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Preface

SPSS® 10.0 is a powerful software package for microcomputer data management and
analysis. The Trends option is an add-on enhancement that provides a comprehensive
set of procedures for analyzing and forecasting time series. These procedures include:

• State-of-the-art ARIMA (“Box-Jenkins”) modeling

• Exponential smoothing

• Regression with first-order autocorrelated errors

• Seasonal decomposition

• Spectral analysis

The procedures in Trends must be used with the SPSS 10.0 Base system and are
completely integrated into that system. The Base system itself contains facilities for
plotting time series and autocorrelation functions, for curve fitting, and for many time-
series-related data management tasks. The algorithms are identical to those used in
SPSS software on mainframe computers, and the statistical results will be as precise as
those computed on a mainframe. Longtime users of Trends may notice the absence of
X11 ARIMA modeling in this release. This procedure has been removed because it is
not Y2K-compliant.

SPSS with the Trends option will enable you to perform many analyses on your PC
that were once possible only on much larger machines. We hope that this statistical
power will make SPSS an even more useful tool in your work.

Installation

To install Trends, follow the instructions for adding and removing features in the
installation instructions supplied with the SPSS Base. (To start, double-click on the
SPSS Setup icon.)

Compatibility

The SPSS system is designed to operate on many computer systems. See the materials
that came with your system for specific information on minimum and recommended
requirements.
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Serial Numbers

Your serial number is your identification number with SPSS Inc. You will need this
serial number when you call SPSS Inc. for information regarding support, payment, or
an upgraded system. The serial number was provided with your Base system. Before
using the system, please copy this number to the registration card.

Registration Card

Don’t put it off: fill out and send us your registration card. Until we receive your reg-
istration card, you have an unregistered system. Even if you have previously sent a
card to us, please fill out and return the card enclosed in your Trends package. Regis-
tering your system entitles you to:

• Technical support services

• New product announcements and upgrade announcements

Customer Service

If you have any questions concerning your shipment or account, contact your local of-
fice, listed on page vi. Please have your serial number ready for identification when call-
ing.

Training Seminars

SPSS Inc. provides both public and onsite training seminars for SPSS. All seminars
feature hands-on workshops. SPSS seminars will be offered in major U.S. and Euro-
pean cities on a regular basis. For more information on these seminars, call your local
office, listed on page vi.

Technical Support

The services of SPSS Technical Support are available to registered customers. Cus-
tomers may call Technical Support for assistance in using SPSS products or for instal-
lation help for one of the supported hardware environments. To reach Technical
Support, see the SPSS home page on the World Wide Web at http://www.spss.com, or
call your local office, listed on page vi. Be prepared to identify yourself, your organi-
zation, and the serial number of your system.
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Additional Publications

Additional copies of SPSS product manuals may be purchased from Prentice Hall, the
exclusive distributor of SPSS publications. To order, fill out and mail the Publications
order form included with your system or call toll-free. If you represent a bookstore or
have an account with Prentice Hall, call 1-800-223-1360. If you are not an account cus-
tomer, call 1-800-374-1200. In Canada, call 1-800-567-3800. Outside of North Amer-
ica, contact your local Prentice Hall office.

Except for academic course adoptions, manuals can also be purchased from SPSS
Inc. Contact your local SPSS office, listed on page vi.

Tell Us Your Thoughts

Your comments are important. Please send us a letter and let us know about your
experiences with SPSS products. We especially like to hear about new and interest-
ing applications using the SPSS system. Write to SPSS Inc. Marketing Department,
Attn: Director of Product Planning, 233 South Wacker Drive, 11th Floor, Chicago,
IL 60606-6307.

About This Manual

This manual is divided into two sections. The first section documents the graphical
user interface. Illustrations of dialog boxes are taken from SPSS for Windows. Dialog
boxes in other operating systems are similar. In addition, this section provides exam-
ples of statistical procedures and advice on interpreting the output. The second part of
the manual is a Syntax Reference section that provides complete command syntax for
all of the commands included in the Trends option. The Trends command syntax is also
available online with the CD-ROM version of SPSS.

This manual contains two indexes: a subject index and a syntax index. The subject
index covers both sections of the manual. The syntax index applies only to the Syntax
Reference section.

Contacting SPSS 

If you would like to be on our mailing list, contact one of our offices, listed on page vi,
or visit our WWW site at http://www.spss.com. We will send you a copy of our news-
letter and let you know about SPSS Inc. activities in your area.



vi

SPSS Inc.
Chicago, Illinois, U.S.A.
Tel: 1.312.651.3000
www.spss.com/corpinfo
Customer Service:
1.800.521.1337
Sales:
1.800.543.2185
sales@spss.com
Training: 
1.800.543.6607
Technical Support:
1.312.651.3410
support@spss.com

