
ARTICLE
Ethanol and Hydrogen Production by Two
Thermophilic, Anaerobic Bacteria Isolated From
Icelandic Geothermal Areas

Perttu E.P. Koskinen,1 Steinar R. Beck,2 Jóhann Örlygsson,2 Jaakko A. Puhakka1
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ABSTRACT: Microbial fermentations are potential pro-
ducers of sustainable energy carriers. In this study, ethanol
and hydrogen production was studied by two thermophilic
bacteria (strain AK15 and AK17) isolated from geothermal
springs in Iceland. Strain AK15 was affiliated with Clostri-
dium uzonii (98.8%), while AK17 was affiliated with
Thermoanaerobacterium aciditolerans (99.2%) based on
the 16S rRNA gene sequence analysis. Both strains ferment-
ed a wide variety of sugar residues typically found in
lignocellulosic materials and some polysaccharides. In
the batch cultivations, strain AK17 produced ethanol
from glucose and xylose fermentations of up to 1.6 mol-
EtOH/mol-glucose (80% of the theoretical maximum)
and 1.1 mol-EtOH/mol-xylose (66%), respectively. The
hydrogen yields by AK17 were up to 1.2 mol-H2/
mol-glucose (30% of the theoretical maximum) and
1.0 mol-H2/mol-xylose (30%). The strain AK15 produced
hydrogen as the main fermentation product from
glucose (up to 1.9 mol-H2/mol-glucose [48%]) and xylose
(1.1 mol-H2/mol-xylose [33%]). The strain AK17 tolerated
exogenously added ethanol up to 4% (v/v). The hydrogen
and ethanol production performance from glucose by a
co-culture of the strains AK15 and AK17 was studied in a
continuous-flow bioreactor at 608C. Stable and continuous
ethanol and hydrogen co-production was achieved with
ethanol yield of 1.35 mol-EtOH/mol-glucose, and with
the hydrogen production rate of 6.1 mmol/h/L (H2 yield
of 0.80 mol-H2/mol-glucose). PCR-DGGE analysis revealed
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that the AK17 became the dominant bacterium in the
bioreactor. In conclusion, strain AK17 is a promising strain
for the co-production of ethanol and hydrogen with a
wide substrate utilization spectrum, relatively high ethanol
tolerance, and ethanol yields among the highest reported for
thermoanaerobes.
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Introduction

Microbial fermentations offer an attractive alternative to
produce sustainable energy. Fermentations can use various
kinds of biomass or organic waste to produce energy carriers
such as ethanol, butanol, methane, or hydrogen (for a
review, see Claassen et al., 1999; Zeikus, 1980). Recently, the
production of ethanol and butanol has received increasing
attention due to their use as a vehicle fuel supplement. The
technology for methane production through anaerobic
digestion has been developed and widely utilized (Claassen
et al., 1999), while in recent years increasing efforts has been
aimed at the fermentative H2 production. Hydrogen is
considered as the energy carrier of the future due to its
superior properties and diverse application possibilities
compared to any other carriers (Das and Veziroğlu, 2001;
Nath and Das, 2003). Hydrogen is also used as reductant in
many industrial processes (Nath and Das, 2003).

Some thermophilic bacteria belonging to the genera
Clostridium, Thermoanarobacter, or Thermoanaerobac-
terium are known for their capabilities to produce high
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quantities of ethanol from carbohydrates (Ng et al., 1981;
Weimer, 1985; Wiegel and Ljungdahl, 1981). These bacteria
use Entner–Mayerhof (phosphoroclastic) pathway in the
oxidation of substrates, which results in the production of
ethanol and hydrogen along with organic acids (e.g., acetate,
butyrate, and lactate; Zeikus, 1980). Hydrogen production
from carbohydrates is considered to occur along with the
production of acetate (Eq. 1) or butyrate (Eq. 2), while
the ethanol production alone results in no H2 production
(Eq. 3) (Thauer et al., 1977; Wiegel, 1980).

C6H12O6 þ 4H2O

! 2CH3COO� þ 4H2 þ 2HCO�
3 þ 4Hþ (1)

C6H12O6 þ 2H2O

! CH3CH2CH2COO� þ 2H2 þ 2HCO�
3 þ 3Hþ (2)

C6H12O6 ! 2CH3CH2OH þ 2CO2 (3)

This implies that when H2 production is optimized
(acetate production), ethanol production decreases and vice
versa. Depending on the organism, the ethanol (and
hydrogen) yields vary substantially, from traces to nearly
quantitative amounts (Wiegel, 1980; Zeikus, 1980). Equa-
tion (3), called the decarboxylastic (or Entner–Doudoroff)
pathway, results in nearly complete conversion of glucose to
ethanol, but is rare amongst bacteria and reported only in
Zymomonas mobilis (Wiegel, 1980; Zeikus, 1980).

