. The macromol-

ecules fall into several logically distinct classes based on their

position, shape, dimensions, and the connections they form. Each

macromolecule within a class appears large enough in diameter to

accommodate several proteins, and, although some proteins may

extend from one macromolecule into another at their connection

sites, each class is considered functionally unique. In axon

terminals fixed at rest, multiple members of four classes of AZM

macromolecules are connected to each vesicle docked on the

presynaptic membrane. Some or all may contain the cytosolic

portions of presynaptic membrane proteins and vesicle membrane

proteins known to interact during vesicle docking on and fusion

with the presynaptic membrane. Three of the four classes are

situated at different distances from the presynaptic membrane, and

the connections each class forms with a vesicle are confined to a

specific domain on the vesicle’s surface. In activated axon

terminals, fixed during replacement of docked vesicles by

previously undocked vesicles, undocked vesicles near vacated

docking sites on the presynaptic membrane are connected to the

same classes of AZM macromolecules connected to docked vesicles

in resting terminals. The number of classes and the total number

of AZM macromolecules to which the undocked vesicles are

connected are inversely proportional to the vesicles’ distance from

the presynaptic membrane. These findings have led to the

conclusion that AZM directs undocked vesicles toward docking

sites on the presynaptic membrane by forming a succession of

stable macromolecular interactions with protein components of

the vesicle membrane, and that these same interactions persist to

help hold docked vesicles in contact with the presynaptic

membrane. They have also led to questions of how the vesicle

proteins involved in docking are distributed in the vesicle

membrane and how these proteins come to associate with the

different classes of AZM macromolecules during docking [11].

Although the staining of cellular structures by osmium tetroxide

and uranyl acetate can vary depending on whether the staining is

done in aqueous media at room temperature or in acetone at low

temperature by freeze-substitution [19], at frog NMJ’s the staining

of AZM macromolecules, of the membrane of synaptic vesicles

and of the presynaptic membrane is generally the same regardless

of which one of the methods is used [11]. However, we observed,

while using such methods, that staining with osmium tetroxide and

uranyl acetate in acetone by freeze-substitution exposed an

interconnected assembly of macromolecules in the lumen of

synaptic vesicles not evident after staining at room temperature.

Biochemical analyses of the protein composition of synaptic

vesicles make it likely that the intraluminal macromolecules are

composed of the luminal portions of proteins in the vesicle

membrane [20]. Membrane proteins with luminal portions

include those that have cytosolic portions known to interact with

active zone proteins during docking [5]. In this study, we

characterized by electron tomography the arrangement and

associations of the luminal assemblies at frog NMJ’s. Our results

provide evidence that they anchor macromolecules in the vesicle

membrane in a particular arrangement, and certain of these

macromolecules contain proteins that connect to proteins in the

different classes of AZM macromolecules during docking.

Results

Background
The main body of the AZM at each active zone of the frog’s

NMJ is in the form of a narrow band that extends along the axon

terminals’ presynaptic plasma membrane for, in many cases, a

micrometer or more (Figure 1; see also [8,11,12,21]). It is attached

to a shallow evagination of the presynaptic membrane, the active

zone ridge, throughout its length, is ,50 nm wide, and, at regular

intervals, extends ,75 nm from the presynaptic membrane into

the cytoplasm. In resting terminals, docked synaptic vesicles are in

a row along each side of the main body of the AZM, while

numerous undocked vesicles are distributed with no apparent

order in a cloud lateral and deep to the active zone. The outer

diameter of the docked vesicles, as determined in 3D reconstruc-

tions used in this study, was ,51 nm (51.363.3 nm; n = 12

docked vesicles from four reconstructions), which is consistent with

our previous measurements [10,11]. The luminal diameter of the

same docked vesicles was ,36 nm (35.762.6 nm). We refer below

to the three cardinal planes of the active zone (Figure 1B): the

horizontal plane, which is parallel to the presynaptic membrane

beyond the active zone ridge; the median plane, which is

orthogonal to the horizontal plane and parallel to the long axis

of the main body of the AZM; and the transverse plane, which is

orthogonal to both the horizontal plane and the median plane.

The four classes of AZM macromolecules connected to docked

vesicles are called ribs, pins, spars and booms (Figure 1A). Ribs,

spars and booms are components of the main body of AZM. Each

of these classes arises from a different core AZM macromolecule in

the main body - beams, steps and masts, respectively - and extends

nearly parallel to the presynaptic membrane to connect to the

membrane of docked vesicles at a different distance from the

presynaptic membrane; ribs are closest to the presynaptic

membrane, booms the furthest. Pins, which are outside the

AZM’s main body, arise from the presynaptic membrane and

extend almost vertically to connect to the vesicles on the

hemisphere that faces away from the main body of AZM. The

connection sites of the ribs and pins on the vesicles are distributed

around the fusion domain, i.e., the area of the vesicle membrane in

direct contact with the presynaptic membrane [11]. Each docked

vesicle is connected on average to 4 ribs, 4 pins, 2 spars and 5

booms (Figure 1) [8,9,11]. There are also several non-AZM

macromolecules having similar dimensions to those of the AZM.

They are connected primarily to the hemisphere of each docked

vesicle that faces away from the main body of the AZM

(Figure 1A), and their positioning is distinct from that of pins.

They link docked vesicles to nearby undocked vesicles and other

organelles, and, thus, resemble macromolecules that connect

undocked vesicles to each other and other organelles throughout

Macromolecule Organization in Synaptic Vesicles
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Figure 1. Layout of the active zone at the frog’s NMJ. (A) Composite diagram viewed in the active zone’s transverse plane. The main body of
the AZM is between the two synaptic vesicles (SV) docked on the presynaptic membrane (PM). At the core of the main body are the beam, step and
mast, each connected to the docked vesicles by the horizontally arranged ribs, spars and booms, respectively. Pegs, which were not included in this
study (but see [8–10]) connect the ribs to channels in the presynaptic membrane, while pins, which are AZM macromolecules away from the AZM’s
main body connect the docked vesicles directly to the presynaptic membrane. A topmast links the mast to an undocked vesicle. Non-AZM
macromolecules connect the docked vesicles to nearby undocked vesicles and are similar in appearance to macromolecules linking undocked
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the axon terminal [22,23]. Although the connections of such

macromolecules to docked and undocked vesicles must regulate

vesicle trafficking in general [24,25], there is no evidence, to date,

that they specifically direct undocked vesicles to docking sites on

the presynaptic membrane as do the connections formed between

undocked vesicles and AZM macromolecules. Extending from the

deep end of a mast are one to three elongate macromolecules

called topmasts, each of which is connected to an undocked

vesicle. We have suggested that, because of the constancy of their

close proximity to docked vesicles, the undocked vesicles

connected to topmasts preferentially replace docked vesicles when

they fuse with the presynaptic membrane [11]. Here we examine

the relationship of the luminal assembly of macromolecules in

docked vesicles to the connections of AZM and non-AZM

macromolecules on the external surface of the vesicle membrane.

It is difficult to study the lumen of synaptic vesicles, such as

those at the frog’s NMJ, when they are imaged in tissue sections by

conventional 2D electron microscopy [3,11,26,27]. Many of the

vesicles in tissue sections thin enough for adequate spatial

resolution are not included in their entirety, and the extent to

which any such vesicle is included is often uncertain. Moreover,

cytoplasmic structures superficial and/or deep to a vesicle in the

section are projected in the same image plane as the lumen. The

serial virtual slices through the reconstructed volumes of tissue

sections we used for this electron tomography study were a small

fraction of the diameter of a vesicle, making it possible to

determine the extent to which a vesicle was included in a section

and to systematically search for luminal structures.

We found no discernable luminal structures in serial virtual

slices through each of the more than 100 whole vesicles examined

in reconstructed tissue sections from muscles fixed and stained

with glutaraldehyde, osmium tetroxide and uranyl acetate at room

temperature (Figure 2A). Serial slices through reconstructed

vesicles from muscles fixed and stained at room temperature by

osmium tetroxide without pretreatment with glutaraldehyde also

did not reveal luminal structures (data not shown). On the other

hand, we observed an assembly of elongate macromolecules

connected to the luminal surface of vesicle membranes in serial

virtual slices through each of the more than 75 whole vesicles

examined in sections from tissue fixed by rapid freezing and

stained with osmium tetroxide and uranyl acetate in acetone by

freeze-substitution (Figure 2C–E, 3A–E), a method that also

exposes AZM macromolecules and the other structures seen by the

routine staining methods used at room temperature. The luminal

assemblies were also evident in synaptic vesicles in muscles fixed

with glutaraldehyde at room temperature and stained with

osmium tetroxide and uranyl acetate in acetone by freeze-

substitution (Figure 2B), but the signal to noise ratio for the

assemblies was generally less than for the luminal assemblies of

vesicles in muscles fixed by rapid freezing [19]. In all cases, the

heavy metal staining of structures was particulate. However, in

muscles stained by freeze-substitution the frequency and electron

density of particles was generally greater for the luminal assemblies

than for the vesicle membrane (Figure 2B–D). Due to the non-

uniform frequency of particles of stain in the vesicle membrane,

the z-axis curvature of the membrane and the thinness of the serial

virtual slices, there were often small gaps in the membrane’s

outlines in any particular slice. Our method of segmentation for

generating surface models [9], which is based on gray-scale levels

in 3D, provided a way to establish a membrane’s luminal and

outer surface throughout each slice (Figure 2D,E) and made it

possible to map the connection sites of the luminal assembly on the

luminal surface, as we have done here and previously for the

connection sites of AZM macromolecules on the outer surface

[8,9,11].

