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Ways & MeansMethods for Generating
High-Resolution Structural Models
from Electron Microscope Tomography Data

1996; Li et al., 1997; Marko and Leith, 1996; Perkins et
al., 1997). Although this method reveals the general
shape and organization of logically distinct cellular com-
ponents, the tedious and subjective nature of manual
tracing makes it difficult to generate models that reliably
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represent the components at the full spatial resolution
of the reconstructed volume.

More sophisticated model-generation methods areSummary
also available for EMT. One EMT software package,
IMOD (Kremer et al., 1996), permits the creation of aReconstructed volumes generated by tilt-image elec-
model contour at a particular isodensity level on a seriestron-microscope tomography offer the best spatial
of virtual slices. General purpose commercial softwareresolution currently available for studying cell struc-
applications such as Amira (ZIB, Indeed-Visual Con-tures in situ. Analysis is often accomplished by creat-
cepts GmbH, Berlin, Germany) and AVS (Advanced Vi-ing surface models that delineate grayscale contrast
sual Systems Inc., Waltham, MA) offer a plethora ofboundaries. Here, we introduce a specialized and con-
alternative segmentation, visualization, and analysisvenient sequence of segmentation operations for
methods. While these software packages each havemaking such models that greatly improves their relia-
their advantages and limitations, there remains a sub-bility and spatial resolution as compared to current
stantial need for additional approaches that offer im-approaches, providing a basis for making accurate
provements in speed, convenience, and accuracy.measurements. To assess the reliability of the surface

Here, we present a set of 3D image processing ways-models, we introduce a spatial uncertainty measure-
and-means, specifically designed for EMT data vol-ment based on grayscale gradient scale length. The
umes, which provide convenient and reliable generationmodel generation and measurement methods are vali-
of full-resolution surface models. Independently control-dated by applying them to synthetic data, and their
lable, 3D surface models of distinct structural compo-utility is demonstrated by using them to characterize
nents are created using a two-step, dual-resolution iso-macromolecular architecture of active zone material
density volume-of-interest (IVOI) approach. The firstat the frog’s neuromuscular junction.
step is a low-resolution slice-by-slice segmentation that
produces small volumes-of-interest (VOIs) that enclose,

Introduction but do not precisely delineate, individual components.
The second step forms an isodensity surface as a full-

Tilt-image electron-microscope tomography (EMT) can resolution model of the structural component enclosed
be used to generate 3D reconstructions of sections from by each VOI. Because the initial IVOI segmentation step
stained, plastic-embedded biological tissue samples is error tolerant, it can be performed manually, or by
(Frank, 1992; Harlow et al., 2001; He et al., 2003; Horo- using interactive, semiautomatic methods. To assist
witz et al., 1994; Ladinsky et al., 1999; Lenzi et al., 1999; both manual and automatic segmentation, we describe
Martone et al., 1999; McEwen et al., 1986, 1993; Sedzik a parametric-spline path generation method. We also
et al., 1992; Taylor et al., 1999; Woodcock et al., 1991). introduce an active-contour method designed to auto-
The volume reconstructions make it possible to study matically segment the membranous structures that are
the structure of cellular components within the depth of common in tissues imaged using EMT. Finally, we intro-
the sections, acquiring information about sizes, shapes, duce a measurement, spatial uncertainty, which quanti-
and relationships that cannot be obtained in any other fies the spatial reliability of a surface model based on
way. However, analysis is often hindered by the abun- the local grayscale noise and gradient scale length.
dance of structures, the complexity of their shapes and Our methods were validated using a synthetic volume
relationships, staining inhomogeneity, and noise. To al- that simulated a typical EMT reconstructed tissue sec-
leviate these problems, it is useful to form 3D models of tion. The simulated volume contained cylinders, spher-
the components-of-interest within the reconstructions. oids, and a folded sheet which represent the most
Surface models, which represent the boundary between common shapes of cellular components: for example
components and the space surrounding them, are com- filaments, vesicles, and a plasma membrane, respec-
monly used. tively. Surface texture was added to these simulated

Because of the complexity and noise, most research structures to assess the accuracy of the model genera-
in EMT has made use of manual surface-model genera- tion and measurement methods. Various amounts of
tion methods. Typically, virtual slices are formed through noise were also added to the volume to assess the
a reconstruction and the boundary of each component- performance of the segmentation methods for a range
of-interest is traced in the slices in which it appears. of experimental data quality, and to quantify the accu-
The traces are then interpolated to create a 3D surface racy of the spatial uncertainty measurement. We also
(Frank et al., 1996; Hessler et al., 1992; Kremer et al., show how our methods were used to generate and ana-

lyze surface models from EMT reconstructions of tissue
sections. The sections were from fixed, stained, and*Correspondence: ress@stanford.edu; grantser@stanford.edu
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Figure 1. 2D and 3D Graphical User Interfaces (GUI)

