



Neural groove



Somites



© Dr. K. Tosney, University of Michigan.

#### **Neurulation** The cells of the neural tube are **NEUROEPITHELIAL**

#### CELLS

- **Neural crest cells** migrate out of neural tube
- Neuroepithelial cells are embryonic stem cells of the brain
- Will give rise to 100 billion neurons and ~5x glial cells
  - Neuroepithelial cells have:
  - An unusual cell cycle
  - An unusual cell division



- Already very early before the differentiation of the first nerve cells in the neural tube, a local specialization of brain regions can be detected.
- Segmentation or regionalization the neural tube is not identical along its length

## **Neuroepithelial Cells: Unusual Precursor Cells of the Embryonic**

**Brain** 

## **Neuroepithelial Cells**



#### What Kind of Precursor Cells are

**Neuroepithelial Cells?** 



- intrinsic genetic signals; European model; do what your history tells you
- differentiate according to signals from their environment; **American model**; do what your neighbors tell you
- Experimental evidence in vertebrates suggests American model to be correct initially, whereas a combination of both models is correct at later stages evidence: transplantation, labeling

#### **Chick-Quail Chimera to Study Lineage**



- Introduced Le Dourain
- Quail cells nucleolus F



#### **Chick-Quail Chimera**



- How does one know that the transplantation has worked?
- Let the chicken hatch and analyze the pigmentation
- Pigment cells are derived from neural crest cells

## How do Neuroepithelial Precursor Cells Differentiate into Neurons?

#### **Two Types of Cell Divisions of NE Cells**



• Asymmetric: generating one precursor cell and one postmitotic neuron

•

#### **Inheritance of Cell Constituents After Horizontal or Vertical Cleavage**



- Asymmetric cleavage generates a neuron which migrates away towards the basal pole and a precursor cell which remains at the ventricular border
- Neuronal fate induced by expression of **PRONEURAL** genes
- Notch inhibits proneural gene expression and, thus, maintains progenitor cell fate
- If cell inherits notch, it will be maintained in a precursor state

# Neurogenesis: What are the Molecular Mechanisms that Induce Neuroepithelial Precursor Cells to Become Neurons?

• Let's look at the spinal cord

## The Notochord is Necessary and

#### **Sufficient for D – V Axis Formation**



- Transplantation experiments done originally by Johannes Holtfreter (1934) and redone by M. Plascek and T. Jessell
- Notochord specifies floor plate and cells from the floor plate specify motoneurons
- What are the molecules responsible for this effect?



# Sonic the Hedgehog

 Favorite cartoon figure of Clifford Tabin (Harvard) who discovered (with others) this gene

## **Transcription Factors Define Domains within Neural Tube**



- 3 genes define particular domains along D – V axis of neural tube
  - Dorsal: Pax7 (blue); intermediate Olig2 (red); ventral: Nkx2.2 (green)
- Genes are useful markers for positional information along D – V axis
  - Secreted protein expressed by notochord and floor plate: SHH

#### **Induction of D – V Axis by SHH**



- SHH added to neural tube explant induces floor plate, expression of genes and differentiation of neurons in a dose-dependent manner (gradient is formed in neural tube)
- Activity-blocking antibodies inhibit D-V axis formation, mice with targeted deletion of SHH form no D-V axis
- SHH ventralizes neural tube by being a morphogen

#### <u>Neural Identity in the Spinal Cord Depends</u> <u>on Sonic Hedgehog Concentration</u>



- Hypothesis: a gradient of SHH signaling controls the fate of the neurons in the CNS and spinal cord
- How can one test this hypothesis??
- How can a single molecule induce all these different neurons??
- Formation of gradient (2-3 fold difference)



• Hypothesis: differential survival of spinal cord neurons

#### <u>Neural Identity in the Spinal Cord Depends</u> <u>on Sonic Hedgehog Concentration</u>



• The first cells that get lost are those that require a high SHH concentration

#### **Neural Identity in the Spinal Cord Depends on Sonic Hedgehog Concentration**



• Reduced amount of SHH allows the survival only of those neurons that under physiological conditions differentiate in the presence of low amounts of SHH

#### <u>Neural Identity in the Spinal Cord Depends</u> <u>on Sonic Hedgehog Concentration</u>



• In the case of the elimination extreme: all except the most dorsally located neurons would get lost only eye fields

#### Hedgehog Signalling Failure: Cyclopia

False hellebore – eaten by herbivores like cattle or sheep

#### cyclopamin blocks SHH signaling through its receptor

Newborn lambs or calves develop cyclopia – single eye plus many other nervous system defects







In humans and mice: cyclopia after mutations in genes involved in SHH signaling



• Primary transcription factors will induce secondary

#### **Primary Transcription Factors**



- In addition to the "ventralizing" morphogen SHH, BMP is a "dorsolizing" morphogen antagonizing signals sharpen boundary
- Different neuronal identities are generated by sequential activation of a mosaic of transcription factors due to different concentrations of morphogens
- This shows that complexity is generated by a sequence of simple signals
- An initially uniform cell population due to a grades signal and a sequential activation of transcription factors produces neurons with different identities