We started by studying in detail the assemblies of luminal

macromolecules and their relationships in reconstructions of two

sections, each containing an active zone from different axon

terminals in the same muscle. The muscle was fixed by rapid

freezing and stained by the freeze-substitution method. We refer to

these reconstructions as the primary reconstructions. They were among

the first in which we detected luminal assemblies. We, then,

compared specific results from the primary reconstructions to

those from other reconstructions in the same and four different

muscles, each from a different frog. Two of these muscles had also

been fixed by rapid freezing and stained with osmium tetroxide

and uranyl acetate in acetone by freeze-substitution while the

other two had been fixed with glutaraldehyde at room temper-

ature before staining with osmium tetroxide and uranyl acetate in

acetone by freeze-substitution. The arrangement of macromole-

cules reported here was the same regardless of the method used for

fixation.

The Shape of the Assembly and the Amount of the
Luminal Volume it Occupies

To examine the shape of the luminal assembly of macromol-

ecules in individual vesicles, we began by generating surface

models of the assembly, the vesicle membrane and other

components of the active zone in a way that maintained their

relative positions. This made it possible to view the assemblies

alone or together with the other active zone structures at any

degree of rotation, and details of their shape could be related to the

cardinal planes of the active zone (shown in Figure 1B). We started

with a docked vesicle in one of the primary reconstructions

because the signal to noise ratio of its luminal assembly was

especially high when viewed in serial slices (Figures 3A–E). We

refer to it below as the principal vesicle in comparing the shape and

orientation of its luminal assembly to that of the luminal assemblies

in other vesicles. Four conjoined elongate macromolecules, arms,

radiated from a focal point near the center of its lumen

(Figures 3F–I). Each arm was larger near the vesicle’s membrane

than it was near the vesicle’s center and it had an irregular

topography. When it was viewed from the median plane of the

active zone, with the portion facing the vesicle’s fusion domain

downward, a different arm extended into each of the four

quadrants of the vesicle. The focal point was below and behind the

center of the vesicle, which conferred geometric chirality to the

bilateral assembly. The two arms in the quadrants that included

the membrane’s fusion domain were shorter than those in the

quadrants away from the fusion domain. Several relatively thin

macromolecules of various lengths, called nubs, extended from

each of the arms to connect to nearby regions of the vesicle

membrane (Figure 4Aa).

The shapes of the luminal assemblies in other docked vesicles

and in undocked vesicles, when represented in surface models,

were strikingly similar to that of the principal vesicle; a similar

vesicles to each other. (B) Schematic of a short segment of the active zone showing the 3D relationship of AZM macromolecules to docked vesicles
and those undocked vesicles linked to topmasts, with indicators of the active zone’s horizontal, median and transverse planes. The color code for the
structures shown here is the same for all Figures in this report. A complete description of the organization of AZM and non-AZM macromolecules can
be found in [11].
doi:10.1371/journal.pone.0069410.g001
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number of arms in the same relative positions radiated from a focal

point near the vesicle center, and they were connected to the

vesicle membrane by nubs (Figures 4A,B). There were about 25

nub connection sites on the membranes of both docked and

undocked vesicles (docked, 23.864.4 SD, n = 10; undocked,

24.862.6 SD, n = 5; not significantly different, p.0.65 as

determined by t-test). In a few instances, arms bifurcated and

reunited along their length, and nubs bifurcated before terminat-

ing on the vesicle membrane (not shown). Moreover, in certain

assemblies there were discontinuities at various points along the

length of some arms and between a few nubs and arms. Such

discontinuities may well have resulted from continuous structures

having failed to stain continuously. For each of the 12 vesicles of

the primary reconstructions, we determined the fraction of the

luminal voxels that were confined to the stained assembly; the

results showed the luminal assemblies occupied 1061% (range) of

the luminal volume.

To test for the similarity in the overall configuration of the

luminal assembly of macromolecules from vesicle to vesicle we

aligned by rotation and translation the individual assemblies in the

12 vesicles of the primary reconstructions (Figure 4C,D). We

generated three alignment models, each using a reference-free,

dual-phase algorithm [28]. Each method had unique advantages

and disadvantages (see Methods). For generating one alignment

model, the assemblies from each vesicle were represented

according to their gray-scale voxel densities; for generating the

other two alignment models the assemblies from each vesicle were

represented as surface models. The alignment models generated

using the different representations were very similar (Figure 4D);

the volume of each accounted for only 20% of the volume of a

vesicle lumen having an average diameter of ,36 nm (see above)

and all three aligned to cover over 95% of their respective

volumes. Moreover, 70–80% of the volume of each of the 12

assemblies fit within the volume of each model. The finding that

most of the volume of each of the 12 assemblies fit into models that

occupied 20% of the volume of a vesicle’s lumen, which was only

twice the fraction of the luminal volume occupied by an individual

assembly, provides strong support for the conclusion that the

layout of the luminal assemblies is similar from vesicle to vesicle.

The 20–30% of the assembly volumes not fitting in the alignment

models were mostly near the vesicle membrane (Figure 4E),

indicating a somewhat greater variability in the distribution of the

nubs and in the region of the arms attached to them, than in the

remainder of the assembly.

Figure 2. The lumen of synaptic vesicles after staining under
different conditions. Each panel shows a virtual slice, 1–2 nm thick,
through vesicles at or near an active zone (PM, presynaptic membrane;
asterisk, main body of AZM). (A) The NMJ was fixed and stained with
glutaraldehyde, osmium tetroxide and uranyl acetate at room
temperature. (B) The NMJ was fixed with glutaraldehyde at room

temperature and, after rapid freezing, fixed further and stained with
osmium tetroxide and uranyl acetate in acetone by freeze-substitution.
(C–E) The NMJ’s were fixed by rapid freezing, stained with osmium
tetroxide and uranyl acetate in acetone by freeze-substitution. While
the lumen of synaptic vesicles at the NMJ fixed and stained with
glutaraldehyde, osmium tetroxide and uranyl acetate at room
temperature appears empty (A), the lumen of synaptic vesicles at the
NMJ’s, stained with osmium tetroxide and uranyl acetate in acetone by
freeze-substitution, regardless of whether they were fixed by rapid
freezing or with glutaraldehyde at room temperature, contains an
assembly of macromolecules (B–D; arrows). The staining of the vesicle
membrane and luminal assembly in all cases is particulate. The particles
in the luminal assemblies have greater electron density than those in
the membrane. In (E), the vesicle membrane and luminal assemblies
shown in (D) are overlaid with the portion of the 3D surface models of
the entire vesicle membrane (blue) and the luminal assembly (orange)
that were generated from this virtual slice, which establishes the limits
of the membrane width throughout the membrane’s circumference,
the edges of the luminal assemblies, and the sites of connection of the
luminal assemblies to the membrane. Scale bar (A–C) = 50 nm, (D–
E) = 25 nm.
doi:10.1371/journal.pone.0069410.g002
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Orientation
As we were comparing the similarity in the shape of the