SPSS Federal Systems
Tel: 1.703.527.6777
www.spss.com

SPSS Argentina srl
Tel: +5411.4814.5030
www.spss.com

SPSS Asia Pacific Pte. Ltd.
Tel: +65.245.9110
www.spss.com

SPSS Australasia Pty. Ltd.
Tel: +61.2.9954.5660
www.spss.com

SPSS Belgium
Tel: +32.162.389.82
www.spss.com

SPSS Benelux BV
Tel: +31.183.651777
www.spss.nl

SPSS Brasil Ltda
Tel: +55.11.5505.3644
www.spss.com

SPSS Czech Republic
Tel: +420.2.24813839
www.spss.cz

SPSS Danmark A/S
Tel: +45.45.46.02.00
www.spss.com

SPSS Finland Oy
Tel: +358.9.524.801
www.spss.com

SPSS France SARL
Tel: +01.55.35.27.00 x03
www.spss.com

SPSS Germany 
Tel: +49.89.4890740
www.spss.com

SPSS Hellas SA
Tel: +30.1.72.51.925/72.51.950
www.spss.com

SPSS Hispanoportuguesa S.L.
Tel: +34.91.447.37.00
www.spss.com

SPSS Hong Kong Ltd.
Tel: +852.2.811.9662
www.spss.com

SPSS India
Tel: +91.80.225.0260
www.spss.com

SPSS Ireland
Tel: +353.1.496.9007
www.spss.com

SPSS Israel Ltd.
Tel: +972.9.9526700
www.spss.com

SPSS Italia srl
Tel: +39.51.252573
www.spss.it

SPSS Japan Inc.
Tel: +81.3.5466.5511
www.spss.com

SPSS Kenya Limited
Tel: +254.2.577.262/3
www.spss.com

SPSS Korea KIC Co., Ltd.
Tel: +82.2.3446.7651
www.spss.co.kr

SPSS Latin America
Tel: +1.312.651.3539
www.spss.com

SPSS Malaysia Sdn Bhd
Tel: +60.3.7873.6477
www.spss.com

SPSS Mexico SA de CV 
Tel: +52.5.682.87.68
www.spss.com

SPSS Norway 
Tel: +47.22.40.20.60
www.spss.com

SPSS Polska
Tel: +48.12.6369680
www.spss.pl

SPSS Russia
Tel: +7.095.125.0069
www.spss.com

SPSS Schweiz AG
Tel: +41.1.266.90.30
www.spss.com

SPSS Sweden AB
Tel: +46.8.506.105.68
www.spss.com

SPSS BI (Singapore) Pte. Ltd.
Tel: +65.324.5150
www.spss.com

SPSS South Africa 
Tel: +27.11.807.3189
www.spss.com

SPSS Taiwan Corp.
Taipei, Republic of China
Tel: +886.2.25771100
www.sinter.com.tw/spss/

SPSS (Thailand) Co., Ltd.
Tel: +66.2.260.7070, +66.2.260.7080
www.spss.com

SPSS UK Ltd.
Tel: +44.1483.719200
www.spss.com



  

vii

Contents

1 Overview 1
Time Series Analysis 2

Reasons for Analyzing Time Series 2
A Model-Building Strategy 3

How Trends Can Help 3
Model Identification 4
Parameter Estimation 4
Diagnosis 6

Other Facilities 6

2 Working with SPSS Trends 7
Defining Time Series Data 7

Missing Data 8

Facilities 8
Data Transformation 9
Historical and Validation Periods 9
Date Variables 11
Automatic Creation of New Series 12
Reusing Models 14
Handling Missing Data 14
Case Weighting 15

Changing Settings with Command 
Syntax 15

Performance Considerations 15
ARIMA 15
Autoregression with Maximum-Likelihood 
Estimation 16
PACF 17
New Series 17
General Techniques for Efficiency 18

3 Notes on the Applications 19
Working through the Applications on Your 
PC 19

The Data Files 19

Command Index 20

4 An Inventory Problem: Exponential 
Smoothing 21
The Inventory Data 21

Plotting the Series 21

Smoothing the Series 23
Estimating the Parameter Values 25
Plotting the Results 28
Forecasting with Exponential 
Smoothing 30

When to Use Exponential Smoothing 32

How to Use Exponential Smoothing 32
Parameters 33
Saving Predicted Values and 
Residuals 35
Custom Models 37
Additional Features Available with 
Command Syntax 38

5 Forecasting Sales with a Leading 
Indicator: Regression 
Forecasting 39
The Sales Data 39

Plotting the Sales Data 39

Extrapolation with Curve Estimation 41
Fitting Quadratic and Cubic Curves 42



viii

Plotting the Curves 44

Regression with a Leading Indicator 45
The Leading Indicator 45
Simple Regression 49
Forecasts from Linear Regression 51

6 A Quality-Control Chart: Introduction 
to ARIMA 53
The Quality-Control Data 53

Plotting the Series 53
Exponential Smoothing 54

ARIMA Models: An Overview 55
Autoregression 56
Differencing 56
Moving Averages 57
Steps in Using ARIMA 57

Using ARIMA with the Quality-Control 
Data 59

Identifying the Model 60
Estimating with ARIMA 62
Diagnosing the MA(1) Model 64
Applying the Control Chart 66

How to Obtain an ARIMA Analysis 69
Saving Predicted Values and 
Residuals 70
ARIMA Options 72
Additional Features Available with 
Command Syntax 73

7 A Random Walk with Stock Prices: 
The Random-Walk Model 75
Johnson & Johnson Stock Prices 75

Dating the Stock Series 75
Plotting the Series 76

Exponential Smoothing of the Stock 
Series 77

Plotting the Residuals 78

An ARIMA Model for Stock Prices 79
Identifying the Model 79
Differencing the Series 82
Comparing Differences to White Noise 83
Comparing the Two Models 84

Forecasting a Random Walk 84

Why Bother with the Random Walk? 86

8 Tracking the Inflation Rate: Outliers 
in ARIMA Analysis 89
The Inflation Rate Data 89

The Outlier 90

ARIMA with an Outlier 91
Historical and Validation Periods 91
Identifying the Model 92
Estimating the Model 94
Diagnosing the Model 97
ARIMA without the Outlier 99
Removing the Outlier 99
Identifying the Model 101
Estimating the Model 102
Diagnosing the Final Model 104
ARIMA with Imbedded Missing 
Values 104
The Validation Period 105

