# **Fluorescence Theory**





### **Fluorescence Basics**

- Fluorescence definition
- ♦ The fluorescence process
- Molar extinction coefficients
- Quantum yield
- Brightness
- Fluorescence lifetime





### Spontaneous emission of radiation (luminescence) from an excited molecular entity with the formation of a molecular entity of the same spin multiplicity\*

\*From International Union of Pure and Applied Chemistry Glossary of Terms used in Photochemistry (http://www.unibas.ch/epa/glossary/glossary/htm)



## **Fluorescence Definition**

Fluorescence can be more simply defined as
 "the molecular absorption of light energy (photon) at one wavelength and its re-emission at another, usually longer, wavelength"

 Molecules which are able to absorb light are known as chromophores

 Molecules which are able to absorb and emit light are known as fluorochromes or fluorophores

## **The Fluorescence Process**

• The fluorescence process can be broken down into three phases

- 1. **Excitation** absorption of light of an appropriate wavelength by fluorophore
- 2. Excited state fluorophore undergoes vibrational and conformational changes
- 3. **Emission** photon of light is emitted
- The fluorescence process is cyclical therefore a fluorophore can be excited repeatedly





Absorption of a photon and thus excitation to  $S_1$  or  $S_n$  respectively









Absorption of a photon and thus excitation to  $S_1$  or  $S_n$  respectively

Radiationless energy loss to return to  $S_1V_1$ 

### **Fluorescence Emission**



Absorption of a photon and thus excitation to  $S_1$  or  $S_n$  respectively

Radiationless energy loss to return to S<sub>1</sub>

**Reconversion to**  $S_0$  from  $S_1$  with emission of radiation - fluorescence

## **Cy3 Emission Spectrum**



# **Competing Processes**



- **ET** Energy transfer to a nearby chromophore
- **IC** Radiationless internal conversion to the ground state
- **ISC** Intersystem crossing to triplet state energy dissipated via radiative (phosphorescence) or non-radiative pathways

# **Extinction Coefficient (ɛ)**

- The molar extinction coefficient is a measure of the light absorbing capacity of a dye - dyes with large molar extinction coefficients are efficient absorbers
- The molar extinction coefficient is required when determining the concentration of a dilute solution of fluorophore using the Beer-Lambert law

### $\mathbf{A} = \mathbf{\varepsilon} \mathbf{c} \mathbf{l}$

Where A is absorbance
ε is molar extinction coefficient
c is the concentration of the absorbing species
l is the absorption path length

# Quantum Yield (\$)

The fluorescence quantum yield is the ratio between the number of fluorescence photons emitted and the number of photons absorbed:

$$\phi = \frac{\text{number of photons emitted}}{\text{number of photons absorbed}}$$





 Brightness is proportional to the product of the extinction coefficient and quantum yield

### **Brightness** } εφ

 The brightness of a fluorophore labelled molecule is proportional to the extinction coefficient, quantum yield and number of dyes per molecule

**Brightness** } nεφ

## **Relative Brightness**



# Fluorescence Lifetime ( $\tau$ )

- The fluorescence lifetime is the mean time spent in the excited state
- Natural or intrinsic fluorescence lifetime  $(\tau_f)$ 
  - Theoretical
- The excited state fluorescence lifetime ( $\tau_{ex}$ )
  - Measured value

 Excited state lifetimes can change with changes in fluorophore environment

## Fluorescence Lifetime ( $\tau$ )



### FLUORESCENCE DECAY CURVE

### FRET

 Is a through space transfer of excitation energy from a donor fluorophore to an acceptor

◆ Can occur over distances of 10 - 100Å (1 - 10nm)

• The donor and acceptor must be spectrally related

• There is no emission of light by the donor

• The acceptor may or may not be fluorescent

### Fluorescence Resonance Energy Transfer



Donor

# **Energy Transfer Efficiency (E)**

$$E = \left[\frac{R_0^6}{R_0^6 + r^6}\right]$$

$$R_0$$
 = Distance at which energy transfer efficiency is 50%

#### R&D

r



$$R_0 = 9.8 \times 10^3 (J\kappa^2 \phi_d n^{-4})^{\frac{1}{6}}$$

- $R_0$  = Distance at which energy transfer efficiency is 50%
- J = Spectral overlap integral (extinction coefficient of acceptor buried within J)
- $\kappa^2$  = Orientation factor
- $\phi_d$  = Donor quantum yield (in absence of acceptor)
- n = Solvent refractive index

# **Cy3 and Cy5 Spectra**



# **Dependence on Spectral Overlap (J)**





- ♦ Define fluorescence
- ♦ The fluorescence process
- Molar extinction coefficients
- Quantum yield
- ♦ Brightness
- ♦ Fluorescence lifetime

### ♦ FRET

### **Fluorescence Modules**

- Fluorescence Basics
- ◆ CyDye<sup>™</sup> Chemistry
- CyDye Applications
- CyDyes and Fluorescence Polarisation

# **Further Information**

Can be found at Amersham Biosciences "Drug Screening Application Zone"

http://www.amershambiosciences.com

 $SPA \ (password \ prompt) \rightarrow SPA$ 

• Fluorescence theory:

**Fluorescence Overview** 

- FRET:
- CyDye reagents:

**Energy Transfer** 

**CyDye Fluor** 