Although the ethanol tolerance and hexose conversion
rates of thermoanaerobes remain less than those of the yeast
Saccharomyces cerevisiae or mesophilic bacterium Z. mobilis,
the advantage of these bacteria is their metabolic diversity,
that is, the capability of degrading great variety of
carbohydrates of lignocellulosic feedstock (Sommer et al.,
2004). Lignocellulosic materials found in a variety of wastes
(agricultural, municipal, and pulp and paper industry) and
forestry residues are low-cost and abundant raw materials
for ethanol and hydrogen production (Lynd, 1989; Zaldivar
et al., 2001). The economically feasible production of
ethanol from lignocellulosic materials requires efficient
conversion of all the main carbohydrate constituents of this
complex material to ethanol, and therefore, such micro-
organisms would be desirable (Galbe and Zacchi, 2002;
Ingram et al., 1999; Olsson and Hahn-Hägerdal, 1996).
Several thermoanaerobes, capable of utilizing a variety of
sugar constituents of lignocellulosic material, produce
ethanol along with H2, another valuable energy carrier
(Koskinen et al., 2008; Mistry and Cooney, 1989). In the co-
production of ethanol and H2, substantial amounts of both
biofuels can be obtained (Wu et al., 2007).

High temperatures favor the thermodynamics and
kinetics of H2 fermentation (van Groenestijn et al., 2002;
van Niel et al., 2003). Further, the recovery of ethanol
is enhanced at high temperatures favoring the use of
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continuous removal of ethanol though the application of
mild vacuum or gas stream (Wiegel, 1980). In addition,
thermophilic ethanol and H2 production processes can
utilize high temperature wastewaters, such as coffee pro-
cessing, palm oil mill, cannery or distillery wastewaters (Yu
et al., 2002a). There are, however, only a few reports on
continuous H2 and ethanol producing processes with
thermophilic pure cultures (Mistry and Cooney, 1989).
Generally, pure culture processes are not considered viable
for industrial-scale ethanol and H2 production from waste
materials, since this would require costly sterilization pro-
cedures of the feed material (Valdez-Vazquez et al., 2005).
However, in high-temperature bioprocesses, the growth of
contaminating mesophiles present in the waste fractions is
inhibited (van Groenestijn et al., 2002), and the ethanol
utilizing thermoanaerobes are rare (Wiegel, 1980).

Geothermal springs are a potential source for saccharolytic,
ethanol-, and hydrogen-producing thermophiles (Koskinen
et al., 2008; Sommer et al., 2004; Wiegel and Ljungdahl,
1981). The objective of this study was to characterize the
ethanol and hydrogen co-production potential by two
thermophilic bacteria isolated from geothermal areas in
Iceland. The ethanol and H2 production of the isolates was
studied in a batch assays and in a continuous-flow bioreactor.
This study contributes to the knowledge on the diversity of
ethanol and hydrogen producing thermoanaerobes, and to
the design and operation of continuous, thermophilic ethanol
and H2 co-production processes
Materials and Methods

Isolation and Characterization of Bacterial Strains

The two bacterial strains (AK15 and AK17) studied were
earlier isolated from two sediment samples collected from
geothermal springs in the Krafla area (Vı́ti) in NE-Iceland
(Orlygsson and Baldursson, 2007). The sampling and
isolation procedures, and the determination of carbon source
utilization patterns are described in detail in Orlygsson and
Baldursson (2007).

Glucose (20 mM) and xylose (20 mM) fermentation patterns
of the isolates were characterized in batch assays in 120 mL
serum bottles (40 mL of growth media) or in 25 mL serum tubes
(10 mL of growth media) with anaerobic head space (N2). The
sterilized medium, prepared in tap water, was modified
from Örlygsson et al. (1993) and contained buffers (g/L)
(NaH2PO4, 5.5; Na2HPO4, 0.6; KH2 PO4, 0.6); minerals (g/L)
(NH4Cl, 0.3; NaCl, 0.3; CaCl2 � 2H2O, 0.1; MgCl2 � 6H2O, 0.1),
micronutrients (mg/L) (FeCl2 � 4H2O, 2; H3BO3, 0.05; ZnCl2,
0.05; CuCl2 �2H2O, 0.038; MnCl2 � 2H2O, 0.041; (NH4)6Mo7

O24 � 4 H2O, 0.05; AlCl3, 0.05; CoCl2 � 6H2O, 0.05; NiCl2 �
6H2O, 0.05; EDTA, 0.5; Na2SeO3 � 5H2O, 0.026; NaWO4 �
2H2O, 0.033); vitamins (DSMZ medium No141, German
Collection of Microorganisms and Cell Cultures); Resazurin,
0.025 mg/L; Cystein-HCl � 1H2O, 0.56 g/L; Na2S, 0.24 g/L and
yeast extract, 2 g/L. The effect of exogenously added ethanol on



the growth of strain of AK17 was studied in batch assays in
25 mL serum tubes using 10 mL of the growth media described
above with 20 mM of glucose. Strain AK15 was incubated at
608C at pH 7.0 and strain AK17 at 608C at pH 6.0. Bacterial
growth in batch assays was determined as optical density at
600 nm with a Ultraspec 500 Pro Visible spectrophotometer
(Amersham Biosciences, Piscataway, NJ), and the gas produc-
tion was determined based on Owen et al. (1979).
Bioreactor Set-Up