assembly from vesicle to vesicle, we noted that for docked vesicles,

the orientation of the shape with respect to the main body of AZM

and the presynaptic membrane was also similar from vesicle to

vesicle, while for undocked vesicles it was not. To document such

similarities and differences in assembly orientation for the 12

vesicles in the primary reconstructions, we took the individual

assembly rotation alignments used to form the gray-scale

alignment model of configuration similarities described above,

and we calculated how the assembly in each vesicle was oriented

with regard to the assembly in every other vesicle. A surface model

of the vesicles and presynaptic membrane in each reconstruction

was generated, and the luminal assembly for the principal vesicle

(shown in Figures 3,4Aa) was chosen as a reference. A simple

geometric model of a 3D arrow was made with a head, a shaft and

a tail orthogonal to the shaft. The arrow was inserted in place of

the principal vesicle in the surface model with the point of the

head aimed at the median plane of the active zone, the shaft lying

parallel to the presynaptic membrane and orthogonal to the

median plane of the active zone, and the tail rising vertical to the

presynaptic membrane (Figure 5A,B). Copies of the arrow were

individually inserted in place of the other vesicles in the primary

reconstructions according to where the coordinates for the arrow

in the orientation calculation for the principal vesicle fit into the

orientation calculations for their assemblies. As shown in

Figure 5C,D for the two active zones in the primary reconstruc-

tions, the arrows for the docked vesicles had similar orientations

(, 630 degrees) with respect to the median plane of the active

zone and the presynaptic membrane, while the arrows for

undocked vesicles (Figure 5C) had no common orientation. The

orientation of the luminal assemblies’ shape in two docked and one

undocked vesicles in a reconstruction from a muscle other than

that used for the primary reconstructions was determined by

overlaying the 3D alignment model from the primary reconstruc-

tions on the surface model of each luminal assembly, and rotating

it to maximize the degree of overlap; the orientation of the

alignment model having the greatest degree of overlap with the

shape of the assembly provided the orientation of the assembly,

and arrows were inserted as described above. As shown in

Figure 3. Shape of the luminal assembly of macromolecules in the principal vesicle. (A–E) Selected 1 nm thick virtual slices from a series
made through one of the primary reconstructions. The section from which the reconstruction was made was cut in the active zone’s median plane;
the virtual slices are shown in the same plane. Four vesicles are docked in a row on the presynaptic membrane (PM). Undocked vesicles are nearby.
All of the vesicles contain luminal assemblies of macromolecules. The box in each virtual slice outlines the so-called principal vesicle. (F–I) 3D surface
model of the principal vesicle’s luminal assembly shown in different degrees of rotation. In (F) the assembly is viewed from the median plane of the
AZM with the portion facing the presynaptic membrane downward. In (G) the assembly is rotated 180 degrees around the vertical axis of its
orientation in (F). In (H) and (I) the assembly is rotated 90 degrees to the right and left, respectively, around the vertical axis of the orientation in (F).
The assembly has a bilateral arrangement of four irregular arms, which radiate from below and behind the center of the vesicle. Nubs of varying
lengths arise from the arms. Scale bar (A–E) = 50 nm.
doi:10.1371/journal.pone.0069410.g003
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Figure 4. Similarity in the shape of the luminal assemblies and their association with the vesicle membrane. (Aa) Surface model of the
assembly from the principal docked vesicle shown in Figure 3F–I. (Ab) Surface model of an assembly from another docked vesicle. (Ba,b) Surface
models of assemblies from undocked vesicles. The assemblies in (Ab,Ba,Bb) were rotated until their shape matched that of the principal vesicle. The
NMJ’s used for the assemblies in (A) and (B) were fixed by rapid freezing. In all cases, the assemblies are bilateral with irregular arms radiating from
near the center of the vesicle. Nubs arise from the arms to connect at their end to the vesicle membrane; the terminal 3 voxels of each nub were
made blue to mark its connection site on the membrane. (Ca–c) Alignment model generated by gray-scale density alignment of the 12 docked and

Macromolecule Organization in Synaptic Vesicles
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Figure 5E the orientation of the shape of luminal assemblies in the

docked vesicles with respect to the median plane of the active zone

and to the presynaptic membrane was the same as for the docked

vesicles in the primary reconstructions, while the undocked vesicle

had no such orientation. A comparable study in other reconstruc-

tions showed that the luminal assemblies in only 4 of 33 undocked

vesicles were oriented similar to those of docked vesicles in

Figures 5C–E.

The Pairing of Connection Sites of Nubs with those of
AZM and non-AZM Macromolecules

We have reported previously that the fusion domain of the

membrane of docked vesicles at frog NMJ’s occupies, on average,

about 5% of the total area of the membrane’s outer surface [10].

As a step toward learning whether the distribution of nub

connection sites was correlated with the connections sites of the

AZM macromolecules, we undertook to measure the fraction of

the area of the vesicle membrane’s outer surface occupied by the

slightly overlapping sets of the connection sites of ribs, spars and

booms. For 11 docked vesicles, taken from muscles fixed with

aldehyde or rapid freezing and stained with osmium tetroxide and

uranyl acetate in acetone by freeze-substitution, the average outer

surface area of their membrane was ,8300 nm2

(829861113 nm2). These vesicles had, on average ,4 (4.260.4)

rib connection sites, ,2 (2.060.4) spar connection sites, and ,7

(7.060.9) boom connection sites. Together, the sets of connection

sites on each of the 11 vesicles fell within a circular area that was

,14% (13.763.6%) of the total outer surface area of the vesicle

membrane (Figure 6, 7A). Because all connection sites of AZM

macromolecules, except for those of pins, were within this area, we

refer to it as the vesicles’ main AZM binding domain. The

connection sites of the ,4 (3.961.3) pins and ,9 (8.561.8) non-

AZM macromolecules on these vesicles were distributed, vesicle to

vesicle, over most of the remaining ,80% of the vesicles surface

area, with the connection sites of pins, together with those of ribs,

forming a ring around the fusion domain and, therefore, nearer

the presynaptic membrane than those of the non-AZM macro-

molecules (Figure 6, 7A; see also [11]). Thus, the distribution of

macromolecule connection sites on the outer surface of the

membrane of docked vesicles, although similar from vesicle to

vesicle, was highly asymmetric: there were no such connections in

the fusion domain, and there was an ,6-fold greater frequency of

connection sites in the main AZM binding domain than in the

portion of the membrane beyond the fusion domain and the main

AZM binding domain.

For the same 11 docked vesicles, the number of nub connection

sites on the luminal surface of the vesicle membrane (23.864.4

SD) was similar to the total number of connection sites of AZM

and non-AZM macromolecules on the outer surface of the

membrane (25.463.9 SD), as determined by t-test (p.0.35). In

nearly every case (91%) the connection site of a nub was paired

with (i.e. opposite or slightly offset from) the connection site of an

AZM or non-AZM macromolecule (Figure 6). The small fraction

of the cases in which nubs were not paired with AZM/non-AZM

macromolecules could well have been due to the failure of the

macromolecules to stain. Paired nub connection sites on the

luminal surface of the vesicle membrane with the macromolecule

connection sites on the outer surface resulted in an asymmetric

arrangement for them as it did for the outer connection sites

(Figure 6, 7). Accordingly, we found no nub connection sites in the

fusion domain, and there was an ,6-fold greater frequency of nub

connection sites in the main AZM binding domain than over the

remainder of the luminal membrane surface. Moreover, when we

designated nub connection sites on the luminal surface of the

membrane of the 11 vesicles according to the class of AZM

macromolecules or non-AZM macromolecules on the outer

surface with which they were paired, each class of nub connection

sites was spatially separate from the next by a distance comparable

to that separating the different classes of AZM macromolecules

and the non-AZM macromolecules, after accounting for the

difference between the luminal and outer vesicle diameters

(Figure 6C, 7B,C). Altogether, these findings lead to the conclusion

that from docked vesicle to docked vesicle the distribution of nub

connection sites on the luminal surface of the vesicle membrane

mirrors the connection sites of AZM and non-AZM macromol-

ecules on the outer surface.

Bands of Stain Spanning the Vesicle Membrane
The particles of heavy metal that stained structures in our

samples were irregular in shape and smaller than the width of the

membrane of a synaptic vesicle. Generally, there were higher

concentrations of particles at the membranes’ luminal and outer

surfaces. However, there were also high concentrations of particles

arranged in narrow bands that extended across the width of the

membranes. Such transmembrane bands have been observed by

electron tomography in the postsynaptic membrane of neuron-

neuron synapses, where they are thought to represent stained

macromolecules that include neurotransmitter receptors [29]. By

visual inspection of the virtual slices through both docked and

undocked vesicles in our reconstructions, many of the transmem-

brane bands of stain appeared to have a diameter similar to that of

nubs and to be continuous with nubs at their site of connection to

the membrane’s luminal surface (Figure 8). Such bands in the

membrane of docked vesicles often extended from the connection

site of a nub on the luminal surface of the membrane to the

connection site of its paired AZM or non-AZM macromolecule on

the outer surface (Figure 8A-I). We undertook to determine the

frequency of transmembrane bands connecting nubs to AZM/

non-AZM macromolecules by segmenting the bands from serial

virtual slices along with the connection sites of nubs and AZM/

non-AZM macromolecules and rendering them together with the

outlines of the membrane as 3D surface models. We found that for

undocked vesicles in the two primary reconstructions, which included those shown in (Aa,Ba). In (Ca) the alignment model is oriented according to
the orientation of the surface model of the assembly from the principal vesicle as shown in (Aa). In (Cb) the alignment model is rotated 90 degrees to
the right around the vertical axis in (Ca). In (Cc) the alignment model is rotated 180 degrees around the vertical axis in (Ca). The alignment model
shows a bilateral arrangement of 4 radiating arms as do the models of individual assemblies in (Aa,b,Ba,b). (Da–c) The alignment model (red)
generated from gray-scale density alignment of the 12 luminal assemblies in (Ca–c) aligned together with two alignment models (blue and green)
generated from the same 12 assemblies represented according to their surface models. The different orientations of the superimposed alignment
models are the same as for that in (Ca–c). The alignment models, which were calculated to have 95% 3D overlap, were used to measure the similarity
in the shape of the assemblies from vesicle to vesicle and for establishing the orientation of the shape from vesicle to vesicle. (Ea–c) The surface
model in (Aa) inserted into the alignment model in (Ca–c) according to its position in the alignment model. The different orientations of the
combined models are the same as in (Ca–c). The portions of the surface model least included in the alignment model are the nubs, probably due to
the nubs being smaller and/or having a somewhat greater variability in positioning than the arms among the surface models used for generating the
alignment model.
doi:10.1371/journal.pone.0069410.g004
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10 docked vesicles transmembrane bands were clearly evident

between 97% of the nub-rib connection sites, 94% of the nub-spar

connection sites, 88% of the nub-boom connection sites, and 91%

of the nub-pin connection sites.