(A) The 2D GUI shows orthogonal slices through the volume along the three principal axes. The location of the cut planes is indicated by the
red crosshairs and can be changed using a mouse. The volume can be rotated arbitrarily to optimize the contrast of stained structures on
the cut-plane images.
(B) The 3D GUI provides control of the generation and display of the models. The display window offers real-time control of the orientation
and scaling of the models. The line graphics and associated controls on the left side of the GUI are used to adjust the isodensity value for
each surface model.
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Figure 2. Steps in the Generation of a Surface Model Using a Semiautomatic IVOI Approach

(A) A user chooses a slice where a structural component-of-interest is clearly distinguished (here the presynaptic plasma membrane of a frog
neuromuscular junction). Points are marked along its length and interpolated together to form a continuous path (green points and line).
(B) The blue region shows the pixels corresponding to the user-defined grayscale range within the search-region width of the anchor path;
the red line shows the calculated segmentation path.
(C) The complete segmentation is a 3D ensemble of points produced by propagating the segmentation path through the volume.
(D) The volume-of-interest (VOI) is produced by dilation of these points.
(E) An isodensity surface model is created from the stained structure within the VOI.

plastic-embedded active zones, i.e., neurotransmitter tation and slice display are provided by a 2D GUI (Fig-
release sites, in axon terminals of the frog’s neuromus- ure 1A).
cular junction. The active zones are composed of fila- Membranes are segmented using an interactive, par-
mentous cytoplasmic macromolecules, vesicles, and tially automated method that is a novel form of active-
plasma membrane. We have briefly described elsewhere contour (“snake”) segmentation combining grayscale
(Harlow et al., 2001) the use of our methods for model morphology, thinning, and path formation using para-
generation in the analysis of active zone structures in metric splines. Segmentation is initiated by choosing a
these sections. Here, we provide a full account of the slice and slice-orientation that most clearly shows the
model-generation methods, use the spatial-uncertainty structure of interest as a contrast boundary. Two topolo-
metric to verify the reliability of our models, and apply gies of membranes are permitted: open (extending be-
some example measurements to IVOI models of active yond the slice boundaries, e.g., plasma membranes)
zone components that confirm our understanding of and closed (e.g., synaptic vesicle membranes). The user
synaptic structure. marks points along the membrane using a mouse or

trackball (Figure 2A). As each point is marked by clicking
the input device button, a cubic-spline path is interpo-Methods and Results
lated parametrically between the points, that is, the x
and y coordinates of the path are separately interpolatedSegmentation
together with single-pixel precision. This anchor pathIn the dual-resolution IVOI approach, the goal of seg-
can be edited by adding or deleting points. Open-topol-mentation is to create VOIs that enclose distinct struc-
ogy anchor paths are completed by extending them totures, including both stained structures and adjacent
the closest image boundary. Closed-topology anchorbackground to facilitate subsequent boundary detec-
paths are completed by replicating the initial point astion. All segmentation is performed using virtual slices
the end-point.through the reconstructed volume at various user-

defined positions and orientations. Controls for segmen- In the next stage of segmentation, the user selects a
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grayscale range and a search-region width. For conve- union or intersection between or among any number
of previously created VOIs. These operations enablenience, the code sets default values for the grayscale

range based on the mean and standard deviation of the analysis of relationships among structures contained
within the VOIs. Specifically, union allows the combina-grayscale values along the anchor path. A search is then

performed in the vicinity of the anchor path for pixels tion of multiple structures to form groups or wholes,
and intersection facilitates identification of portions ofthat are within the specified width; pixels within the

range are shown graphically using a false-color overlay structures that meet or contact one another.
(Figure 2B). The grayscale range and search-width are
set so that the well-stained, high-confidence regions of Surface-Model Generation
the entire membrane are selected. To create a representation of the surface of a stained

Next, the selected-pixel regions of the membrane are object within a VOI, vertex points and a connectivity
thinned to find the image vertices that lie along their graph are calculated at a particular gray level. This sur-
median axis. To create a new path, we now identify each face provides a grayscale driven representation of the
of the anchor path vertices with its nearest neighbor stained structure that maximizes spatial resolution,
within the set of thinned vertices. If multiple thinned completing the IVOI approach to model generation.
vertices correspond to a single anchor-point vertex, the The default choice of gray level is obtained using the
mean thinned-vertex position is chosen. If multiple an- VOI’s grayscale cumulative-distribution function. The
chor-path vertices correspond to a single thinned ver- cumulative-distribution function, normalized to unity,
tex, only that correspondence that occurs first along represents the fraction of VOI voxels that will be interior
the anchor path is retained, and the others are dis- to the corresponding interpolated surface. By default,
carded. The same parametric cubic-spline method de- we choose a surface that encloses 60% of the VOI vol-
scribed above is then used to interpolate this new set ume (Figure 2E).
of points into the segmentation path. To enforce a de- The surface gray level can also be adjusted using
gree of stiffness in the segmentation, this path is graphical controls. In general, there is a plainly visible
smoothed parametrically by convolution with a smooth- range of appropriate values for the stain density: if the
ing kernel applied independently to the x and y vertex level is too high (too light), the surface becomes clipped
coordinate values; the degree of smoothing can be ad- at the edges of the VOI; too low, and the surface appears
justed by the user (Figure 2B). to disintegrate. The most accurate representation of the