A completely mixed (by liquid recycle), suspended-cell
bioreactor (total volume of 0.3 L, height to diameter ratio of
7) was used for continuous EtOH and H2 production at
608C. A synthetic feed was as described above, except
that glucose concentration was either 12.6, 17.7 or 25.2 mM,
4 g/L of NaHCO3 was added, and the yeast extract
concentration was 0.2 g/L. The feed was prepared in two
separate tanks, one containing the glucose and the other
containing buffers, nutrients, minerals and vitamins. The
feed tanks were kept at þ48C, and the feed flows were
combined prior to the reactor inlet. The reactor pH was
maintained at around 6.0 by adjusting feed pH by 5 M
NaOH or 37% HCl. The bioreactor was inoculated with
25 mL each of batch cultures of AK15 and AK17. The
inoculum cultures were prepared by incubating overnight at
608C in the media described above with 20 mM of glucose.
After the inoculation, bioreactor was operated in a batch
mode for 24 h. After this, the bioreactor was operated
continuously for 90 days by stepwise increasing the glucose
loading rate (LR) and decreasing the hydraulic retention
time (HRT; Fig. 2; Table II). The bioreactor was operated as
an open system, that is, the feed was not sterilized. Bacterial
community in the bioreactor was monitored for enrichment
of new species. Gas production in bioreactor was measured
with a wet gas meter (Ritter Apparatebau, Bochum,
Germany).
Chemical Analyses

The composition of product gas from batch assays and
bioreactor was measured using either a HP 5890II or a Perkin
Elmer gas chromatographs (GCs) equipped with thermal
conductivity detectors. The HP5890II GC-system had a 6 ft
Porapak N packed column (80/100 mesh; Varian, Inc., Palo
Alto, CA), and N2 as the carrier gas. Oven, injector, and
detector temperatures were 80, 110, and 1108C, respectively.
The Perkin Elmer GC-system had a Supelco 1010 Carboxen
GC Plot capillary column (Sigma-Aldrich, St. Louis, MO),
and argon as the carrier gas. Oven, injector and detector
temperatures were 65, 200, and 2008C, respectively. The
concentrations of organic acids and alcohols were measured
using a HP 5890II gas chromatograph with a DB-FFAP
capillary column (Agilent Industries, Inc., Palo Alto, CA;
dimensions 30 m� 0.53 mm� 1.0 mm), and a flame
ionization detector. Glucose, lactate and formate were
analyzed using a Waters 510 liquid chromatograph pump
with a Shodex1 Sugar SH1011 column (Showa Denko K.K.,
Tokyo, Japan) and a Dn -1000 refraction index detector
(WGE Dr. Bures GmbH & Co KG, Dallgow, Germany).
Mobile phase was 5 mM H2SO4. Biomass from the bioreactor
was analyzed as volatile suspended solids (VSS) according to
APHA standard method (APHA, 1995).
Molecular Characterization of the Isolates and the
Bacterial Community Dynamics

Almost complete 16S rRNA gene sequences of the isolates
(1,469 bp for AK15 and 1,454 bp for AK17) were analyzed
for their phylogenetic characterization. Analyses were done
by the Prokaria Company, Ltd (Reykjavik, Iceland) as
previously described (Skirnisdottir et al., 2000).

Bacterial community of the bioreactor was monitored using
DNA extraction and PCR-DGGE (polymerase chain reaction-
denaturing gradient gel electrophoresis) of partial 16S rRNA
genes followed by their sequencing. Duplicate samples of
reactor liquid were taken during the operation, and stored at
�208C. DNA was extracted from 1 mL of samples with a
VIOGENE Blood and Tissue Genomic DNA kit (Proteogenix
SA, Fegersheim, France). Partial bacterial 16S rRNA genes
of the community DNA were amplified using a primer pair
GC-BacV3f (Muyzer et al., 1993) and 907r (Muyzer et al.,
1996) as previously described (Koskinen et al., 2007). DGGE
was performed with an INGENYphorU2x2-system (Ingeny
International BV, GP Goes, The Netherlands) using a 8%
polyacrylamide gel (acrylamide/bisacrylamide gel stock solu-
tion 37.5:1) with a denaturing gradient from 40% to 60%
(100% denaturing solution contains 7 M of urea and 40%
formamide). The gel was run at 608C in 1�TAE with 100 V
for 21.5 h, and stained with SYBR1 Gold (Molecular Probes,
Inc., Eugene, OR). The dominant bands were excised from the
gels, eluted in sterile H2O (25 mL, overnight at þ48C), and re-
amplified for sequencing as previously described (Koskinen
et al., 2007). Sequence data was analyzed with a Bioedit
software (version 7.0.5.2; Hall, 1999), and compared with
sequences in GenBank (http://www.ncbi.nlm.nih.gov/blast/).
The existence of chimeras was analyzed using a CHIMER-
A_CHECK software (version 2.7; Center for Microbial
Ecology, Michigan State University [http://rdp.cme.msu.edu/
cgis/chimera.cgi?su¼ssu]). Bacterial 16S rRNA gene sequences
were aligned and phylogenetic trees constructed with an ARB
software (Ludwig et al., 2004) by using distance matrix and
neighbor joining algorithms with 300 bootstraps.

The accession numbers of the gene sequences submitted to
GenBank were EU262599; EF088330; EU255569; EU255570;
EU255571; EU255572; EU255573; EU255574; EU255575;
EU255576.