Another Approach 106

9 Consumption of Spirits: Correlated 
Errors in Regression 107
The Durbin-Watson Data 107

Smoothing the Series 107
Fitting a Curve to the Data: Curve 
Estimation 108

Regression Methods 112
Ordinary Least-Squares Regression 113
Regression with Autocorrelated Error 121



ix

Forecasting with the Autoregression 
Procedure 124
Summary of Regression Methods 128

How to Obtain an Autoregression 
Analysis 128

Saving Predicted Values and 
Residuals 129
Autoregression Options 131
Additional Features Available with 
Command Syntax 132

10 An Effective Decay-Preventive 
Dentifrice: Intervention 
Analysis 133
The Toothpaste Market Share Data 133

Plotting the Market Shares 133

Intervention Analysis 134
Identifying the Models 135
More ARIMA Notation 136
Creating Intervention Variables 137
A Model for the ADA Endorsement 140
Specifying Predictor Variables in 
ARIMA 141
Estimating the Models 141
Diagnosis 145
Assessing the Intervention 146

Alternative Methods 146
Predictors in Differenced ARIMA 
Models 147

11 Trends in the Ozone: Seasonal 
Regression and Weighted Least 
Squares 149
Ozone Readings at Churchill 149

Defining the Seasonal Periodicity 150
Replacing the Missing Data 151
Calculating a Trend Variable 153
A Change in Measurement 
Technique 153

Removing Seasonality 155
Predicting Deseasonalized Ozone 157

Evaluating Trend and Seasonality 
Simultaneously 159

Dummy-Variable Regression 160
Regression with Smoothed Outliers 166

Heteroscedasticity 171
Plotting Residuals by Month 171

Weighted Least Squares 172
Calculating Residual Variance by 
Month 173
The Weight Estimation Procedure 175
Residuals Analysis with Weighted Least 
Squares 178

How to Obtain Seasonal 
Decomposition 182

Saving Seasonal Components and 
Residuals 183
Additional Features Available with 
Command Syntax 184

12 Telephone Connections in 
Wisconsin: Seasonal ARIMA 185
The Wisconsin Telephone Series 185

Plotting the Series 186
Stationary Variance and the Log 
Transformation 187
Calculating the Growth Ratio 187

Seasonal ARIMA Models 188
Problems in Identifying Seasonal 
Models 190

A Seasonal Model for the Telephone 
Series 190

Identifying the Seasonal Model 192
Estimating the Seasonal Coefficient 194
Identifying the Nonseasonal Model from 
Residuals 195
Estimating the Complete Model 197
Diagnosis 198
Checking the Validation Period 199



x

13 Cycles of Housing Construction: 
Introduction to Spectral 
Analysis 203
The Housing Starts Data 203

Spectral Analysis: An Overview 205
Model-Free Analysis 205
The Periodogram 205

The Frequency Domain 207
Fourier Frequencies 207

Interpreting the Periodogram 209
A Way to Think about Spectral 
Decomposition 210
Some Examples of Decompositions 211

Smoothing the HSTARTS 
Periodogram 214

Specifying Windows for the Spectral 
Density 216

Transformations in Spectral Analysis 217
Leakage 218

Spectral Analysis of Time Series 219

How to Obtain a Spectral Analysis 219
Additional Features Available with 
Command Syntax 222

Syntax Reference 223

Universals 225
Syntax 225

Operations 226

New Variables 227

Periodicity 229

APPLY Subcommand 230

Commands 232
AREG 232

ARIMA 238

EXSMOOTH 247

MODEL NAME 257

READ MODEL 259

SAVE MODEL 262

SEASON 265

SPECTRA 270

TDISPLAY 279

Appendix A
Durbin-Watson Significance 
Tables 281

Appendix B
Guide to ACF/PACF Plots 291

Bibliography 295

Subject Index 297

Syntax Index 303



1

  

Overview

SPSS Trends provides the power and flexibility required by experienced time series an-
alysts, while at the same time being easy enough for those not familiar with time series
techniques to use and master quickly. Its power and flexibility can be seen in the wide
variety of identification, estimation, forecasting, and diagnostic methods available, the
opportunity for continuous interaction during the model-building process, and the abil-
ity to quickly create new series as functions, transformations, or components of the ob-
served series for further analysis. Its graphical user interface, comprehensive manual,
and online Help system ensure that you will find Trends easy to use.

The range of analytical techniques available in Trends extends from simple, basic
tools to more sophisticated types of analysis. These include: 

• Plots. With facilities in the SPSS Base system, you can easily produce a variety of
series and autocorrelation plots that you can enhance using the SPSS Chart Editor.

• Smoothing. You can use simple but efficient smoothing techniques that can yield
high-quality forecasts with a minimum of effort. 

• Decomposition. You can break down a series into its components, saving the sea-
sonal factors and trend, cycle, and error components automatically—ready to use in
further analysis. 

• Regression. You can build regression models using a variety of techniques, includ-
ing those in the SPSS Base system, such as ordinary least-squares regression and
curve fitting. Trends adds a special facility for regression with autocorrelated errors. 

• ARIMA Modeling. You can apply the powerful techniques of ARIMA modeling in
a fully interactive environment where identification, estimation, and diagnosis lead
you quickly to the best model. 

• Spectral Analysis. You can examine a time series as a combination of periodic cy-
cles of various lengths. 

This chapter presents a brief introduction to time series analysis and an overview of the
capabilities of Trends. 

1



2 Chapter 1

Time Series Analysis 
A time series is a set of observations obtained by measuring a single variable regularly
over a period of time. In a series of inventory data, for example, the observations might
represent daily inventory levels for several months. A series showing the market share
of a product might consist of weekly market share taken over a few years. A series of
total sales figures might consist of one observation per month for many years. What each
of these examples has in common is that some variable was observed at regular, known
intervals over a certain length of time. Thus, the form of the data for a typical time series
is a single sequence or list of observations representing measurements taken at regular
intervals. Table 1.1 shows a portion of a series of daily inventory levels observed for 12
weeks. 