The user now initiates automatic propagation of the biological structure is somewhere between these two
segmentation. Starting with the slice containing the ini- extremes. The surface gray level is usually adjusted to
tial segmentation, the segmentation path becomes the minimize the spatial uncertainty, as described below.
anchor path on an adjacent slice, and the subsequent
pixel search and path movement described above are

Visualizationrepeated to produce a new segmentation path for that
The IVOI surface models can be visually analyzed usingslice. The process is repeated in both directions to deter-
an extensive collection of tools provided by the 3D GUImine segmentation paths for all slices in the volume.
(Figure 1B). For example, models can be interactivelyThe propagation in either direction is terminated when
rotated, scaled, and translated. Moreover, each modelthe pixel search fails. The results of the propagation can
can be assigned a different name, color, and opacity.be subsequently edited by trimming segmented slices
To make their spatial relationships more obvious, thefrom either direction of propagation, and by setting addi-
user can choose to render all or only a subset of thetional anchor paths and repropagating the new paths
models. The GUI also provides a flexible lighting modelalong a new range of orthogonal slices.
and spin animation about an arbitrary axis to assist inThe resulting set of segmentation paths is a collection
visual analysis, and the results of appropriate quantita-of points that define a smoothed representation of the
tive analysis steps can be superimposed on the ren-geometric center of the membrane (Figure 2C). This is
dered surfaces (Figures 3B–3D).converted to a VOI by dilating all these points using a

spherical 3D structuring element with a user-definable
Measurementdiameter (default value is the search-region width for
To quantify the accuracy of surface models, we calcu-the segmentation). Thus, the VOI encloses both the well-
late the spatial uncertainty at each vertex. Our approachstained membrane and some adjacent unstained or
takes the view that uncertainty in the grayscale valuelightly stained background (Figure 2D).
drives a spatial uncertainty in the physical position ofFor lightly stained objects exhibiting complex topolo-
each isodensity surface model vertex. For example, ifgies, such as macromolecular filaments, we use a seg-
noise were to make the gray values larger near somementation method in which a closed path is manually
vertex of a surface model, that vertex would move in-created to define the VOI on each slice. The path can
ward, and vice versa. The sensitivity of each vertex loca-be marked by parametric cubic-spline interpolation, as
tion to the noise is proportional to the normal componentbefore, or by piecewise-linear interpolation. The user’s
of the local spatial gradient. If the gradient is large, agoal is to enclose both the stained structure and some
noise-induced shift in position will be relatively small,amount of the adjacent background around it. The path
and vice versa. The calculation therefore begins by de-on the first slice can be propagated without modification
termining the grayscale spatial gradients, �

→
S, in theto an adjacent slice where it can be edited by adding

neighborhood of each vertex location, x
→
. �

→
S is calculatedor deleting points. The VOI is literally defined by combin-

by convolving three 3�3�3 kernels, each containinging the interior regions of all marked slices.
Segmentations can also be created from the logical nine replicas of the vector {�0.5 1 �0.5} oriented along



Ways & Means
1767

Figure 3. IVOI Surface Models with Measurements for Biological Data

(A) Schematic of the active zone at the frog’s neuromuscular junction showing the presynaptic membrane (gray), docked synaptic vesicles
(blue), and the most superficial 15 nm of the AZM, consisting of beams (brown gold), ribs (yellow gold), and pegs (orange gold). Cation
channels in the presynaptic membrane are shown in green.
(B) Spatial uncertainty of ribs and beams. An ensemble of models of ribs and beams in UC-1, showing the spatial uncertainties as a color
overlay.
(C) Spatial uncertainty of ribs and pegs. A portion of the active zone in MPI-10 is shown in the transverse plane to reveal the spatial relationships
among a single rib (yellow gold), its pair of associated pegs (orange gold), and the vesicle and presynaptic membranes (blue and gray,
respectively). Inset shows spatial uncertainty overlay of the rib-peg assembly (same scale as Figure 3B).
(D) Spatial proximity of rib-vesicle contacts with the presynaptic membrane. Models for the pair of docked vesicle in MPI-9 are marked with
a vertex color overlay indicating spatial proximity to the presynaptic membrane. Gold patches show contact regions among the vesicles and
the ribs. About three-fourths of each vesicle was included in the tissue section.
(E) Method used to determine the longitudinal and transverse spacings of the pegs. Horizontal view of the of the pegs (orange gold) upon
the cytoplasmic surface of presynaptic membrane (gray) in MPI-9. The red spots indicate the peg centroids. Black line segments illustrate
the longitudinal distances between each pair of pegs; blue segments illustrate the transverse distances.