Results and Discussion

Phylogeny of the Isolates AK15 and AK17

Based on the almost complete 16S rRNA gene sequence
analysis, the strains AK15 and AK17 were both members of
Koskinen et al.: Thermophilic EtOH and H2 Production 3

Biotechnology and Bioengineering



the family Thermoanaerobacteriaceae in the order Thermo-
bacteriales in the class Clostridia of the phylum Firmicutes
(Garrity et al., 2004). AK15 fell within the genus Thermo-
anaerobacter with the closest affiliation being Clostridium
uzonii (98.8%; Table I, Fig. 1). Genus Thermoanaerobacter
comprises of saccharolytic, thermophilic, anaerobic bacteria
some of which have high ethanol production capabilities, for
example, T. ethanolicus (Wiegel and Ljungdahl, 1981) and
T. thermohydrosulfuricus (Wiegel et al., 1979). The closest
relative of AK15, C. uzonii, was originally isolated from hot
springs in the Kamchatka Peninsula, Russia. Obligately
anaerobic, spore-forming C. uzonii has the optimum growth
temperature and pH of 658C and 7.0, respectively (Krivenko
et al., 1990). The optimum growth condition for AK15 was
608C and initial pH of 7.0 (unpublished results).

Strain AK17 fell within the genus Thermoanaerobacterium
with the closest affiliations being Thermoanaerobacterium
aciditolerans (99.2%) and T. aotearoence (98.1%; Table I,
Fig. 1). The genus Thermoanerobacterium is characterized
by saccharolytic, thermophilic, anaerobic bacteria, most of
which have the ability to reduce thiosulfite to elemental
sulfur (Cann et al., 2001; Lee et al., 1993). Several Thermo-
anaerobacterium species are known for their H2 and
ethanol production capabilities, such as T. aciditolerans
(Kublanov et al., 2007), T. aotearoense (Liu et al., 1996), T.
polysaccharolyticum (Cann et al., 2001), T. saccharolyticum,
T. thermosulfurigenes, T. xylanolyticum (Lee et al., 1993)
and T. zeae (Cann et al., 2001). The closest relative of
AK17, T. aciditolerans, was originally isolated from hot
springs in Kamchatka Peninsula, Russia. Obligate anaerobe,
spore-forming, T. aciditolerans has the optimal growth
temperature and pH of 558C and 5.7, respectively
(Kublanov et al., 2007). The optimum growth condition
for AK17 was 588C and initial pH of 6.0 (unpublished
results).
Table I. AffiliationsQ2 of the 16S rRNA gene sequences of the strains AK15 an

DGGE gel of the continuous-flow bioreactor inoculated with the strains AK15

OTU (acc)a BLb SLc Familyd

AK15 (EU262599) 1452 Clostridiaceae Clo

AK17 (EF088330) 1442 Clostridiaceae The

TRAK-A (EU255569) A 519; Clostridiaceae Clo

519 The

TRAK-B (EU255570) B 523 Clostridiaceae Clo

TRAK-C (EU255571) C 523 Clostridiaceae Clo

TRAK-D (EU255572) D 523 Clostridiaceae Clo

TRAK-E (EU255573) E 523 Clostridiaceae Clo

TRAK-F (EU255574) F 524 Clostridiaceae Clo

TRAK-G (EU255575) G 524 Clostridiaceae Clo

TRAK-H (EU255576) H 549 Enterobacteriaceae Esch

aOperational taxonomic unit with accession number.
bBand label in Figure 3.
cSequence length (bp).
dFamily according to Ribosomal Database Project II.
eClosest species in GenBank with accession number.
fSimilarity (%).
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Carbon Source Utilization by the
Isolates AK15 and AK17

In the presence of yeast extract, AK15 utilized fructose,
galactose, glucose, mannose, ribose, xylose, sucrose, xylan,
and pyruvate. Substrates that were not utilized included
arabinose, lactose, cellulose, and pectin (Orlygsson and
Baldursson, 2007). In the presence of yeast extract, AK17
utilized arabinose, fructose, galactose, glucose, mannose,
ribose, xylose, lactose, and sucrose. Limited growth was
observed with cellulose and pectin. Substrates that were not
utilized included xylan and pyruvate (Orlygsson and
Baldursson, 2007).

The majority of the biomass in all green plants is
lignocellulose, the structural polymer (cellulose, hemicellu-
lose, pectin, and lignin) that comprises the cell wall (Ingram
et al., 1999). The sugar residues of hemicellulose contain a
varying mixture of hexoses (e.g., glucose, mannose and
galactose), and pentoses (e.g., arabinose and xylose), of which
pentose sugars are more rarely utilized by microorganisms
(Ingram et al., 1999). Strain AK17 was able to utilize all these
main hexose and pentose residues of hemicellulose, while
AK15 did not utilize arabinose. Further, AK17 grew on pectin
and cellulose. These results demonstrate that AK17 has a wide
substrate utilization spectrum for the sugar residues in
hydrolysates of lignocellulosic material.

Batch Fermentation Patterns From Glucose and
Xylose by the Isolates AK15 and AK17

In the batch fermentation of glucose by AK15, hydrogen was
the main fermentation product yielding 1.1–1.9 mol-H2/
mol-glucose (28–48% of the theoretical maximum).
The main soluble metabolites were ethanol (0.6–0.8 mol-
EtOH/mol-glucose) and acetate, while lactate was produced
d AK17 isolated from Icelandic geothermal springs, and bands excised from

and AK17 at 608C.