Reasons for Analyzing Time Series 

Why might someone collect such data? What kinds of questions could someone be try-
ing to answer? One reason to collect time series data is to try to discover systematic pat-
terns in the series so a mathematical model can be built to explain the past behavior of
the series. The discovery of a strong seasonal pattern, for example, might help explain
large fluctuations in the data.

Explaining a variable’s past behavior can be interesting and useful, but often one
wants to do more than just evaluate the past. One of the most important reasons for doing
time series analysis is to forecast future values of the series. The parameters of the model
that explained the past values may also predict whether and how much the next few val-
ues will increase or decrease. The ability to make such predictions successfully is obvi-
ously important to any business or scientific field.

Another reason for analyzing time series data is to evaluate the effect of some event
that intervenes and changes the normal behavior of a series. Intervention analysis exam-
ines the pattern of a time series before and after the occurrence of such an event. The
goal is to see if the outside event had a significant impact on the series pattern. If it did,
there is a significant upward or downward shift in the values of the series after the oc-

Table 1.1 A daily inventory time series

Time Week Day Inventory level

t1 1 Monday 160
t2 1 Tuesday 135
t3 1 Wednesday 129
t4 1 Thursday 122
t5 1 Friday 108
t6 2 Monday 150

. . . 
t60 12 Friday 120



Overview 3

currence of the event. For this reason, such series are called interrupted time series.
Weekly numbers of automobile fatalities before and after a new seat belt law, monthly
totals of armed robberies before and after a new gun law, and daily measurements of
productivity before and after initiation of an incentive plan are examples of interrupted
time series. What they have in common is a hypothetical interruption in their usual pat-
tern after the specific time when some outside event occurred. Since the time of the out-
side event is known and the pattern before and after the event is observable, you can
evaluate the impact of the interruption. 

A Model-Building Strategy 

No matter what the primary goal of the time series analysis, the approach basically starts
with building a model that will explain the series. The most popular strategy for building
a model is the one developed by Box and Jenkins (1976), who defined three major stages
of model building: identification, estimation, and diagnostic checking. Although Box
and Jenkins originally demonstrated the usefulness of this strategy specifically for
ARIMA model building, the general principles can be extended to all model building.

Identification involves selecting a tentative model type with which to work. This
tentative model type includes initial judgements about the number and kind of parame-
ters involved and how they are combined. In making these judgements, you should be
parsimonious. The methods usually employed at this stage include plotting the series
and its autocorrelation function to find out whether the series shows any upward or
downward trend, whether some sort of data transformation might simplify analysis, and
whether any kind of seasonal pattern is apparent.

Estimation is the process of fitting the tentative model to the data and estimating its
parameters. This stage usually involves using a computerized model-fitting routine to
estimate the parameters and test them for significance. The estimated parameters can
then be used to see how well they would have predicted the observed values. If the pa-
rameter estimates are unsatisfactory on statistical grounds, you return to the identifica-
tion stage, since the tentative model could not satisfactorily explain the behavior of the
series.

Diagnosis is the stage in which you examine how well the tentative model fits the
data. Methods used at this stage include plots and statistics describing the residual, or
error, series. This information tells you whether the model can be used with confidence,
or whether you should return to the first stage and try to identify a better model. 

How Trends Can Help 
SPSS Trends is designed to help you accomplish the goals of these model-building
stages. The following sections describe some of the ways it simplifies your work. 
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Model Identification 

The most useful tools for identifying a model are plots of the series itself or of various
correlation functions. The SPSS Base system provides many plots that are helpful for
analyzing time series, such as sequence charts and autocorrelation plots.

Plotting the Series. With the Sequence Charts procedure in the SPSS Base system, you
can plot the values of your series horizontally or vertically. You have the option of plot-
ting the series itself, a log transformation of the series, or the differences between adja-
cent (or seasonally adjacent) points in the series.

Plotting Correlation Functions. The Base system provides facilities for plotting correlation
functions. As with the series plots, you can show the function itself, a log transformation
of the function, or the differences between adjacent (or seasonally adjacent) points. Con-
fidence limits are included on the plots, and the values and standard errors of the corre-
lation function are displayed in the Viewer. The following facilities are available: 

• The Autocorrelations procedure displays and plots the autocorrelation function and
the partial autocorrelation function among the values of a series at different lags. It
also displays the Box-Ljung statistic and its probability level at each lag in the Viewer.

• The Cross-Correlations procedure displays and plots the cross-correlation functions
of two or more time series at different lags.

Parameter Estimation 

SPSS Trends includes state-of-the-art techniques for estimating the coefficients of your
model. These techniques can loosely be grouped under the general areas of smoothing,
regression methods, Box-Jenkins or ARIMA analysis, and decomposition of cyclic data
into their component frequencies. 

Smoothing. The Exponential Smoothing procedure uses exponential smoothing methods
to estimate up to three parameters for a wide variety of common models. Forecasts and
forecast error values for one or more time series are produced using the most recent data
in the series, previous forecasts and their errors, and estimates of trend and seasonality.
You can specify your own estimates for any of the parameters or let Trends find them
for you. The output includes statistics arranged to help you evaluate the estimates.

Trends also includes the Seasonal Decomposition procedure, which lets you estimate
multiplicative or additive seasonal factors for periodic time series. New series contain-
ing seasonally adjusted values, seasonal factors, trend and cycle components, and error
components can be automatically added to your working data file so you can perform
further analyses. 
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Regression Methods. The Regression procedure in the SPSS Base system is useful when
you want to analyze time series using ordinary least-squares regression. Additional pro-
cedures for regression methods include: 

• The Curve Estimation procedure, which is part of the Base system, fits selected
curves to time series and produces forecasts, forecast error values, and confidence in-
terval values. The curve is chosen from a variety of trend-regression models that as-
sume that the observed series is some function of the passage of time. 