the x, y, and z axes, to generate the respective compo- The isodensity surface calculation produces the out-
ward vector normal, n

→
(x
→
), at every vertex. Altogether,nents of the vector gradient. This is the smallest sym-

metric kernel available to calculate the gradient; larger we define the spatial uncertainty as:
kernels did not perform as well, tending to underesti-
mate the magnitude of the local gradient. The grayscale

�n (x
→
) �

�g

n
→

(x
→
) • �

→
S(x

→
)
.

noise, �g, is estimated by calculating the standard devia-
tion in a relatively blank (transmissive) portion of volume,
and this noise is assumed to be stationary throughout. This equation can be rewritten to emphasize its geomet-
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Figure 4. Qualitative Performance of the IVOI Approach with Synthetic Data

Models were generated from an artificial volume simulating components at the active zone of a neuromuscular junction. The volume contained
a folded sheet (presynaptic membrane), four spheroids (vesicles), and several lower-contrast cylinders (AZM). Membrane surface texture was
2–4 nm. Left images (A, C, and E) show an oblique 3D rendering of the IVOI surface models; right images (B, D, and F) show a 2D cross-
section of the grayscale volume with a red overlay marking vertices of the surface models. The noise-free panels (A and B) show all of the
simulated structures and surface texture. The panels corresponding to 20% noise (C and D), an upper limit for most biological data, are similar
to the noise free case, although the surface texture and lightly stained AZM are somewhat distorted. The panels corresponding to 50% noise
(E and F), an unusually large value for biological data, continue to show the gross structures, but the surface texture and some of the AZM
are obscured.

rical interpretation. The denominator term is related to subset of the vertices span a region of the volume where
the gradient points inward rather than outwards be-the gradient scale length of the grayscale density along

the normal to the surface model, ln � S/(n
→

• �
→

S). If we cause of noise or structural complexity. These vertices
are marked with a user-definable color.combine this relationship with the signal-to-noise ratio,

R � S/�g, we get the form, �n � ln/R. Thus, our spatial To quantify the spatial relationships among surface
models, we calculate the nearest-neighbor distancesuncertainty measure is simply the normal component of

the gradient scale length divided by the signal-to-noise between their vertices. This calculation begins by defin-
ing one object as a reference and one or more otherratio.

To visualize the spatial uncertainty, the uncertainty objects as destinations. For every vertex on a destina-
tion object, we calculate the distance to all of the refer-values are scaled onto a user-selectable color map and

displayed as an overlay on the surface (Figures 3B and ence-object vertices; the smallest distance is then asso-
ciated with that destination vertex. The ensemble of3C). The user can choose different color tables and scaling

parameters, so that only a subset range of uncertainty vertex distances are then scaled onto a color table and
overlaid onto the destination object (Figure 3D).values is spanned by the overlay. Generally, a small
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To measure the positions, surface areas, and volumes
of stained structures, we calculate various geometric
moments. Specifically, the position of the model is de-
fined as the centroid of its vertices (Figure 3E). The area
of a surface model is calculated by summing the area
of each of its constituent polygons. For closed surfaces,
the volume is calculated by counting the number of
interior voxels.

To understand the capabilities of our modeling meth-
ods, we made estimates of spatial resolution and noise
for the experimental data. The resolution of the recon-
structed volume was measured by characterizing the
contrast profile of relatively continuous segments of tri-
laminar membrane measured along a surface normal
obtained from its corresponding IVOI model. By treating
the outer leaflets of the membranes as a pair of sharp
edges, we could calculate an upper limit for the full-
width-at-half-maximum resolution by measuring their
separation and the contrast between the edge and cen-
ter regions and assuming a Gaussian form for the local
line-spread function. Specifically, if we define the unat-
tenuated gray value as S0, the gray value corresponding
to the leaflet as S1, the gray value between the two
leaflets as S2, and the measured spacing along the nor-
mal between the two leaflets as d, the resolution is

r � dln2

√ln(2S1/[S0 � S2])