Affiliation (acc)e Sim (%)f

stridium uzonii DSM 9752 (Y18182) 98.8

rmoanaerobacterium aciditolerans (AY350594) 99.2

stridium thermoamylolyticum DSM 2335 (X76743) 99.8

rmoanaerobacterium aciditolerans (AY350594) 99.4

stridium uzonii DSM 9752 (Y18182) 98.3

stridium uzonii DSM 9752 (Y18182) 98.3

stridium uzonii DSM 9752 (Y18182) 98.5

stridium uzonii DSM 9752 (Y18182) 98.5

stridium butyricum (AY442812) 99.4

stridium butyricum DSM 2478 (X68177) 99.4

erichia coli K-12 MG1655 (U00096 AE000111-AE000510) 100



Figure 1. Phylogeny of the strains AK15 and AK17 isolated from Icelandic geothermal springs based on the 16S rRNA gene sequences (1,454–1,469 bp). The phylogenetic tree

was generated using a distance matrix and neighbor joining algorithms with 300 bootstraps. Only supported bootstrap values (>50%) are shown. Escherichia coli (AE000406) was

selected as an out-group. The scale bar indicates 0.1 substitutions per nucleotide position.
to a lesser extent. The AK15 produced H2 yields of
1.0–1.1 mol-H2/mol-xylose (30–33% of the theoretical
maximum) from xylose. Acetate was the main soluble
metabolite from xylose followed by ethanol (0.4 mol-EtOH/
mol-xylose) and lactate.

Ethanol was the main product of batch fermentation of
glucose by AK17 yielding typically 1.2–1.6 mol-EtOH/mol-
glucose (60–80% of the theoretical maximum). The other
fermentation products included hydrogen (0.4–1.2 mol-H2/
mol-glucose) and acetate. In the batch fermentation of
xylose by AK17, ethanol yields of 1.0–1.1 mol-EtOH/mol-
xylose (60–66% of the theoretical maximum) were typically
obtained. Hydrogen (0.9–1.0 mol-H2/mol-xylose) and
acetate were also produced.
Koskinen et al.: Thermophilic EtOH and H2 Production 5
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Continuous Ethanol and Hydrogen Production
From Glucose

In the continuous-flow bioreactor maintained with a co-
culture of strains AK15 and AK17, hydrogen production
started during the 1 day batch mode after the inoculation.
When the continuous feed was started, H2 production rates
slowly increased, and the steady-state was achieved after
30 days from the start-up (Fig. 2). After this when the
glucose loading was stepwise increased, H2 production rate
in the bioreactor increased along with the increasing
LR, until the HRT 2.8 h (last HRT studied; Fig. 2;
Table II). The highest steady-state hydrogen production rate
Figure 2. Performance data for the continuous-flow biore
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of 6.1 mmol/h/L (H2 yield of 0.80 mol-H2/mol-glucose) was
obtained with the HRT of 3.1 h corresponding to a glucose
LR of 8.1 mmol/h/L. On day 83, feeding tube for the nutrient
feed containing buffering agents was clogged. This resulted
in a pH decrease and H2 production ceased momentarily.
After the feed had been recovered, H2 production started
rapidly and H2 production rates were resumed at the same
levels preceding the technical failure. Hydrogen concentra-
tions in the product gas varied generally from 30% to 50%
throughout the experiment.

Ethanol was the main soluble metabolite in the bioreactor,
followed by acetate and lactate (Fig. 2; Table II). Molar ethanol
to acetate ratios varied between 2.6 and 3.7 throughout the
actor maintained at 608C with the isolates AK15 and AK17.



Table II. Summary of performance data for the continuous-flow bioreactor maintained at 608C with isolates the AK15 and AK17 at different HRT and LR

(�standard deviation).

Time period (measurements)

30–35 (6) 50–56 (5) 58–63 (5) 70–72 (4) 75–78 (6) 86–89 (4)

HRT (h)
6.25 6.25 6.25 4.2 3.1 2.8

Glucose LR (mmol/h/L) 2.0 2.8 4.0 6.1 8.1 9.1

H2 % in product gas 40.2 (1.9) 46.0 (1.3) 33.4 (1.3) 40.7 (1.0) 39.2 (3.3) 34.7 (0.6)

HPR (mmol/h/L) 0.78 (0.14) 1.50 (0.08) 2.18 (0.13) 4.43 (0.32) 6.10 (0.39) 5.31 (0.19)

Ethanol (mM) 10.50 (0.66) 24.31 (1.76) 24.47 (1.52) 29.85 (1.76) 31.66 (2.45) 31.77 (2.19)

Acetate (mM) 3.91 (0.39) 7.26 (0.06) 9.46 (0.60) 10.12 (0.21) 10.12 (0.73) 8.72 (0.51)

Lactate (mM) 4.57 (0.52) 4.80 (0.46) 9.61 (0.22) 3.10 (0.14) 2.43 (0.23) 4.21 (0.35)

H2 yield (mol-H2/mol-glucose)a 0.39 (0.07) 0.53 (0.03) 0.55 (0.03) 0.80 (0.06) 0.80 (0.05) 0.63 (0.03)

Ethanol yield (mol-ethanol/mol-glucose)a 0.84 (0.05) 1.37 (0.08) 0.98 (0.06) 1.29 (0.07) 1.35 (0.09) 1.35 (0.10)

Lactate yield (mol-lactate/mol-glucose)a 0.36 (0.04) 0.27 (0.04) 0.39 (0.01) 0.13 (0.01) 0.1 (0.01) 0.18 (0.02)

Ethanol/acetate 2.69 (0.13) 3.33 (0.30) 2.59 (0.18) 2.95 (0.19) 3.15 (0.38) 3.66 (0.42)