Some transmembrane bands of stain in the 10 docked vesicles

were not associated with macromolecules connected to the luminal

and outer surfaces of the membrane. To determine whether

transmembrane bands were selectively localized to the paired

connection sites of macromolecules on the luminal and outer

surfaces, we used the serial virtual slices through the vesicles to

compare the frequency distribution of voxel gray-scale values of

the narrow region of vesicle membrane between the nub and

AZM/non-AZM connection sites to the frequency distribution of

voxel gray-scale values throughout the rest of the vesicle

membrane. The average voxel gray-scale values for the region of

membrane between the connection sites of nubs and each of the

classes of AZM and non-AZM macromolecules were significantly

different (darker) than the average voxel gray-scale value for the

remainder of the vesicle membrane (Figure 8K; Table 1), which

would be expected if the transmembrane bands of stain were

preferentially localized to regions of the vesicle membrane

between the connection sites of nubs and the connection sites of

AZM and non-AZM macromolecules. Because the staining of

these transmembrane bands was similar to and usually appeared

continuous with that of the paired macromolecules connected to

the luminal and outer surface of the membrane, we conclude that

each band of stain marked a membrane macromolecule linking a

nub to either an AZM or a non-AZM macromolecule. The small

fraction of the cases in which we did not visually detect bands of

stain between the connection sites of nubs and AZM/non-AZM

macromolecules was probably owing to the capriciousness of the

stain. We did not undertake a systematic study to determine

whether the transmembrane bands of stain continuous with nubs

in undocked vesicles were also linked to non-AZM macromole-

cules that connect to the outer surface of these vesicles, but we

noted in many cases that they were (Figure 8J).

Figure 5. Orientation of the shape of the luminal assemblies. In
(A), the surface model of the luminal assembly of the principal vesicle is
viewed in the transverse plane of its active zone, while in (B) it is viewed
from the median plane of the active zone. The 3D arrow superimposed
on the surface model in both (A) and (B) is oriented so its head points to
the median plane of the AZM, its shaft is orthogonal to the median
plane and parallel to the presynaptic membrane and its tail is vertical to
the presynaptic membrane. The vesicle membrane, presynaptic
membrane, and AZM macromolecules are schematized for reference.
(C) A surface model of the presynaptic membrane in a primary
reconstruction, shown in the virtual slices in Figure 3A–E that include
the principal vesicle, three other docked vesicles and three undocked
vesicles. The edge of the membrane nearest the median plane of the
AZM is brown-gold. The 3D arrows show the orientation of the shape of
the luminal assembly in the docked (red) and undocked (blue) vesicles
relative to that of the principal docked vesicle (asterisk) with respect to
the median plane of the active zone and to the presynaptic membrane

as shown in (A) and (B). The shape of the assembly in all of the docked
vesicles has the same orientation (630 degrees) as that of the principal
vesicle, while the shape of the assembly in undocked vesicles does not
share a common orientation. (D) Surface models of the presynaptic
membrane and superficial layer of the AZM from the other primary
reconstruction. The superficial layer of the AZM, which contains ribs
(gold) and beams (brown-gold), is viewed from near the active zone’s
transverse plane. There is a slight angular change midway along the
AZM’s long axis [11]. The 3D arrows show the orientation of the shape
of the luminal assembly in four docked vesicles relative to that of the
primary docked vesicle in (A–C) with respect to the median plane of the
active zone and presynaptic membrane. The shape of the assembly for
three of the docked vesicles had the same orientation (630 degrees)
with respect to the median plane of the active zone and to the
presynaptic membrane as the docked vesicles in (C). While the shape of
the assembly for the fourth vesicle (arrowhead and shaft lacking a tail)
was similarly oriented with respect to the median plane of the active
zone, there was not sufficient information to determine its orientation
with respect to the presynaptic membrane. (E) Surface models of the
presynaptic membrane and superficial layer of the AZM from another
reconstruction. The ribs and beams of the AZM are viewed from near
the active zone’s transverse plane. The 3D arrows show the orientation
of the shape of the luminal assembly in two docked vesicles (red) and
one undocked vesicle (blue) relative to that of the primary docked
vesicle in (A–C) with respect to the median plane of its active zone and
presynaptic membrane. The shape of the assembly for the two docked
vesicles had the same orientation (630 degrees) with respect to the
median plane of the active zone and to the presynaptic membrane as
the docked vesicles in (C) and (D), while the shape of the assembly in
the undocked vesicle did not.
doi:10.1371/journal.pone.0069410.g005
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Discussion

We show by electron tomography that the lumen of synaptic

vesicles at appropriately stained frog NMJ’s contains an assembly

of macromolecules. The luminal assembly occupies about 10% of

the lumen’s volume, and it has a chiral bilateral shape that is

similar from vesicle to vesicle. As schematized in Figure 9A,B

irregular arms radiate from near the lumen’s center to connect by

nubs to the luminal surface of the vesicle membrane. The number

of nub connection sites on the membrane is similar vesicle to

vesicle, and, at these sites, the nubs are linked to stained

macromolecules that span the membrane. For docked vesicles,

the orientation of the luminal assembly with respect to the

presynaptic membrane and the median plane of the active zone is

similar vesicle to vesicle, while in undocked vesicles it is not

(Figure 9C). Moreover, for docked vesicles, the nub connection

sites on the luminal surface of the vesicle membrane are paired

Figure 6. Pairing of connection sites of nubs with connection sites of AZM and non-AZM macromolecules. (A,B) Surface model of the
membrane of a docked vesicle in one of the primary reconstructions; (A) shows the hemisphere facing the main body of the AZM and (B) shows the
hemisphere facing away from the main body. (A-left, B-left) Three-voxel-thick terminal portions of the AZM’s ribs (gold), spars (red), booms (purple)
and pins (copper) and of non-AZM macromolecules (pewter), mark the connection site of each on the outer cytosolic surface of the vesicle
membrane (pale blue). The vesicle’s fusion domain is indicated by the dashed line (B). (A-right, B-right) The AZM and non-AZM macromolecules are
disabled on the surface model and the membrane has been made almost transparent. Three-voxel-thick terminal portions of the luminal assembly’s
nubs (blue) mark the connection site of each on the luminal surface of the vesicle membrane. The distribution of the connection sites of the nubs is
non-uniform and appears similar to the asymmetric distribution of the connection sites of the AZM and non-AZM macromolecules, although some of
the similarity is obscured in these 2D images by the vesicle’s 3D curvature and the difference in the vesicle’s luminal and outer diameters. (C) Using
x,y,z coordinates of the connection sites in (A,B), after correcting for the difference between luminal and outer diameters of the vesicle membrane,
the relative positions of the centroids of the connection sites of the AZM and non-AZM macromolecules and of the nubs were plotted on a 2D
Robinson map. The centroids were overlaid by filled circles slightly smaller in diameter than the connection sites and color-coded as in (A,B). The
hemisphere of the vesicle facing the main body of the AZM lies between the bold longitudinal lines. The main AZM binding domain, which covers
about 20% of the outer surface area of this vesicle and includes about half of the total nub and AZM/non-AZM macromolecule connection sites on
the membrane, is encircled by the solid white line. Each nub is paired with an AZM or non-AZM macromolecule lying opposite to, or slightly offset
from, it.
doi:10.1371/journal.pone.0069410.g006
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Figure 7. Composite maps of nub, AZM and non-AZM macromolecule connection sites. (A) The centroids of the connection sites of
different classes of AZM macromolecules, non-AZM macromolecules and nubs on the membrane of 11 docked vesicles from 4 active zones are
plotted on the outer (O) and luminal (L) surfaces of an idealized vesicle. The hemispheres are viewed from (R) or toward (r) the midline of the main
body of the AZM or from (q) or toward (Q) the presynaptic membrane as indicated in the schematic of the active zone. The connection sites of ribs
(gold), spars (red), booms (purple), pins (copper) and non-AZM macromolecules (pewter) were plotted on the idealized vesicle, while maintaining
their relative positions per vesicle, using a cross correlation method that maximizes the degree of overlap of the rib connections to the outer surface
(see Methods). The connection sites of nubs were plotted according to the same method using the nub connection sites paired with rib connection
sites as the reference. Nub connection sites are color-coded according to the class of AZM/non-AZM macromolecules with which they were paired.
There is an asymmetric distribution of AZM/non-AZM connection sites between the hemisphere facing the median plane of the AZM and the
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with, and linked by their transmembrane macromolecules to,

AZM and non-AZM macromolecules at the connection sites of

these macromolecules on the outer surface of the membrane.