(data not shown). Resolution varied depending upon
orientation, ranging from �1 nm in the plane of the tilt
axis to 2–4 nm perpendicular to the tilt axis, as expected
from the theory of tilt-image tomography (Frank, 1992).
In our recent data sets, where 141 tilt images are typi-
cally taken for a 50–60 nm thick sample, the spatial
resolution was at least 2 nm throughout the volume. To
estimate the noise in the sample, we chose a small VOI
within a fully reconstructed portion of the volume that
is as bright and featureless as possible, and within this
VOI we calculated the mean, Gbright, and standard devia-
tion, �g of the gray values. We also obtained a measure
of minimum gray value, Gdark, by picking off the value
corresponding to 1% on the cumulative distribution
function of the volume. The noise-to-contrast ratio was
then defined as NCR � �g/(Gbright � Gdark). Using this
method, we observe NCR levels in the range of 5–20%.

Simulations
We created a simulated volume containing representa-
tions of synaptic vesicles, a plasma membrane, and
macromolecular filaments (see Figure 4A). Voxel size
was set to 1 nm, a reasonable value for actual recon-
structed EMT volumes. Vesicles were simulated by cre-
ating isodensity surfaces from the sum of a few low-
order spherical harmonics to create a spheroidal shapeFigure 5. Quantitative Performance of the IVOI Approach with Syn-

thetic Data with roughly 50 nm diameter. To assess the ability of
our surface models to delineate fine-scale structure,(A) Proximity map showing errors of a surface model obtained from

a noisy (20%) simulated volume. surface texture was added by summing additional high-
(B) Spatial uncertainty map on the same object. order spherical harmonics with amplitudes in the range
(C) The dependence of mean proximity error and median uncertainty of 2–4 nm. Superposing two such spheroids with radii
as a function of noise level. The median uncertainty tracks and

offset by 5 nm simulated the trilaminar character ofsomewhat exceeds the actual mean error, confirming its utility as
stained membranes. A plasma membrane was simu-a reliability metric.
lated using very similar methods but with Fourier rather
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than spherical harmonics. Macromolecular filaments To quantify the errors in the IVOI surface models pro-
duced by the additive noise, we used the proximity-were simulated using simple, homogeneous solid cylin-

ders. The gray level of each vesicle and the membrane mapping method to calculate the nearest-neighbor sep-
aration between vertices in a noisy surface model andwere set to a small value (e.g., 10% of maximum) to

simulate the dark stain typically observed in tissue vol- the corresponding noise-free surface model. For one
object, the upper left vesicle in Figure 4, the errors pro-umes. In typical reconstructed EMT volumes, stain lev-

els vary significantly from object-to-object. Accordingly, duced by 20% additive noise are shown as a vertex
color map overlay in Figure 5A. The root-mean-squaregray values were randomly varied for the vesicle and

plasma membranes over a range of �20%. The filamen- (rms) errors are shown as a function of NCR in Figure
5C. At a noise level of 20%, the error is 0.6 pixels, lowtous components were given lighter gray value (e.g.,

40% of maximum), with 50% component-to-component enough to resolve some of the fine-scale detail. At a
noise level of 50%, the rms error rises to 1.5 pixels,random variability. The entire simulated volume was

smoothed slightly (3�3�3 boxcar, repeated twice) to obscuring all of the fine-scale detail.
We also applied the spatial uncertainty calculation toreduce quantization artifacts. For clarity, we did not pro-

ject and then reconstruct this volume before applying the upper left vesicle in the simulated volume (Figure
4). At 20% noise levels, the spatial uncertainties showour analysis procedures. This was necessary to permit

the quantitative interpretation of the segmentation re- the same spatial pattern as the actual errors, lower near
the poles and larger near the equators (Figure 5B). Thesults, avoiding confusion between segmentation errors

and reconstruction artifacts. greater uncertainty and error near the equator are
caused by the larger amount of fine surface detail thatVarious amounts of normally distributed noise were

added to simulate different reconstructed volume quali- was imposed in this region, thus reducing the local
grayscale spatial gradients. The spatial uncertainty cal-ties. We chose to model the noise as white, although

actual noise in tomographic reconstructions of EMT culation inevitably produces a few very large values
where the surface model is interpolated through a regiondata has a more complex character. In projection im-

aging methods, the sampling density varies linearly with of small grayscale gradients, and some negative values
where the gradients point inward. Consequently, we usespatial frequency, so we expect noise levels to increase

with spatial frequency. However, other noise mecha- the median of the positive values as a more robust metric
for the error across the entire surface model. As ex-nisms have different spectral properties; for example,

stain inhomogeneity would have a dominantly low spa- pected, the median spatial uncertainty increases with
the noise level (Figure 5C). The median uncertainty istial-frequency character. In general, these mechanisms

do not have well-characterized statistics, but white always somewhat greater than the mean error. Thus,
the median spatial uncertainty provides a conservativenoise is a reasonable choice to reflect the statistical