Glucose degradation efficiency (%) 99.4 (0.1) 99.6 (0.1) 98.9 (0.6) 91.9 (1.2) 94.8 (2.3) 93.4 (2.6)

LR, loading rate; HRT, hydraulic retention time; HPR, hydrogen production rate.
aYields were calculated per glucose degraded.
experiment. The steady-state ethanol yields were from 1.29 to
1.37 mol-EtOH/mol-glucose, except when the glucose LR was
2.0 or 4.0 mmol/h/L. With LRs of 2.0 and 4.0 mmol/h/L, the
ethanol yields were less than 1 mol-EtOH/mol-glucose and
were associated with elevated lactate yields (Table II). On the
other hand, during the highest ethanol yield (1.37 mol-EtOH/
mol-glucose) obtained with LR of 2.8 mmol/h/L the lactate
production was also relatively high. Lactate production
decreased when the HRT was shortened. Highest steady-state
ethanol concentration of 31.8 mM (ethanol yield of 1.35 mol-
EtOH/mol-glucose) was obtained with the HRT of 2.8 h (LR
of 9.1 mmol/h/L). Butyrate concentrations remained below
1 mM and formate concentrations below 3 mM throughout
the experiment (data not shown).

Stable and continuous ethanol and H2 co-production
from glucose was achieved in the bioreactor inoculated
with the co-culture of thermophilic isolates AK15 and
AK17. Table III summarizes the performance of some
continuous H2 production processes reported in the
literature. The maximum hydrogen production rate of this
Table III. The comparison of hydrogen production performance of some co

Substrate Temperature (8C) H2 yield (mol-H2/mol-he

Glucose 60 0.80

Glucose 60 1.11

Sugar factory wastewater 60 2.57

Winery wastewater 55 2.14

Glucose 70 2.47

Glucose 74 0.42

Cellulose powder 60 2.00

Sucrose 40 1.59a

Glucose 37 1.71

Fructose 35 0.56

Glucose 35 1.71a

Glucose 30–34 0.86a

aCalculated based on the information provided.
study (6.1 mmol/h/L) is comparable with the majority
of studies with thermophilic systems regardless of the fact
that the majority of electrons were directed to ethanol
production instead of H2 production. Oh et al. (2004)
reported substantially higher H2 production rates by using a
thermophilic trickling biofilter system. The H2 production
rate in this study, however, remains far less than the highest
reported in mesophilic systems, obtained in granular
reactors with extremely short HRTs of 0.25 (Zhang et al.,
2008) or 0.5 h (Wu et al., 2006) and with high substrate
loading. The H2 yield achieved in this study (0.80 mol-
H2/mol-glucose) remains low due to the high ethanol
production.

In the batch culture, AK17 produced ethanol from
glucose up to 1.6 mol-EtOH/mol-glucose and from xylose
up to 1.1 mol-EtOH/mol-xylose. In the continuous fer-
mentation, the AK17 dominated culture (see next section)
produced up to 1.37 mol-EtOH/mol-glucose. These ethanol
yields are among the highest reported for thermoanaerobes.
Of the thermoanaerobes, T. ethanolicus has the highest
ntinuous-flow bioreactors reported in the literature.

xose) H2 production rate (mmol/h/L) References

6.1 This study

43.8a Oh et al. (2004)

8.3a Ueno et al. (1996)

6.6a Yu et al. (2002b)

2.1a Kotsopoulos et al. (2006)

1.4 Koskinen et al. (2008)

1.2a Ueno et al. (2001)

627a Wu et al. (2006)

311a Zhang et al. (2008)

33.0 Wu and Chang (2007)

29.6a Lin and Chang (1999)

15.0a Lin and Chang (2004)
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ethanol yields from glucose and xylose. Ethanol yields
from glucose of 1.9 mol-EtOH/mol-glucose have been
reported for T. ethanolicus in both batch (Wiegel and
Ljungdahl, 1981) and continuous cultures (Lacis and
Lawford, 1991). From xylose, T. ethanolicus produces
ethanol up to 1.37 mol-EtOH/mol-xylose (Lacis and
Lawford, 1988). Another high ethanol-producing thermo-
anaerobe, T. thermohydrosulfuricus (previously known as
Clostridium thermohydrosulfuricum), produces ethanol from
glucose up to 1.5 mol-EtOH/mol-glucose (Wiegel et al.,
1979). Wu and Chang (2007)Q3 reported yields of
0.65 mol-EtOH/mol-fructose and 0.56 mol-H2/mol-fruc-
tose in continuous, mesophilic co-fermentation of ethanol
and hydrogen. In the bioreactor of this study, high ethanol
yields (and substantial hydrogen production) were obtained
by the AK17 dominated culture when operated with short
HRTs (2.8 and 3.1 h) indicating the applicability of the
culture to continuous co-production of ethanol and H2.
Glucose Utilization, Biomass Concentration, and
Carbon Balances in the Continuous-Flow Bioreactor

With the HRT of 6.25 h, glucose was nearly completely
degraded regardless of the increase in glucose concentration
(Table II). When the HRT was shortened, glucose was more
than 90% degraded. Biomass concentrations (as VSS) in the
bioreactor varied from 0.15 to 0.37 g/L (Fig. 2).