Accordingly, there is a stereotypical asymmetric distribution of

nub connection sites on the luminal surface of the membrane of

docked vesicles that mirrors the asymmetric distribution of the

connection sites of AZM and non-AZM macromolecules on the

outer surface. We have found in other experiments (Xu and

McMahan, unpublished) that the distribution of nub connection

sites on the membrane of undocked vesicles is similar to that of

docked vesicles, which is consistent with our findings here that the

shape of the luminal assemblies and the number of nub connection

sites in undocked vesicles is similar to that of docked vesicles.

Altogether, our findings on the structure and associations of the

luminal assembly in synaptic vesicles at frog NMJ’s bear directly

on the problems of how different proteins are arranged in the

vesicle membrane at this synapse, and how the membrane of

undocked vesicles becomes associated with AZM and presynaptic

membrane during docking. They are also relevant to the problems

of how transmitter is released from the vesicles when their

membrane fuses with the presynaptic membrane during synaptic

transmission and how the fused vesicle membrane is, then,

recycled. 2D electron micrographs from freeze-fracture studies on

synapses in different regions of the nervous system and in different

animal species [30–37], as well as on the NMJ of the frog [38],

show that the membrane of synaptic vesicles contains multiple

particles, each of which could represent one or more of the

transmembrane macromolecules we detected by electron tomog-

raphy. Other studies, using different methods of analysis, on

isolated synaptic vesicles from the electric organ of a marine ray

and from the rat’s brain indicate that the lumen of these vesicles

contains macromolecules [39,40]. Such findings, together with

evidence that the assortment of synaptic vesicle proteins involved

in docking is much the same throughout the nervous system

[5,20], make it likely that our observations and conclusions have

general applicability.

Biochemistry indicates that proteins in the lumen of synaptic

vesicles are luminal portions of ones that span the vesicle

membrane [20]. We propose that the luminal assembly of

macromolecules we describe at frog NMJ’s is composed of

aggregates of the luminal portions of such membrane spanning

proteins, that most, if not all, of these portions enter the lumen at

the connection sites of the assembly’s nubs on the luminal surface

of the vesicle membrane, and that membrane spanning proteins

giving rise to the luminal portions are components of the

transmembrane macromolecules linked to the nubs. By extension,

the nearly constant chiral shape of the luminal assembly and the

similarity in number and distribution of nub connection sites from

vesicle to vesicle indicate that those proteins in the transmembrane

macromolecules linked to nubs have a particular asymmetric

arrangement common to both docked and undocked vesicles. The

association of the luminal portions of vesicle membrane proteins in

the assemblies very likely helps anchor the proteins in position

within the membrane and, in so doing, provides the membrane

with tensile strength to accommodate forces imposed on the

vesicles during, for example, docking [11].

Several vesicle membrane proteins having a luminal portion are

known to also have a cytosolic portion that interacts with other

cytoplasmic components. These proteins include synaptobrevin

and synaptotagmin, the cytosolic portions of which are involved in

vesicle docking and fusion, as well as SV2, and synaptophysin [41–

44]. Based on their primary structure, the luminal portions of

synaptobrevin, synaptotagmin and synaptophysin, could extend

into the lumen for only a small fraction of its diameter [45–48].

On the other hand, the length of the luminal portion of SV2 is

much greater than the diameter of the lumen [44]. Thus, folded

luminal portions of SV2 are likely to serve as the luminal

assembly’s mainstay for the attachment of the luminal portions of

the other proteins. The dissociation characteristics of vesicle

proteins, including synaptobrevin, synaptotagmin and SV2, during

biochemical isolation indicate they are coherent in their native

state [49], which would be expected if they were components of

membrane macromolecules and/or a luminal assembly of

macromolecules.

Based on spatial requirements for the interaction of the cytosolic

portions of the synaptic vesicle’s synaptobrevin and synaptotagmin

with the cytosolic portions of the presynaptic membrane’s syntaxin

and SNAP-25 during docking, we have suggested previously [11]

that, for docked vesicles, these portions are components of the

AZM’s ribs and pins. We propose here that the transmembrane

macromolecules and nubs linking the ribs and pins to the luminal

assembly contain membrane spanning and luminal portions of

synaptobrevin and synaptotagmin and, perhaps, other membrane-

spanning proteins such as SV2. Similarly, the transmembrane

macromolecules and nubs linking the AZM’s spars and booms to

the luminal assembly of docked vesicles must also contain

membrane spanning and luminal portions of proteins having

cytosolic portions involved in docking, while nubs linking non-

AZM macromolecules to the luminal assembly contain membrane

spanning and luminal portions of proteins having cytosolic

portions involved in general aspects of vesicle trafficking. We

have proposed elsewhere [11] that vesicle proteins lacking luminal

portions and known to be involved in docking, such as Rab3a, or

trafficking in general, such as synapsin, contribute to the AZM and

non-AZM macromolecules, respectively. Such proteins may also

be a part of the transmembrane macromolecules that link the

AZM and non-AZM macromolecules to the luminal assembly

along with those proteins having luminal portions.

Evidence that the distribution of nubs and their transmem-

brane macromolecules is the same in undocked vesicles as it is in

docked vesicles, where most of the nubs are linked by their

transmembrane macromolecules to AZM macromolecules in the

vesicles’ AZM binding domain and/or ring their fusion domain,

leads to the conclusion that the connection sites of AZM

macromolecules and the fusion domain are predetermined on

undocked vesicles. Thus, in order for undocked vesicles to

hemisphere facing away from the AZM, which is mirrored by an asymmetric distribution of nubs. Similarly, the asymmetric distribution of AZM/non-
AZM connection sites between the hemisphere facing the presynaptic membrane and away from the presynaptic membrane, also is mirrored by an
asymmetric distribution of nubs. The distribution of nub and AZM/non-AZM connection sites on the hemisphere facing the presynaptic membrane is
greatly affected by the absence of such connections in the fusion domain (within the pale circular area). (B,C) The frequency of the connection sites of
the different classes of main body AZM macromolecules on the outer surface and their paired nubs on the luminal surface (B), and non-AZM
macromolecules and pins on the outer surface and their paired nubs on the luminal surface (C), as a function of distance from the average rib
position per vesicle (see methods). The plots of the nub connections in (B) and (C) are normalized (scaled) for differences between the luminal and
outer diameters of the vesicle membrane. The asymmetric distribution of the connection sites of the different classes of AZM and non-AZM
macromolecules on the outer surface of the vesicle membrane reflects the asymmetric distribution of connection sites of their paired nubs on the
luminal surface of the membrane.
doi:10.1371/journal.pone.0069410.g007
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Figure 8. Transmembrane bands of stain linking the connection sites of nubs to AZM and non-AZM macromolecules. (A) Virtual slice
,2–3 nm thick through a docked vesicle. (B) Same slice as in (A) with color-coded outlines of portions of nubs (orange), transmembrane bands of
stain (darker blue), and portions of a rib (gold), a spar (red), and a boom (purple). The pale blue outlines marking the luminal and outer surfaces of the
vesicle membrane are an overlay of this section’s contribution to a 3D surface model of the entire vesicle. The nubs are linked to the rib and boom by
the transmembrane bands of stain. The band of stain and nub to which the spar is linked is evident in the next virtual slice, shown in (C). (C) A virtual
slice adjacent to the one shown in (A) and (B). (D) Same slice as in (C) with outlines of portions of nubs, transmembrane bands of stain and portions of
AZM macromolecules and the surfaces of the vesicle membrane color-coded as in (B). Portion of a non-AZM macromolecule is outlined in pewter.
Nubs are connected by the transmembrane bands of stain to the spar, boom and non-AZM macromolecule. (E) Surface model ,10 nm thick
generated from a series of virtual slices showing in 3D the nubs linked by transmembrane bands of stain to the rib, spar, boom and non-AZM
macromolecule outlined in (B) and (D). The membrane has been made partially transparent to enable viewing the extent of the transmembrane
bands in the z-axis. (F) The membrane of the principal vesicle has been made transparent to reveal the luminal assembly of macromolecules (orange).
Four ribs (gold) are connected by transmembrane bands of stain (dark blue) to nubs of the luminal assembly at their sites of connection to the
luminal surface of the vesicle membrane. The connection sites of other nubs on the membrane were marked by coloring the portion of the nubs
within three voxels of their connection site dark blue. (G–I) Virtual slices from different docked vesicles showing nubs linked to transmembrane bands
of stain. In adjacent slices (not shown) the transmembrane bands of stain were linked to an AZM or non-AZM macromolecule as indicated by the
colored arrows (ribs, gold; booms, purple; non-AZM macromolecules, pewter). (J) Virtual slice from an undocked vesicle showing a transmembrane
band of stain linked to a nub. In the adjacent section, the transmembrane band of stain was linked to a non-AZM macromolecule as indicated by the
black arrow. Scale bar (A–D,G–J) = 25 nm. (K) For a single vesicle, the frequency distribution of the voxel gray-scale values (ranging from 0, black, to
1000, white) of the narrow region of the vesicle membrane between nub connection sites and the connection sites of opposed AZM and non-AZM
macromolecules, i.e. the region containing the transmembrane band of stain, was compared with the voxel gray-scale values for the rest of the
synaptic vesicle (SV) membrane. The voxel gray-scale values in the regions between 24 nubs and their opposed ribs (4), spars (2), booms (6), pins (4)
and non-AZM macromolecules (8) were on average significantly darker than the rest of the vesicle membrane (asterisks) as determined by ANOVA
with a Tukey Post Hoc Test (p,0.05). An additional 7 vesicles were similarly tested and the results are displayed in Table 1 (details of results from this
vesicle are shown at #8 in Table 1). Altogether, the findings indicate that, on average, the transmembrane regions linking nubs to AZM and non-AZM
macromolecules have a greater density of stained material than the remainder of the vesicle membrane.
doi:10.1371/journal.pone.0069410.g008
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sequentially form connections with booms, spars, and ribs and