character of a superposition of many noise processes. measure of the reliability of a surface model.
To test the effects of user subjectivity on the semiauto-

matic version of the IVOI approach, we had three users
Models of Simulated Structures independently generate surface models of the vesicles
The synthetic volume contained a plasma membrane, and plasma membrane in two of the noisy simulated
four synaptic vesicles, and two pairs of solid, cylindrical volumes (10% and 20% NCR). All of the resulting sur-
connecting rods that simulated macromolecular fila- face models were remarkably similar. Using the proxim-
ments (Figure 4). When we applied the IVOI approach ity mapping method to quantify the differences be-
to create surface models of these various elements, the tween the surfaces, we found them to be very low, ��1
simulated structures were accurately modeled (Figures pixel rms.
4A and 4B). Each surface model followed the contrast
boundary at the edges of each object, e.g., the darkly
stained laminae of the simulated membranes. Models of the Active Zone Components

The active zone of the frog’s neuromuscular junction,We added a controlled amount of noise to the simu-
lated volume and repeated the segmentations. In our when viewed in aldehyde-fixed, heavy-metal stained tis-

sue sections, is composed of three gross structuressimulated data with a NCR of 20%, the largest value
generally observed in experimental data, all of the gross (Figure 3A): the presynaptic plasma membrane of the

axon terminal; a 100 � 1000 nm patch of filamentousstructure and some of the fine surface texture were still
evident on the membranous structures (Figures 4C and macromolecules (active-zone material, AZM), which is

attached to the cytoplasmic surface of the plasma mem-4D). Because the various elements within the volume
were assigned different “stain” values, their correspond- brane and extends about 75 nm into the cytoplasm; and

a row of 50 nm diam synaptic vesicles docked on (i.e.,ing surface models are affected differently by the noise.
Two of the manually segmented connecting rods were held at) the presynaptic membrane on each side of the

active zone material. Freeze-fracture replicas from thegiven very low contrast, so they are particularly distorted
by the noise. At an unusually high noise level (NCR � portion of the plasma membrane adjacent to the AZM

reveal linear arrays of macromolecules, which include50%), the segmented surface models of the membra-
nous structures reveal only their gross features, while cation (calcium and calcium-activated potassium) chan-

nels paralleling the rows of docked vesicles (Figure 3A)the superimposed fine structure is no longer evident
(Figures 4E and 4F). The two lightly stained connecting (Heuser and Reese, 1981; Heuser et al., 1979; Robitaille

et al., 1993). All of the above structures are believedrods were completely obscured by the noise and could
no longer be segmented from the volume. to be essential for synaptic transmission of the nerve
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impulse, and they are typically found at synapses and the mean value recorded. The mean value for all
the rib-vesicle contact regions was 7.5 � 3.0 nm (SD).throughout the nervous system, although their configu-

rations vary (Harlow et al., 2001; Heuser and Reese, Thus, the proximity calculation demonstrated that for
MPI-9 and MPI-10, the ribs contacted each vesicle in a1977; Katz, 1969).

In our previous study (Harlow et al., 2001), we used narrow band paralleling the presynaptic membrane, and
the separation of the band from the membrane wasthe modeling methods described above to examine the

macromolecular architecture of the first 15 nm of AZM nearly the same from vesicle-to-vesicle.
In our earlier work (Harlow et al., 2001), we suggestedinternal to the presynaptic membrane in three recon-

structed active zones designated MPI-9, MPI-10, and that pegs are linked to the linear arrays of cation chan-
nels in the presynaptic membrane based on visual in-UC-1. By applying the semiautomatic IVOI method for

individually segmenting the presynaptic membrane and spection of the models from MPI-9 and MPI-10. The
peg-membrane contacts were arranged in linear arrayssynaptic vesicles, and the manual IVOI method for indi-

vidually segmenting the more complicated macromole- having a particular longitudinal (parallel to the beams)
and transverse (perpendicular to the beams) spacings,cules in the AZM, we determined from the resulting

surface models that there are three classes of AZM and the overall configuration of these contacts was simi-
lar to that of the macromolecules observed in freeze-macromolecular components based on their position

and orientation; we termed these beams, ribs, and pegs fracture replicas from the active-zone’s presynaptic
membrane. We have now performed moment calcula-(Figure 3A). We also learned that the beams, ribs, and

pegs have specific connections. Beams are connected tions to test this hypothesis, measuring the center-to-
center spacings of the peg centroids in the longitudinalto each other and to ribs, ribs are connected to docked

vesicles and pegs, and pegs are connected to the pre- and transverse directions for data sets MPI-9 and MPI-
10 (Figure 3E). These data were compared to similarsynaptic membrane in a way suggesting they are linked

to the cation channels within the membrane. These measurements made on the presynaptic membrane
macromolecules in images of freeze-fracture replicasstructures are evident in the schematic of Figure 3A and

in the ensemble of IVOI models in Figure 1B (horizontal from muscles fixed in the same way as those used for
EMT (McMahan and Slater, 1984). The mean longitudinalview of the active zone: presynaptic membrane, gray;

synaptic vesicles, blue; beam, brown gold; ribs, yellow spacing for the 28 pegs was 19.8 � 5.0 nm, while the
mean transverse spacing was 17.3 � 6.2 nm (SD). De-gold; pegs, orange gold).