• The Autoregression procedure, which is part of Trends, allows you to estimate re-
gression models reliably when the error from the regression is correlated between one
time point and the next—a common situation in time series analysis. Autoregression
offers two traditional methods (Prais-Winsten and Cochrane-Orcutt) as well as an in-
novative maximum-likelihood method that is able to handle missing data imbedded
in the series.

Box-Jenkins Analysis. The ARIMA procedure lets you estimate nonseasonal and seasonal
univariate ARIMA models. You can include predictor variables in the model to evaluate the
effect of some outside event or influence while estimating the coefficients of the ARIMA
process. ARIMA produces maximum-likelihood estimates and can process time series with
missing observations. It uses the traditional ARIMA model syntax, so you can describe
your model just as it would be described in a book on ARIMA analysis. Summary statistics
for the parameter estimates help you evaluate the model. New series containing forecasts as
well as their errors and confidence limits are automatically created. 

Seasonal-Adjustment Methods. The Seasonal Decomposition procedure lets you estimate
multiplicative or additive seasonal factors for periodic time series using the ratio-to-
moving-average (Census I) method of seasonal decomposition. Seasonal Decomposi-
tion automatically creates new series in your working data file containing seasonally ad-
justed values, seasonal factors, trend and cycle components, and error components so
you can perform further analyses. 

Frequency-Component Analysis. The Spectral Plots procedure lets you decompose a time
series into its harmonic components, a set of regular periodic functions at different
wavelengths or periods. By noting the prominent frequencies in this model-free analy-
sis, you can detect features of a periodic or cyclic series that would be obscured by other
methods. Spectral Plots provides statistics, plots, and methods of tailoring them for
univariate and bivariate spectral analysis, including periodograms, spectral density esti-
mates, gain and phase spectra, popular spectral windows for smoothing the peri-
odogram, and optional user-defined filters. Plots can be produced by period, frequency,
or both. 
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Diagnosis 

The ability to diagnose how well the model fits the data is a vital part of time series anal-
ysis. Several facilities are available to assist you in evaluating models: 

• The automatic residual and confidence-interval series generated along with the fore-
casts aid you in assessing the accuracy of your models. 

• Standard errors and other statistics help you to judge the significance of the coeffi-
cients estimated for your model. 

• In regression analysis and elsewhere, you frequently need to determine whether the
residuals from a model are normally distributed. The SPSS Base system offers Nor-
mal P-P and Normal Q-Q plots, which compare the observed values of a series
against the values that would be observed if the series were normally distributed.
They give you quick and effective visual checks for normality. 

Other Facilities 
In addition to the analytical commands surveyed above, Trends includes many facilities
to simplify the process of analyzing time series data: 

• Forecasting. Since most of the analytical commands in Trends automatically create
predicted values and error terms, generating forecasts is virtually effortless and eval-
uating them is nearly as easy. You can easily tell Trends which period to use in esti-
mating its models and which period you want to forecast—whether you are
forecasting in a validation period, for which you have data, or forecasting into the
future. 

• Easy interaction. Trends shows you the results of your analysis immediately, so you
can revise it on the spot if you like. The dialog boxes remember your specifications
throughout the session, so it is easy to modify your analysis on the basis of previous
results.

• Utilities. Trends includes all the utilities you need to analyze time series data flexibly
and efficiently. 

• Alternate command-driven interface. Like the rest of the SPSS system, Trends lets
you dispense with the dialog boxes and execute command syntax, either directly
from a window or in batch mode.

• Online assistance. The SPSS Help system provides immediate information about any
aspect of Trends facilities and about the command syntax if you prefer to use it.

This brief overview has only hinted at the facilities that SPSS Trends provides to make
your sessions more productive. Chapter 2 shows you how to use these facilities. 
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Working with SPSS Trends

In addition to the commands for plotting and analyzing time series, SPSS Trends also
provides the “nuts and bolts” commands that you need to deal with the special prob-
lems of time series analysis. 

• Time series observations form a regularly spaced sequence, often a dated sequence.
You need flexible ways of referring by date to portions of your series. 

• Fitting, modeling, and forecasting time series are central goals. Often these activi-
ties require the creation of new series containing forecasts or residuals (errors),
which you then subject to further analysis. 

• Time series analysis is interactive. You usually examine or plot the results of one
analysis before deciding what to do next. Frequently you repeat an analysis on a dif-
ferent series or a different portion of the same series, or you repeat an analysis with
just a slight change in the specifications.

In this chapter, you will learn how SPSS Trends lets you manipulate dates, modify your
series, and generate new series for further analysis. At the end of this chapter, you can
find some tips for using Trends with the rest of SPSS and for maximizing the efficiency
of Trends. 

Defining Time Series Data
A time series corresponds to a variable in ordinary data analysis. If you are accustomed
to analyzing data that are not time series, or if you need to use the facilities from other
parts of the SPSS system, you may find it helpful to remember that a series plays the
role of a variable. Each observation in a time series corresponds to a case or observa-
tion. The main difference is that in time series analysis, the observations are taken at
equally spaced time intervals.

When you define time series data for use with SPSS Trends, give each series a name
exactly as if it were a variable. For example, to define a time series in the Data Editor,
click the Variable View tab and enter a variable name in any blank row.

If you open a spreadsheet containing time series data, each series should be arranged
in a column in the spreadsheet. If you already have a spreadsheet with time series ar-

2
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ranged in rows, you can open it anyway and use the Transpose command (on the Data
menu) to flip the rows into columns.