Carbon mass balances of the bioreactor were calculated
for each glucose LR used (Table IV). Carbon included in the
yeast extract (0.2 g/L) was not accounted for in the carbon
balance, and the composition of biomass was assumed to
Table IV. Carbon balances for the continuous-flow bioreactor maintained at

(�standard deviation).

30–35 (6) 50–56 (5)

HRT (h)
6.25 6.25

Glucose LR (mmol/h/L) 2.0 2.8

Carbon in substrates (mmol C/h/L)a

Glucose 12.10 16.95

Residual glucose 0.07 (0.01) 0.06 (0.02)

Glucose–carbon consumption rate 12.03 (0.01) 16.88 (0.02)

Carbon in products (mmol C/h/L)

Ethanol 3.36 (0.21) 7.71 (0.47)

Acetate 1.25 (0.12) 2.32 (0.09)

Lactate 2.19 (0.25) 2.31 (0.22)

Butyrate 0.03 (0.01) 0.02 (0.01)

Formate 0.12 (0.14) 0 (0)

CO2
b 1.08 (0.17) 1.84 (0.16)

Biomassc 2.12 (0.20) 2.16 (0.05)

Carbon recovery (%)c 84.1 (4.0) 96.5 (3.7)

LR, loading rate; HRT, hydraulic retention time.
aCarbon in yeast extract (0.02 g/L).
bCO2 in the liquid phase were not taken into account.
cBiomass was calculated based on VSS assuming the biomass composition
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be C5H7O2N (Fang and Liu, 2002). Carbon recoveries
for different LRs varied from 84% to 96% (Table IV).
The carbon from glucose was mainly directed to ethanol
production followed by CO2, acetate, biomass, and lactate
production in the bioreactor.
Dynamics of Bacterial Community Composition

Bacterial community dynamics of the continuous-flow
bioreactor was monitored to reveal the fate of the
thermophilic isolates (AK15 and AK17), and to monitor
whether new species became enriched in the open system
without feed sterilization. After the start-up of continuous
operation, both AK15 (C. uzonii affiliated strain) and AK17
(C. uzonii affiliated strain) were detected in the community
profile (Fig. 3, Table I). AK15 had four slightly different 16S
rRNA gene sequences seen as distinctive band positions in
the DGGE gel, while the AK17 had distinctive band
positions in the gel, but the bands shared the same 16S rRNA
gene sequence. Within three weeks after the start-up, AK15
affiliated bands disappeared from the community profile
whereas strain AK17 affiliated bands were seen throughout
the experiment time course. This indicates that AK17 was
the dominant thermophile in the bioreactor (Fig. 3; Table I).
The dominance of AK17 and disappearance of AK15 was
likely due to the growth conditions, for example, the feed
composition, pH, temperature or hydrodynamic conditions
were more suitable for AK17 than AK15. In batch assays at
pH 6 and 608C, the AK17 had higher growth rate and shorter
doubling time than AK15 (unpublished results). Further,
the bioreactor feed had 0.2 g/L of yeast extract which
608C with the isolates AK15 and AK17 at different HRT and glucose LR

Time period (measurements)

58–63 (5) 70–72 (4) 75–78 (6) 86–89 (4)

6.25 4.2 3.1 2.8

4.0 6.1 8.1 9.1

24.20 36.31 48.42 54.47

0.26 (0.15) 2.93 (0.42) 2.53 (1.11) 3.60 (1.44)

23.95 (0.15) 33.38 (0.42) 45.89 (1.11) 50.87 (1.44)

7.83 (0.48) 14.33 (0.85) 20.26 (1.57) 22.88 (1.58)

3.03 (0.19) 4.86 (0.10) 6.48 (0.47) 6.28 (0.37)

4.61 (0.10) 2.23 (0.21) 2.33 (0.22) 4.55 (0.37)

0.14 (0.07) 0 (0) 0.02 (0.02) 0.04 (0.03)

0.42 (0.06) 0 (0) 0 (0). 0 (0)

4.41 (0.38) 6.36 (0.19) 9.20 (1.16) 10.02 (0.35)

1.47 (0.03) 3.90 (0.04) 3.68 (0.00) 4.68 (0.08)

91.1 (4.4) 87.2 (1.3) 86.7 (4.3) 88.8 (2.8)

of C5H7O2N (Fang and Liu, 2002).



Figure 3. Bacterial community profile determined with PCR-DGGE of partial 16S rRNA genes (519–549 bp) of the continuous-flow bioreactor maintained with the isolates AK15

and AK17. See Table I for the labeled bands. The bioreactor was operated at 608C as an open system without feed sterilization.
possibly limited the growth of AK15, while the AK17 did not
require yeast extract for growth.

After 2 weeks of operation, new organisms were seen in
the bioreactor community profiles (Fig. 3; Table I). These
organisms were closely affiliated with mesophilic Clostri-
dium butyricum and Escherichia coli. The mesophiles likely
grew in the feed tank or in the feed tubings. The glucose
degradation in the feed tank was likely very low as the feed
was kept at þ48C, and the glucose feed did not contain
Table V. Summary of growth of strain AK17 in the pres

Ethanol concentration

(%, v/v)

Lag

time (h)a
Maximu

ODb

0 1 1.58 (0.0

0.5 8 1.59 (0.0

1.0 15 1.70 (0.0

1.5 17 1.52 (0.0

2.0 26 1.52 (0.0

2.5 28 1.49 (0.0

3.0 32 1.32 (0.0

3.5d ND 0.63

4.0d >52 0.47

The data represent averages of triplicate measurements
Cultivations were performed in 25 mL serum tubes (10

initial pH of 6.0. The optical density (OD) was measured at 6
point, after the cultures had reached maximum OD.