The manual segmentations in our earlier work (Harlow spite the small sample size, these values are in good
agreement with our measurements on a much largeret al., 2001) were tedious and difficult because the edges

of structures were highly irregular and there was signifi- sample of presynaptic-membrane macromolecules:
17.2 � 3.6 and 17.3 � 2.5 nm, respectively.cant noise. These factors could have led to significant

errors in the models. To obtain an objective measure of
the models’ reliability, we have now calculated the spa-

Discussiontial uncertainty for the same models using the method
described above. The color-map overlay in Figure 3B

We described two methods within a dual-resolution IVOIshows the spatial uncertainty obtained for the 19 ribs
approach to segmentation. The first was the use of para-and four beams in UC-1. The median uncertainty for all
metric cubic splines to create a smooth interpolation ofof these components was 0.8 nm, and 90% of the verti-
a sparse set of points. Application of this well-knownces had spatial uncertainties � 2.0 nm. The spatial un-
method provided two advantages: first, as a convenientcertainties in MPI-9 and MPI-10 were higher because
scheme to interactively define a path, and second, astheir contrast-to-noise ratio was lower, typically �5 as
a critical component of the active-contour segmentationcompared to �20 in UC-1. Figure 3C shows a rib and
scheme. The second method was a novel approachthe two pegs linked to it from MPI-10; the median uncer-
to membrane segmentation that combines an active-tainty for the three structures was 1.4 nm, and 90% of
contour concept with thinning. In addition, we describedthe vertices had spatial uncertainties � 3.3 nm. Median
a spatial uncertainty calculation that quantifies the relia-spatial uncertainties for the assemblies of beams, ribs,
bility of isodensity surface models generated from theseand pegs were 1.9 nm for MPI-9 (2 beams, 8 ribs, 16
segmentations. Altogether, these methods offer a con-pegs), and 1.6 nm for MPI-10 (2 beams, 8 ribs, 14 pegs).
venient means to reliably generate high-resolution mod-Thus, the spatial uncertainty in all three data sets was
els of structure from reconstructed EMT volumes.sufficiently low to validate the existence of the beam-

Previous segmentation approaches have not beenrib-peg assemblies reported previously.
satisfactory for high resolution studies of EMT volumes.In our earlier work (Harlow et al., 2001), we observed
Active-contour segmentation (or, more generally, level-that each rib contacted the vesicle membrane near the
set segmentation) has seen extensive use in biomedicalpresynaptic membrane, but the curvature of the vesicles
image segmentation (Klemencic et al., 1998; Kozerke etand undulations in the presynaptic membrane made it
al., 1999; Suri et al., 2002; Yezzi et al., 1997), but it tendsdifficult to precisely quantify their separation. We have
to fail in EMT volumes because of complexity and noise;now performed proximity calculations to measure this
the segmentation contours are driven from the targetseparation for the 12 rib-vesicle contact regions in the
surface by the many actual interconnections or by noise.four docked vesicles in MPI-9 and MPI-10 (Figure 3D).
Watershed schemes have also been used extensivelyIVOI models of the contact regions were obtained from
to find contours in biomedical images (Grau et al., 2004;the intersections of the rib and vesicle VOIs. For each

model, proximity values were obtained at every vertex, Lin et al., 2003; Ortiz de Solorzano et al., 1999; Volkmann,
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2002), but these schemes fail in EMT data for similar spatial uncertainty may be useful in the analysis of 3D
structural data other than that produced by EMT. Forreasons; complex structure and noise cause overseg-

mentation or poor boundary detection. The success of example, in single-particle analysis of isolated macro-
molecules a model volume is generated that includesour hybrid scheme suggests that it may be possible to

devise a level-set method that incorporates a particular both a mean gray scale density and its uncertainty.
These data could be combined to calculate spatial un-topological preference (e.g., 50 nm diam spheroidal ves-

icles) into the artificial forces that guide the contour’s certainty for a surface model constructed from the volu-
metric data. The spatial reliability method could be alsotrajectory. Another useful direction may be the develop-

ment of 3D skeletonization algorithms (Bajaj et al., 2003; useful in evaluating the similarity of models produced
by different 3D structural analysis methods (OfverstedtCooper et al., 2003; Wu and Bourland, 2000). Both of

these approaches could be effective for the error-toler- et al., 1997; Wriggers and Chacon, 2001). For instance,
one could evaluate the spatial reliability of an EMT modelant segmentation step of the IVOI approach.