pins [11], which leads to docking on the presynaptic membrane,

they need to move in a way that results in the alignment of the

appropriate nubs and their transmembrane macromolecules with

the AZM macromolecules so their proteins can interact. Because

in undocked vesicles the shape of the luminal assembly, which is

indicative of the distribution of the nubs and their transmem-

brane macromolecules, does not have a specific orientation

toward the main body of the AZM and the presynaptic

membrane, as it does in docked vesicles, such alignment must

involve vesicle rotation. One scheme for how the vesicles in the

cloud of undocked vesicles adjacent to the active zone may move

to achieve the alignment is as follows. After the membrane of

docked vesicles fuses with the presynaptic membrane to mediate

synaptic transmission, the cytosolic portions of its proteins

connected to the AZM and non-AZM macromolecules dissociate

from them [5,11]. The vesicle membrane, then, flattens into the

presynaptic membrane and moves laterally beyond the active

zone to be retrieved for recycling [38,50]. The calcium that

enters the terminal to trigger the fusion of the docked vesicles

with the presynaptic membrane also brings about the disruption

of the macromolecules that link undocked vesicles to each other

in the cloud, so the vesicles are free to move [24,25,51]. The

initial movement may be random Brownian motion, which

would result in vesicle rotation and favor the vesicles’ displace-

ment from the high vesicle density of the cloud to the relatively

low vesicle density of the active zone due to the fusion of the

membrane of docked vesicles with the presynaptic membrane

and its lateral displacement. Once an undocked vesicle is

sufficiently close to a vacated set of booms, and it has rotated

so the appropriate set of nubs and their transmembrane

macromolecules are aligned with the booms, the cytosolic

portions of the proteins in the transmembrane macromolecules

can then, according to their affinity, interact with proteins in the

booms to constrain Brownian movement. The stability of the

interactions and the strength of constraint could increase as the

number of booms involved in such interactions increases.

Moreover, force generated by these interactions might help bring

the adjacent set of nubs and their transmembrane macromole-

cules close enough to the vacated spars for their proteins to

interact. This sequence could be repeated so that, ultimately, the

cytosolic portions of synaptobrevin and synaptotagmin in the set

of nub-linked transmembrane macromolecules containing them

interact with the cytosolic portions of syntaxin and SNAP-25 in

the vacated ribs and pins. The force generated by these

interactions would not only bring the fusion domain of the

vesicle’s membrane into precise alignment with the presynaptic

membrane, but it also would lead to the two membrane’s making

direct contact. The localization of docking proteins to macro-

molecules having an arrangement in the vesicle membrane that

mirrors the arrangement of AZM macromolecules would

minimize the number of protein copies required for the docking

process to occur. To our knowledge there is no biochemical

evidence to indicate there is a region of the synaptic vesicle

membrane specialized for forming a fusion pore with the

presynaptic membrane during synaptic transmission. However,

this possibility is raised by our structural evidence that the portion

of the membrane that will form the pore is predetermined in

undocked vesicles and that one of the roles of the AZM during

docking is to bring this portion into direct contact with the

presynaptic membrane. The specialization could be in the nature

of the membrane proteins or lipids or both. The lipid

composition of vesicle membranes is known to influence the

probability of their calcium-mediated fusion with plasma

membranes in certain non-neural cells [52,53].

Biochemical and electrophysiological studies on cholinergic

synaptic vesicles, including those at the frog’s NMJ, indicate that

the luminal proteins, particularly SV2, have abundant carbohy-

drate residues, and that the carbohydrate residues adsorb the

neurotransmitter acetylcholine [39,54]. The rate of dissociation of

acetylcholine from this glycomatrix after vesicle fusion with the

presynaptic membrane is thought to significantly influence the

timing of its exocytosis during synaptic transmission. Our methods

of tissue staining did not permit us to detect extended carbohy-

drate residues, but the luminal assembly of macromolecules is

likely to serve as the protein backbone of the glycomatrix. Thus,

the stereotypic shape of the luminal assembly indicates that the

carbohydrate residues have the same compartmentalized distribu-

tion within the lumen from vesicle to vesicle. Such compartmen-

talization would be of particular interest if acetylcholine molecules

and molecules of ATP, a cotransmitter in cholinergic synaptic

vesicles [55–58], were localized to different compartments of the

glycomatrix according to, for example, specific sites of loading for

each. The stereotypic orientation of the luminal assembly in

Table 1. Voxel gray-scale values for the narrow regions of membrane between the connection sites of nubs and connection sites
of their paired AZM/non-AZM macromolecules and for the rest of the membrane of eight synaptic vesicles.

SV Rest of Membrane Nubs-Ribs Nubs-Spars Nubs-Booms Nubs-Pins Nubs-non-AZM

Nv Avg±SD Nv Avg±SD Nv Avg±SD Nv Avg±SD Nv Avg±SD Nv Avg±SD

1 72082 581641 1658 558640 512 565640 1432 578642* 610 561642 1653 560640

2 76582 5006105 652 483699 310 466682 568 445686 584 415685 2130 431690

3 70993 4816102 914 444696 598 424695 1126 438689 772 418693 2264 417685

4 77597 486697 791 433685 389 425682 1259 425688 804 430683 1330 420689

5 69063 4916103 649 438679 559 443697 931 407689 547 421674 995 391690

6 64417 460686 759 413677 362 401670 1150 391685 555 400684 1764 397688

7 72812 432687 911 370676 220 377671 786 373676 259 364677 663 356675

8 81576 625619 680 605617 325 607615 707 608615 575 601616 951 610612

Nv, number of voxels; Avg6SD, average gray-scale value (ranging from 0, black, to 1000, white) 6 Standard Deviation (SD). Average gray-scale values for the regions
between nubs and AZM/non-AZM macromolecules per vesicle are significantly lower (darker) than for the rest of its membrane, except for one value (asterisk), as
determined by ANOVA analysis with Tukey Post Hoc test (p,0.05).
doi:10.1371/journal.pone.0069410.t001
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docked vesicles might enable the timing of dissociation from the

different compartments, after the vesicles fuse with the presynaptic

membrane, to be the same from one vesicle to the next.

The fusion of vesicles with the presynaptic membrane and the

recycling of their membrane for fusion again can occur in less than

1 minute at frog NMJ’s [59], and at other synapses [60,61]. Given

Figure 9. Schematized relationships of the luminal assembly of macromolecules at frog NMJ’s. (A) Profile of a vesicle (pale blue) docked
on the presynaptic membrane (gray) viewed in the transverse plane of the active zone. AZM macromolecules, including a rib (gold), a spar (red), a
boom (purple) and a pin (copper), connect to the outer surface of the vesicle membrane as do non-AZM macromolecules (pewter). The luminal
assembly of macromolecules is orange. Nubs arise from the luminal assembly’s arms to connect to the vesicle membrane, where they are linked to
macromolecules that span the membrane (dark blue) and connect to the AZM and non-AZM macromolecules. (B) Profile of a docked vesicle viewed
from the active zone’s median plane. The arms of the luminal assembly radiate from a point near the center of the vesicle and are larger near the
vesicle membrane than at the vesicle’s center. The arms in the hemisphere facing the presynaptic membrane are shorter than those away from the
presynaptic membrane. Colored spots on the luminal assembly mark regions connected by nubs and their membrane spanning macromolecules to
specific classes of AZM and non-AZM macromolecules, as in (A). C) 3D arrangement of docked and nearby undocked vesicles relative to the AZM and
presynaptic membrane. The orientation of the stereotypic shape of the luminal assembly with respect to the median plane of the AZM and
presynaptic membrane is indicated by 3D arrows. The orientation is the same for docked vesicles (red arrows) while for undocked vesicles (blue
arrows) it is not. Thus, in order for an undocked vesicle to replace a docked vesicle that fuses with the presynaptic membrane during synaptic
transmission, it must, typically, rotate so the appropriate vesicle membrane macromolecules linked to the luminal assembly (A,B) can sequentially
interact with the different classes of AZM macromolecules that direct it to the docking site on the presynaptic membrane.
doi:10.1371/journal.pone.0069410.g009
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the orderly arrangement of the components of the luminal

assembly and their associated membrane macromolecules in

docked and undocked vesicles and the predicted involvement of

this arrangement in vesicle docking, it is reasonable to suggest that

such polarity is fully established in undocked vesicles shortly after

they are reformed. It may be that when docked vesicles fuse with

the presynaptic membrane, the shape of the luminal assembly is

temporarily altered to accommodate the flattening of the vesicle

membrane into the presynaptic membrane while its different

macromolecular components remain associated to help maintain

the relative positioning and constant copy number [62] of the

membrane macromolecules to which they are linked. The imaging

methods we have used here should reveal at NMJs fixed during

synaptic activity (e.g. [11]) whether the macromolecules of the

luminal assembly remain associated with the membrane of fused

vesicles as they flatten into the presynaptic membrane and whether

they are present as the vesicles reform [63,64].