Missing Data

A time series by definition consists of equally spaced observations. Sometimes the value
for a particular observation is simply not known and will be missing. In addition, miss-
ing data can result from any of the following: 

• Each degree of differencing reduces the length of a series by 1. 

• Each degree of seasonal differencing reduces the length of a series by one season. 

• If you create new series that contain forecasts beyond the end of the existing series
(by clicking a Save button and making suitable choices), the original series and the
generated residual series will have missing data for the new observations. 

• Some transformations (for example, the log transformation) produce missing data for
certain values of the original series. 

Missing data at the beginning or end of a series pose no particular problem; they simply
shorten the useful length of the series. Gaps in the middle of a series (imbedded missing
data) can be a much more serious problem. The extent of the problem depends on the
analytical procedure you are using. 

• Some commands require all observations to be present and in order but can accept
imbedded missing data. For example, if you don’t know last October’s sales figures,
you need to supply an empty observation for October to preserve the spacing between
September and November. The commands that can handle imbedded missing data
are Autoregression (with the exact maximum-likelihood method) and ARIMA. (See
“Performance Considerations” on p. 15 for issues regarding imbedded missing data
in these commands.) 

• Some commands depend heavily on the unbroken sequence of observations. These
commands are Autoregression, Exponential Smoothing, Seasonal Decomposition,
and Spectral Plots (on the Graphs menu). Before you can use these commands, you
must fill in data for imbedded missing values using the Data Editor or the Replace
Missing Values command (see “Handling Missing Data” on p. 14).

Facilities 
Most of the facilities available in the SPSS Base system can be used with time series data. 

• You can run any command or procedure on time series data, since the series names
are SPSS variable names. 

• You can use any transformation commands in the SPSS Base system to modify the
data in a time series or to create new time series from existing ones. 
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• You can use file-manipulation facilities on the File and Data menus in exactly the
same way as with any other file. 

• You can use the SPSS Data Editor to enter or modify time series data.

In addition, there are a number of facilities specifically designed for manipulating time
series data. 

Data Transformation

The Create Time Series command in the SPSS Base system was designed expressly for
time series data. In addition, you can take advantage of options on some of the Trends
dialog boxes to temporarily transform your data before analyzing it. Remember also that
many Trends commands create new series as transformations of your existing series. 

Transformation Commands

A Base system command intended specifically for transforming time series data is:

Create Time Series. Produces new series as functions of existing series. This facility
works somewhat like the Compute command in the SPSS Base system. It includes func-
tions that use neighboring observations for smoothing, averaging, and differencing. If
you use the name of an existing series as the “target” series, Create Time Series (unlike
Compute) moves that series to the end of the file.

Transformation Options 

Many Trends procedures include options that transform data within the procedure, leav-
ing the data in your working data file unchanged. These options are shortcuts to simplify
your work. They include the following:

� Difference. This option tells Trends to analyze the differences between the values of
adjacent observations, rather than the values themselves. 

� Seasonally difference. Seasonal differencing takes differences at a lag equal to the sea-
sonality of your series. 

� Log transformations. These are available using both base 10 and base e (natural)
logarithms. 

Historical and Validation Periods

It is often useful to divide your time series into a historical or estimation period and a
validation period. You develop a model on the basis of the observations in the historical
period and then test it to see how well it works in the validation period. When you are
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not sure which model to choose, this technique is sometimes more efficient than com-
paring models based on the entire sample.

The facilities in the Select Cases dialog box (available through the Data menu) and
the Save dialog box (available through the main dialog box for many procedures) make
it easy to set aside part of your data for validation purposes.

Select Cases. Specifies a range of observations for analysis. The selection Based on time
or case range allows you to specify a range of observations using date variables, if you
have attached them to your time series, or using observation numbers if you have not.
You normally define a historical period in this way.

Save. Specifies a range of observations for forecasts or validation. Trends commands
that save new series containing such things as fit values and residuals allow you to pre-
dict values for observations past the end of the series being analyzed. To define a vali-
dation period, select the default Predict from estimation period through last case.
Trends then uses the model developed from the historical period to “forecast” values
through the validation period so that you can compare these forecasts to the actual data.
Forecasts created in this way are n-step-ahead forecasts. For information on generating
one-step-ahead forecasts, refer to “Forecasts” below. 

Forecasts

Forecasts are ubiquitous in time series analysis—both real forecasts and the validation
“forecasts” discussed above. It is often useful to distinguish between “one-step-ahead”
forecasts and “n-step-ahead” forecasts. One-step-ahead forecasts use—and require—in-
formation in the time period immediately preceding the period being forecast, while n-
step-ahead forecasts are based on older information. You can produce either type of
forecast in Trends.

Real forecasts, that is, forecasts for observations beyond the end of existing series,
are always n-step-ahead forecasts. To generate these forecasts, specify the forecast
range in a Save dialog box, using the Predict through alternative. Trends will automat-
ically extend the series to allow room for the forecast observations. (This type of fore-
cast can be generated by ARIMA and Exponential Smoothing, and by Curve Estimation
in the Base system.) 

Validation forecasts can be either one- or n-step-ahead. To generate n-step-ahead val-
idation forecasts, simply specify the historical period in the Select Cases dialog box and
the validation period in the Save dialog box, as discussed above. If you need one-step-
ahead validation forecasts, you must use a certain amount of SPSS command syntax: 

1. Specify the historical period in the Select Cases dialog box. 

2. Estimate the model in which you are interested. Instead of executing it directly, click
the Paste button to paste its command syntax into a syntax window.
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3. Execute the command from the syntax window by clicking the Run button on the
toolbar.