Models can also be generated from reconstructed of a particular macromolecule that appears to be a best
visual fit to a model obtained by X-ray crystallographyEMT volumes using various methods available in com-

mercial 3D image processing software packages such (He et al., 2003). Indeed, the spatial uncertainty calcula-
tion may provide a general method to quantify spatialas Amira (ZIB, Indeed-Visual Concepts GmbH, Berlin,

Germany) or AVS/Express (Advanced Visual Systems resolution at a contrast boundary in 3D structural
biology.Inc., Waltham, MA). These packages are capable of gen-

erating dual-resolution IVOI models, but only by manual Application of our methods to make models of compo-
nents of the active zone of the frog’s neuromuscularmeans. They also provide interactive automatic seg-

mentation tools designed to find grayscale boundaries. junction has shown its ability to reveal unique in situ
structural information. Our earlier work, published else-There are several reasons why these tools are often

unsatisfactory for high-resolution EMT analysis. Most where without full methodological details (Harlow et al.,
2001), revealed macromolecular components and asso-important, they are not designed to operate in the dual-

resolution fashion described above. They attempt to ciations that had not been detected by any other imaging
method. The discovery of beams, ribs, and pegs andfind a boundary based on grayscale level and gradient

operations, thus creating VOIs that define structural their connections to each other, synaptic vesicles and
the presynaptic membrane is now significantly strength-components rather than enclose them. Consequently,

the models generated from these VOIs do not precisely ened by this full exposition. Our demonstration here that
the spatial uncertainty at the large majority of the modeldelineate surface boundaries in high-resolution data.

Also, the packages are designed for general-purpose vertices was �2 nm shows that the models represented
the AZM’s structure at the full 2 nm resolution of the3D image processing. They offer tools optimized for

quick visualization and measurement using proprietary reconstructed volumes.
Our surface models of the AZM components led tomethods. By comparison, high-resolution structural

analysis of EMT data requires precise, standardized, specific hypotheses as to its structure and function (Har-
low et al., 2001). Comprehensive tests of these hypothe-and extensive metrology of structural features. In gen-

eral, specific, high-precision segmentation and 3D mea- ses will rely on the precise measurement of structural
relationships of models from preparations of normalsurement problems concerning biological systems have

required specialized software packages; examples in- AZM and after its exposure to various experimental con-
ditions. We show here that these accurate models pro-clude the segmentation of brain structures from mag-

netic-resonance images (Teo et al., 1997; Van Essen et vide a basis for making such measurements. Centroid
measurements on the transverse and longitudinal spac-al., 2001; Zavaljevski et al., 2000) and cytometry (Bocker

et al., 1999; van Vliet et al., 1990). We devised our dual- ings between the pegs in the two data sets that were
analyzed were similar to those on the transverse andresolution IVOI approach as a standardized and repeat-

able method to generate full-resolution structural mod- longitudinal spacings of macromolecules in the presyn-
aptic membrane as observed in freeze fracture replicas,els from EMT data.

Application of our methods to simulated data demon- consistent with our hypothesis that the pegs are con-
nected to the macromolecules. Proximity measure-strated their performance. The resulting IVOI models

accurately delineated the contrast boundaries of struc- ments on the separation of the presynaptic membrane
from the contact points between ribs and synaptic vesi-tural components. Noise distorted the boundaries, but

both gross structure and 2–4 nm surface texture were cles in the same two data sets revealed that the contact
points on each of the four synaptic vesicles were notevident at noise levels typically observed in our biologi-

cal EMT data. Virtually identical models were formed by only very near the presynaptic membrane but that there
was also little variability in such separation from onethree different users, showing the power of the IVOI

approach. Using the simulations, we also demonstrated contact point to the next. Thus, our model-generation
methods can provide a quantitative map of the macro-that the spatial uncertainty metric could effectively as-

sess the reliability of the surface models, providing a molecular architecture of the normal active zone.
Our methods are designed to generate surface mod-conservative estimate that tracks the actual errors. We

now routinely use a form of the spatial uncertainty mea- els at contrast boundaries regardless of the contrast
mechanism. In this report, we have presented IVOI mod-surement as an automatic optimization metric during

segmentation and model generation of biological data els of cellular components where contrast was obtained
by conventional heavy metal staining. However, there(Ress et al., 2003).

The conversion of local values of uncertainty into is also limited contrast in unstained cells imaged by
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