Materials and Methods

Ethics Statement
The animal experimentation described here was approved by

Stanford University’s (Protocol Number 10505) and Texas A&M

University’s (AUP Number 2011–18 ) administrative panels on

laboratory animal care (IACUC), which oversees the use of

animals according to U.S. federal regulations.

Tissue Preparation
We used the paired cutaneous pectoris muscles in Rana pipiens,

which are situated just beneath the skin of the frog’s chest. Muscles

from 10 frogs, about 5 cm nose-rump length, provided the data

described here. Each frog was deeply anaesthetized in tricaine

methanesulfonate (MS-222, Sigma Chemical, St Louis, Missouri)

and pithed in both directions prior to tissue removal. The

cutaneous pectoris muscles are broad and flat, and 1–3 muscle

fibers thick, which favors rapid and uniform fixation and staining.

Muscles fixed and stained with glutaraldehyde, osmium

tetroxide and uranyl acetate at room temperature

[8,11]. Muscles were immediately exposed in terminally anes-

thetized (MS-222, Sigma Chemical, St Louis, Missouri) and pithed

frogs. Under a dissecting microscope, 1% glutaraldehyde (Ted

Pella, Inc., Redding, California) in Millonig’s phosphate buffer

(230 mOsM total, pH 7.2) was injected beneath the muscles and

dripped onto their superficial surface several times over 15 min.

The muscles were removed from the frog, pinned flat in a Sylgard

184 (Dow Corning, Midland, Michigan) coated petri dish

containing 1% glutaraldehyde in phosphate buffer (230 mOsM,

pH 7.2) and placed on a shaker for 50 min, washed with

phosphate buffer for 15 min, tris buffer (230 mOsM, pH 7.2) for

15 min, and phosphate buffer for 20 min. The muscles were then

further fixed and stained for 1 hr in 1% osmium tetroxide in

phosphate buffer (230 mOsM total; pH 7.2), washed for 1 hr in

H2O, stained 1 hr in saturated aqueous uranyl acetate, dehydrated

in increasing concentrations of ethanol and embedded flat in a

wafer of Eponate 12 (Ted Pella, Inc., Redding, California) less

than 1 mm thick.

Muscles fixed and stained with osmium tetroxide and

uranyl acetate at room temperature. Muscles were removed

from anesthetized and pithed frogs and pinned out in a petri dish

containing Ringer’s solution. They were then fixed and stained for

1 hr in 1% osmium tetroxide in phosphate buffer (230 mOsM

total; pH 7.2) before washing in H2O, staining in saturated

aqueous uranyl acetate and further processing as above.

Muscles fixed and stained by rapid freezing and freeze-

substitution with osmium tetroxide and uranyl acetate. 1)

Twelve years ago, when we began this study, Thomas Reese and

John Heuser gave us an Araldite embedded block of Rana pipiens

cutaneous pectoris muscle that had been prepared by rapid

freezing for one of their studies published 20 years previously [38].

The freezing was accomplished by mounting the muscle on a

freezing press and plunging it onto an ultrapure copper block pre-

cooled to 4uK. Freeze-substitution with 4–5% osmium tetroxide in

anhydrous acetone occurred over a 4–6 hour warm-up to room

temperature. The muscle was then further stained with 1% uranyl

acetate in acetone for 2–4 hours, before it was embedded in

Araldite for sectioning. This block of muscle contained 12 NMJ’s

devoid of obvious ice crystal damage. Two of the active zones were

used to generate the principal reconstructions described here. 2)

All other muscles initially fixed by rapid freezing were prepared as

follows. They were pinned out in Sylgard coated petri dishes and

bathed in Ringer’s solution containing 10 mg/ml tetrodotoxin

(Sigma-Aldrich Co., St. Louis, Missouri), which helped reduce

muscle contraction during mounting. Regions of innervation were

identified in the muscles with the dissection microscope. 2–3 mm2

portions containing them were cut out and placed between copper

mounting carriers (600 mm deep). The carriers were then

transferred to a Bal-Tec Ltd. HPM 010 (Lichtenstein) freezing

apparatus. Freezing was done at liquid nitrogen temperature and

under high pressure. Freeze-substitution of 2% osmium tetroxide

together with 0.1% anhydrous uranyl acetate in acetone was done

according to the method in [65], and the muscles were embedded

in Eponate 12 for sectioning.

Muscles fixed with glutaraldehyde at room temperature

and further fixed and stained by rapid freezing and freeze-

substitution with osmium tetroxide and uranyl

acetate. The muscles were fixed with glutaraldehyde in situ

and pinned out flat in a Petri dish containing phosphate buffer as

described above. 2–3 mm2 portions containing regions of inner-

vation were cut out and placed between copper mounting carriers.

Rapid freezing in the Bal-Tec freezing apparatus, freeze-substitu-

tion of 2% osmium tetroxide and 0.1% uranyl acetate and

embedding proceeded as above.

Sections
Regions of the muscles containing NMJ’s were identified in the

wafers of Eponate 12 at x400 magnification with a dissecting

microscope, and blocks were cut out and mounted for sectioning.

The sections varied from ,50 nm to 120 nm in thickness based

on measurements from the reconstructed volumes. They were

stained for 10 min with saturated uranyl acetate in methanol,

rinsed with water, stained again with Reynolds lead citrate for

10 min, and again rinsed with water. Staining the tissue sections

with uranyl acetate and lead citrate significantly enhanced the

contrast of structures already stained by osmium tetroxide and

uranyl acetate before embedding, when viewed in the electron

microscope.

Data Collection
Datasets were collected at a magnification ranging from

29,0006 to 125,0006 using one of two electron microscopes

designed for automatic data acquisition: 1) a Philips Tecnai T20

electron microscope (FEI Company Hillsboro, Oregon) equipped

with a 102461024 CCD (Gatan, Inc., Pleasanton, California) in

the laboratory of Dr. David Agard at the University of California,

San Francisco; and 2) an FEI TF30 Polara electron microscope

(FEI Company Hillsboro, Oregon) equipped with a 204862048

Tietz TemCam-F224HD CCD (Tietz Video and Imaging
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Processing Systems GmbH, Gauting, Germany) in our own

laboratory at Stanford University. The stage on each microscope

was cooled to liquid nitrogen temperature to reduce specimen

shrinkage. Datasets consisted of images taken at 1-degree tilt

intervals to 660 or 670 degrees along a single tilt axis. The active

zones used for data collection were selected so that each of the

three different cardinal active zone planes were represented in our

sample. This enabled us to account, during data analysis, for any

missing wedge artifact resulting from the method of data

collection.

Reconstructions
The tilt images were aligned automatically using 5 or 10 nm

gold colloid (British Biocell International, Cardiff, U.K.) deposited

on one or both sides of the sections as fiducial markers before data

collection. For the datasets used in the current study, the scheme

provided an average accuracy of 1.0360.38 pixels RMS

(0.7660.55 nm RMS). The reconstructions were made by a

weighted back-projection method. Both the alignment and

reconstruction algorithms are in the unified software package for

electron tomography, EM3D (em3d.stanford.edu) [9,66]. The 3D

spatial resolution was 2–3 nm for high contrast structures such as

the cytoplasmic and extracellular layers of the plasma membrane

[66].

Virtual Slices, Segmentation and Surface Models
Virtual slices through the reconstructed tissue sections were 1

voxel thick. Depending on the dataset, the virtual slice thickness

represented 0.52 nm to 1.2 nm of a tissue section’s thickness. The

images of virtual slices in Figures 2 and 8 were formed by the

summation of multiple virtual slices to the thicknesses that are

specified in the figure legends. When necessary, the angular

orientation of the slice plane was adjusted to maximize contrast

boundary discrimination of the structures under study.

Structures were segmented from the reconstructions by using a

combination of manual and semi-automatic methods in EM3D to

define individual volumes-of-interest (VOIs; [9]). For the presyn-

aptic membrane and synaptic vesicles, which were heavily stained

and had a simple geometry, a semi-automatic scheme was used

and manually adjusted as necessary. For structures that had a

complex geometry and light to moderate stain, VOIs were defined

by manually marking a closed path on the series of slices in which

they were included. The VOIs were slightly larger than the

structures that they enclosed to allow accurate and complete

isodensity-surface calculations for the surface models.