4. Go back to the Select Cases dialog box and specify both the historical and validation
periods. Generally this means to select All cases.

5. Activate the syntax window and edit the command that you executed in step 3. Leave
the command name (EXSMOOTH, ARIMA, SEASON, or whatever), but replace all of
its specifications with the single specification /APPLY FIT. Then execute the command
by clicking Run. Trends generates a fit variable through both the historical and valida-
tion periods, based on the coefficients estimated in step 3 for the historical period. 

Date Variables

The observations in a time series occur at equally spaced intervals. The actual date of
each observation does not matter in the analysis but is useful for labeling output. It is
also convenient when you want to specify a portion of the series. For example, it’s easier
to indicate that you want observations from 1965 through 1985 than to construct a log-
ical condition such as

year >= 1965 & year <= 1985. 

in the Select Cases If dialog box. For these reasons, SPSS Trends is designed to work with
date variables. Date variables are variables that indicate the time of an observation. Year,
quarter, month, week, day, hour, minute, and second are possible date variables. 

• Date variables are generally not defined or read like ordinary time series. They are
created by SPSS when you use the Define Dates command (on the Data menu). 

• The Define Dates dialog box lists about twenty time intervals, and combinations of
time intervals, that you can use to indicate the spacing of your observations. When
you click OK, Trends creates a numeric date variable with the name of the time inter-
val followed by an underscore: year_, quarter_, and so on. If you choose a combina-
tion of time intervals, Trends creates more than one such variable.

• When you use Define Dates, Trends always creates a string variable named date_ in
addition to the numeric date variables you specifically request in the Define Dates di-
alog box.

• The Define Dates facility assigns values to the numeric date variables in sequence for
each observation in the series. You specify initial values for these variables in the di-
alog box.

• Define Dates also assigns values that correspond to the values of the numeric date
variables to the string variable date_. 

• Define Dates often establishes a default seasonal cycle. For example, for monthly
data, Trends assumes a seasonal periodicity of 12 months. 
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• Date variables have meaning only as labels, as indicators of periodicity, and as a
means of specifying part of a series in the Select Cases Range or Save dialog boxes.

• You should not modify the values of date variables in the Data Editor or with trans-
formation commands. There is no reason to do so, and Trends expects these variables
to have certain values.

Other Date Combinations

The Define Dates dialog box cannot anticipate every combination of date variables and
periodicity. For example, there are two options for daily data collected on work days only,
one for a 5-day work week and one for a 6-day work week. For hourly data collected on
work days, however, only the 5-day work week is provided. To define date variables for
hourly data collected 6 days a week, you would need to consult the SPSS Syntax Refer-
ence Guide and execute a relatively simple command like this:

date week 1 day 1 6 hour 8.

If you open the Define Dates dialog box after using command syntax to define date vari-
ables in a manner not supported by the dialog box, SPSS highlights Custom in the Cases
Are list. This merely means that you have defined date variables with command syntax
that cannot be shown in the dialog box. The date variables will “work” everywhere else
just fine.

See DATE in the SPSS Syntax Reference Guide for a more complete description of
date variables. 

Using Date Variables

Once you have created date variables with Define Dates (or with command syntax), you
can use them like any other variables. 

• date_ is a string variable with preassigned values. Its length depends on how many
variables you requested.

• The other date variables are numeric variables with preassigned values. Remember
that their names all end with underscores.

When you specify a time interval in a dialog box, pairs of text boxes will be available in
the dialog box to let you enter starting and ending values for each of the numeric date
variables you have defined. If you have not defined date variables, there will be text box-
es for observation numbers.

Automatic Creation of New Series

Many of the analytical commands in Trends can automatically generate new series con-
taining such things as predicted values and residuals. Each command reports the names
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of any new series that it creates. The first three letters of the series name indicate the type
of series: 

• fit contains the predicted value according to the current model. 

• err is a residual or error series. (Normally the fit series plus the err series equals the
original series.) 

• ucl and lcl contain upper and lower confidence limits. 

• sep is the standard error of the fit or predicted series. 

• sas, saf, and stc are series components extracted by the Seasonal Decomposition
procedure.

Special Considerations for ARIMA. Because the error series from ARIMA is so important,
an error series from a log-transformed ARIMA model contains the log-transformed er-
rors to permit the proper residuals analysis. However, the fit and confidence-limit series
are in the original metric. For ARIMA with a log transformation, therefore, it is not true
that the fit plus the error equals the original series. 

Controlling the Creation of New Series

You can control whether new series are created using the Save dialog box. Choices are:

� Add to file. All new series are created and added to file. This alternative carries a per-
formance cost; see “Performance Considerations” on p. 15 for discussion.

� Replace existing. New series generated by the most recent procedure are added to the
file. Any existing series that were created in this way by Trends procedures are
dropped.

� Do not create. No new series are created. 

For most Trends procedures, you cannot choose to have only one type of series, such as
err, added to your file. If a command creates three new series, you either get all three or
none. 

New Series Names 

The name of a series created automatically consists of: 

• The prefix indicating what type of series it is, as listed above. 

• An underscore (_) if the Add to file alternative was selected, or a pound sign (#) if the
Replace existing alternative was selected.

• A sequential number.

Consult “New Variables” on p. 227 for more details on naming conventions. 
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Reusing Models

When you click OK or Paste in SPSS, current dialog box settings are saved. When you
return to a dialog box you have used once, all of your previous specifications are still
there (unless you have opened a different data file). This persistence of dialog box set-
tings is especially helpful as you develop models for time series data, since you can se-
lectively modify model specifications as needed: 

• You can change one or more specifications in the dialog box, or on any subdialog
box, and repeat the analysis with the new specifications. 