ND, not determined.
aDetermined as the time when the OD of the sample e
bDetermined as the maximum OD of the sample minu
cDetermined based on the OD values directly by using
dBased on a single tube measurement.
nutrients (nutrients were fed from a separate tank). Further,
the concentration of butyrate, the main fermentation
product of C. butyricum (Crabbendam et al., 1985), re-
mained low (<1 mM) in the bioreactor throughout the
experiment. In a similar manner, the concentration of
formate, a major fermentation product of E. coli (for a
review, see Nandi and Sengupta, 1998), was low in the
bioreactor (<3 mM). These results demonstrate that the
degradation of glucose in the bioprocess by the mesophilic
ence of exogenously added ethanol.

m Growth

rate (h�1)c
H2 yield

(mol-H2/mol-glucose)

5) 0.54 (0.01) 1.20 (0.01)

6) 0.52 (0.01) ND

8) 0.50d 1.10 (0.09)

7) 0.50d 1.02 (0.23)

5) 0.52 (0.03) 1.17 (0.07)

9) 0.49 (0.05) 1.09 (0.21)

1) 0.42 (0.01) 1.00 (0.30)

ND 0.72

ND 0.32

(�standard deviation).
mL of medium) with 20 mM of glucose at 608C and at
00 nm. Hydrogen production was measured at the end

xceeded that of a no-inoculum control by 0.1 units.
s the OD of the no-inoculum control.
the Monod equation (Georgieva et al., 2007).

Koskinen et al.: Thermophilic EtOH and H2 Production 9

Biotechnology and Bioengineering



bacteria was insignificant. These results also show that long-
term maintenance of ethanol and hydrogen production
activity by thermophilic pure cultures is possible in an open
system.
Ethanol Tolerance of Strain AK17

The tolerance to exogenously added ethanol was determined
for the strain AK17. The AK17 tolerated up to 4% (v/v) of
exogenously added ethanol, while the growth was com-
pletely inhibited at 5% (v/v). The increased ethanol
concentration progressively prolongated the lag phase of
AK17 (Table V) as also previously reported for Thermo-
anaerobacter A10 (Georgieva et al., 2007). The ethanol
concentration of up to 2.5% (v/v) did not substantially
inhibit the growth of AK17. Ethanol addition of 3% (v/v)
resulted in a slight decrease in maximum OD and growth
rate, while the ethanol concentrations of 3.5% and 4% (v/v)
decreased the growth drastically (Table V). Similarly, the
hydrogen yields decreased with ethanol additions of 3.5%
and 4.0% (v/v). With ethanol supplementation of up to 3%
(v/v), the hydrogen yields remained between 1.0 and
1.2 mol-H2/mol-glucose.

Thermoanaerobes should be able to sustain ethanol
concentrations above about 4–5% (v/v) in order to obtain
commercially viable separation of ethanol from bioprocess
(Lynd et al., 2001; Sudha Rani and Seenayya, 1999).
The ethanol tolerance of the strain AK17 (4%, v/v) was
substantially higher than generally considered among wild-
type thermoanaerobes (<1–2%, v/v; Burdette et al., 2002;
Lynd, 1989). The highest ethanol tolerances for wild-type
thermoanaerobes include 5.1% (v/v) for Thermoanaerobac-
ter A10 (Georgieva et al., 2007) and 5% (v/v) for Clostridium
thermocellum SS22 (Sudha Rani and Seenayya, 1999),
respectively. The ethanol tolerance of several thermoanae-
robes has been successfully increased by batch or continuous
cultivation at high ethanol concentrations resulting in
adaptation or generation of ethanol-resistant mutants
(Baskaran et al., 1995; Burdette et al., 2002; Sudha Rani
and Seenayya, 1999).
Conclusions

Ethanol and hydrogen production was studied by two
bacterial strains, AK15 affiliated with C. uzonii (98.8%) and
AK17 affiliated with T. aciditolerans (99.2%), isolated from
Icelandic geothermal springs. The strains utilized a wide
variety of sugar monomers found in the lignocellulosic
materials, and also some polysaccharides. Strain AK17 had
high ethanol yields from glucose and xylose fermentations
of up to 1.6 mol-EtOH/mol-glucose and 1.1 mol-EtOH/
mol-xylose, respectively, while hydrogen was produced to a
lesser extent. The strain AK15 produced hydrogen as the
main fermentation product from glucose and xylose. The
AK17 tolerated exogenously added ethanol up to 4% (v/v).
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Stable and continuous ethanol and hydrogen co-production
from glucose was demonstrated in a bioreactor dominated
by the strain AK17. The bioreactor produced up to 1.37 mol-
EtOH/mol-glucose, and the highest H2 rate was 6.1 mmol/h/
L (H2 yield of 0.80 mol-H2/mol-glucose). In summary,
the results indicate that strain AK17 is a promising ethanol
(and hydrogen) producer with high ethanol yields, relatively
high ethanol tolerance, and the capability of utilizing a
variety of hydrocarbons found in the lignocellulosic
materials.
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