We used EM3D to render a surface model from each VOI. The

rendering was done using a gray-scale value that minimized the

mean spatial uncertainty averaged across the whole area of the

model. Surface models generated in this way had a spatial

resolution equal to the resolution of the reconstructed volumes [9].

Alignment Models
General. The gray-scale density and the two surface model

approaches relied on a reference-free alignment algorithm [28]. In

the first stage of alignment, a ‘random approximation’ was derived

by the alignment and averaging of successive luminal assemblies;

one-by-one vesicle luminal assemblies were aligned and then

averaged into the model, creating a new partial model at each

step. When all of the luminal assemblies had been averaged to

form the initial complete model, it was refined by individually

removing each assembly from the model, re-aligning, re-

introducing the removed assembly, and then re-averaging. The

refinement step was repeated five times, at which point the luminal

assemblies aligned to the same positions resulting in the final

alignment models described in Results. The gray-scale density

alignment technique is reliable, but tends to align areas of high

density at the potential expense of an overall large area of overlap.

The surface model alignment technique ensures that large areas of

overlap were not obscured by regions of high density, but may

over-represent the alignment of fine structures and noise at the

expense of areas of high density.

Gray-scale density alignment. Registration of the luminal

assemblies was based on the alignment of the gray-scale densities

within their VOIs. Likely rotation and translation peaks for

alignment models and luminal assembly VOIs were first found

visually using surface models. Real space overlapping of the

models with the luminal assembly VOIs was done by rotating the

individual luminal assembly VOIs 630 degrees (1 degree intervals)

and moving the rotated luminal assembly VOIs translationally 63

voxels (1 voxel intervals). Scoring, leading to the final alignment

model (red model in Figure 4D), was based on the product of the

overlapping volumes at each rotation and translation.

Surface models alignment. Registration of the luminal

assemblies based on the alignment of their surface models was

carried out using the ICP (Iterative Closest Point) algorithm [67].

Surface models generated in the IDL version of EM3D were

exported to the ‘.ply’ data format. Individual luminal assemblies

were then aligned to form the models starting at 20 degree step

points in the x,y,z rotation using the software package scanalyze

(http://graphics.stanford.edu/software/scanalyze/). Best-matches

were determined by the minimization of the distance between the

alignment models and surface models. The reference-free

alignment and refinement approach (above) was used to build

two final alignment models. One final model was based on

registering luminal assemblies in the same order as in the final

gray-scale density alignment model (blue model in Figure 4D); the

other model was based on registering luminal assemblies in a

random order to rule out founder bias (green model in Figure 4D).

Measurements
Vesicle diameters. The outer and luminal diameters of

synaptic vesicles were determined by a method we used elsewhere

[10]. Serial virtual slices made through reconstructed volumes in

their x-y plane were used to identify the slice for each vesicle that

passed through its equator. Because the vesicles were not perfect

spheres, diameters to the outer surface, or luminal surface, of the

vesicle membrane were measured for each vesicle along four

separate axes (,45u increments) in the x-y plane and one axis in

the z-axis, and expressed as an average.

Vesicle membrane surface areas. The surface area of a

synaptic vesicle (SASV) was calculated based on measurements of

the diameter of the synaptic vesicle (dSV) using the following:

SASV~pdSV 2To determine the area of the main AZM binding

domain (SAAZM) on the vesicle surface, the main AZM binding

domain was treated as the surface area of a spherical zone, which

is defined as a region of a sphere cut off by a plane. The diameter

of the circle at the base of the spherical zone (dAZM) for individual

vesicles was the maximum distance from the average connections

of the ribs to those of the furthest boom. dAZM was used to

calculate the SAAZM as follows: SAAZM ~ pdSV 2 1{ð
cos sin{1 dAZM=dSVð Þ
� �

Þ
�

2.

Volume overlap of alignment models. Each of the

alignment models described above were represented as surface

models and aligned to maximize the degree of overlap in 3D

space, as described in the ‘ICP Registration of Surface Models’

method above. The number of voxels that overlapped within the

shells of the surface models following this alignment was then
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extracted using IDL software, and used to calculate the percentage

of volume overlap between the different alignment models.
Distances between connection sites of different classes of

macromolecules. The direct distance from the centroid of

each connection site to the closest point on the presynaptic

membrane was measured using the ‘proximity tool’ in EM3D and

then normalized to the average position of the rib connection sites

on the outer surface, or the connection sites of the nubs paired

with ribs on the luminal surface, per individual vesicle. For the

connection sites on the luminal surface, the measurements were

normalized to the outer diameter of the vesicles’ membrane by

dividing each distance by the ratio of the luminal diameter/outer

diameter, so that statistical analyses could be performed between

the distributions of connection sites of AZM and non-AZM

macromolecules to the outer surface and the nubs paired with the

AZM and non-AZM macromolecules on the luminal surface.

These normalized measurements were plotted in Figure 7B,C.

Robinson Projection
To visually compare the relative positions of connection sites on

the outer surface of a vesicle membrane to the nub connections on

the luminal surface of the membrane, we converted 3D spherical

plots to 2D pseudo-cylindrical, or Robinson, projections [68]. The

position of the spatial coordinates of the centroids (x,y,z) of

connection sites of AZM and non-AZM macromolecules on the

outer surface of synaptic vesicle membranes, and nubs on the

luminal surface of the vesicle membranes were first plotted onto an

idealized sphere based on the outer and luminal vesicle diameters

using IDL software. By plotting these coordinates on an idealized

sphere, differences in the luminal and outer diameters of the

vesicle were normalized. The 3D plots of the centroids on the

idealized sphere were then warped and expressed on a 2D

Robinson projection using the MAP_SET procedure of IDL 7.0.

Composite Maps of Connection Sites on Docked Vesicles
The connection sites on the outer and luminal surfaces for each

synaptic vesicle were mapped independently onto a unit sphere

based on the spatial coordinates of the centroids of connection sites

and the diameter (outer and luminal) of the individual vesicle to

normalize the variability of vesicle diameters according to the

methods of [11]. All of the vesicles were then rotated so their

connection sites faced the same direction, which provided a rough

alignment. For fine-alignment of the vesicles to the position of the

rib connections on the outer surface, or the nubs paired with ribs

on the luminal surface (in x,y,z coordinates), the degree of overlap

of rib connections, or nubs paired with ribs, for all vesicles was

maximized based on the following equation:

Rib�Nub Connection Overlap ~
XN

i,j

XNri

k~1

XNrj

l~1

xikxjlzyikyjlzzikzjlð Þ

; where i?j, N is the number of vesicles, Nri is the number of Ribs

or Nubs paired with Ribs of vesicle i, Nrj is the number of Ribs or

Nubs paired with Ribs of vesicle j. To calculate the rotation angle

with maximized values for Rib-Nub Connection Overlap, we used

Euler’s rotation theorem [69]. All vesicles were then rotated to

their calculated value, and all AZM connections were plotted onto

a common unit sphere shown in Figure 7A.

Regional Voxel Gray-scale Stain Density of the Vesicle
Membrane

We determined the distributions of gray-scale values of voxels

included in segmented VOIs. The gray-scale values ranged from 0

to 1000 in arbitrary units, where 0 represented black and 1000

represented white. The region of the membrane between the

connection site of each AZM and non-AZM macromolecule and

their paired nubs were manually segmented to define its VOI. The

entire vesicle membrane was also segmented, and the VOIs from

the regions between the connection site of each AZM and non-

AZM macromolecule and their paired nubs were subtracted to

define the VOI of the rest of the vesicle membrane. The gray-scale

value of each voxel that composed the VOIs were extracted using

EM3D, and these values for the membrane regions between each

class of AZM and non-AZM macromolecule were pooled; to

control for the variability of staining between datasets, each vesicle

was treated as an individual experiment for statistical purposes.

The gray-scale distributions for the membrane regions between

the different classes of AZM and non-AZM macromolecules were

compared to the rest of the vesicle membrane by ‘Analysis of

Variance’ (ANOVA) with the Tukey Post Hoc Test.

Figure Layouts
Figure layouts were prepared using Adobe Photoshop CS3

(Adobe Systems, San Jose, CA). The gray-scale levels and curves

for Figures 2, 3, and 8 were adjusted slightly in Photoshop in order

to optimize the fidelity of the electron micrograph images for

publication and reproduction. The RGB color values for the

surface models are as follows: presynaptic membrane

(200,200,225); synaptic vesicles (125,125, 255); ribs (255,197,31);

beams (125,75,25); pins (200,100,25); spars (255,0,0); booms

(100,0,150); non-AZM macromolecules (200,200,200); luminal

assemblies of macromolecules (255,150,50); transmembrane seg-

ments (50,125,255).

Computer Hardware and Software
For the analyses described in this study, both PC and Mac

computers were used. PC computers were loaded with Windows

Vista, Java(TM) 6 Update 38, IDL (7.0), EM3D Version 1.3 (IDL)

and EM3D 2.0 (32 bit C++). Mac computers were loaded with (OS

10.6), Java (32 bit), IDL (7.0.6), EM3D (IDL) and EM3D 2.0 (C++).
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