• You can switch variables to repeat your analysis or chart with different variables but
with the same specifications.

• You can use the Select Cases facility to restrict analysis to a range of cases, or to pro-
cess all cases instead of restricting analysis to a previously specified range. You can
then repeat an analysis or chart with identical specifications but a different range of
observations.

• You can use a transformation command such as Replace Missing Values, or edit data
values (responsibly!) in the Data Editor, and then repeat an analysis or chart with
identical specifications but modified data.

Reusing Command Syntax

If you are using command syntax instead of the dialog boxes, you can still reuse and se-
lectively modify models using the APPLY subcommand. When it is used, the APPLY
subcommand is usually the first specification after the name of the command or after the
name of a command and a series. It means run this command as before, with the follow-
ing changes. If you want to change any specifications from the previous model, continue
the command with a slash and enter only those specifications you want to add or change. 

For commands that estimate coefficients that you can apply to prediction (ARIMA and
AREG), you have the option of applying the coefficients estimated for a previous model
to a new model, either as initial estimates or as “final” coefficients to be used in calcu-
lating predicted values and residuals.

You can also apply specifications or coefficients from an earlier model rather than
from the previous specification of the same command by specifying the model name.

See “APPLY Subcommand” on p. 230 for a complete discussion of the APPLY sub-
command and models. 

Handling Missing Data

Missing data are particularly troublesome in time series analysis. Some procedures can-
not work with missing data at all, since their algorithms depend upon new information
at every point. The extent to which different Trends commands can handle missing data
is discussed in “Missing Data” on p. 8.



Working with SPSS Trends 15

If missing data are a problem, you can use the Replace Missing Values procedure
from the Base system. This procedure replaces some or all of the missing data in a series
using any of several plausible algorithms. It can either replace missing data in an exist-
ing series or create a copy of an existing series with missing data replaced. For more in-
formation on Replace Missing Values, see the SPSS Base User’s Guide. 

Case Weighting

The Weight Cases facility, which simulates case replication, is ignored by most Trends
commands, since it makes no sense to replicate cases in a time series.

Changing Settings with Command Syntax
Several SPSS commands determine settings that affect the operation of Trends proce-
dures. In particular, the TSET, USE, and PREDICT commands modify the operation of
most subsequent analytical commands in Trends. If you execute such commands from
a syntax window and later execute Trends commands from the dialog boxes, you cannot
necessarily assume that the settings you established in the syntax window remain in ef-
fect. The following are areas where this might occur: 

• The Select Cases dialog box can generate a USE command.

• The Save dialog box for any Trends procedure and for Curve Estimation in the
Base system can generate a PREDICT command.

• Trends dialog boxes routinely generate a TSET command to reflect settings that
are specified in the dialog box. Never assume that your TSET specifications sur-
vive the use of a dialog box without inspecting the journal file for a TSET com-
mand generated by the dialog box.

The existence and name of the journal file can be verified on the General tab in the Op-
tions dialog box (Edit menu).

Performance Considerations
Time series analysis sometimes requires lengthy calculations at places where you may
not expect it. The following sections bring these places to your attention and suggest
ways of speeding up your work. 

ARIMA

ARIMA analysis uses sophisticated iterative algorithms to solve problems that were
computationally intractable until recent years. If you are new to ARIMA analysis, you
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will find that these calculations can require more processing time than non-iterative
techniques. Processing time is particularly dependent upon the type of model specified
and the presence of imbedded missing data. 

Type of Model. You can expect seasonal ARIMA models, ARIMA models that include
moving-average components, and especially models with seasonal moving-average
components to require somewhat more time than other models. 

Imbedded Missing Data. The SPSS Trends ARIMA procedure uses a state-of-the-art max-
imum-likelihood estimation algorithm that is unique in being able to handle imbedded
missing data. It does so with a technique called Kalman filtering, which requires consid-
erably more calculation than the simpler technique used when no imbedded missing data
are present. Even a single imbedded missing value increases ARIMA processing time
greatly—in extreme cases, by a factor of 10.

If you want to use ARIMA on a series that contains imbedded missing data, you can
use the following procedure to reduce processing time: 

1. Make a copy of the series with valid data interpolated in place of the imbedded miss-
ing data (see “Handling Missing Data” on p. 14). 

2. Identify the correct model and estimate the coefficients for the series without missing
data. ARIMA can use a much faster algorithm when no imbedded missing data are
present. 

3. Once you have found the correct model, run ARIMA on the original series to get the
best possible estimates for the coefficients, using Kalman filtering to handle the miss-
ing data. This time, open the ARIMA Options dialog box and select Apply from pre-
vious model for Initial Values for Estimation. This should reduce the number of
iterations needed this time. 

Most ARIMA packages allow only the first two steps. You can always stop there with
Trends ARIMA too, but you have the option of using the Kalman filtering algorithm to
get the best possible estimates.

Note that the results obtained by following the steps above are the same as the results
you would obtain if you used the ARIMA procedure directly on the series with imbed-
ded missing data, without first estimating initial values from interpolated data. The only
difference is processing time. 

Autoregression with Maximum-Likelihood Estimation 

When you request maximum-likelihood estimation with the Autoregression procedure,
Trends uses the same algorithms as in ARIMA. This means that Autoregression can pro-
cess series with imbedded missing data when maximum-likelihood estimation is re-
quested, but it may take a while. 
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To reduce processing time when your series has imbedded missing data, you can fol-
low the same steps outlined for ARIMA above. However, since the Autoregression Op-
tions dialog box does not have controls for initial values, you need to use command
syntax to apply initial estimates the second time you run the Autoregression procedure
(step 3 above). The command is:

AREG /APPLY INITIAL.

Again, if processing time is not a consideration, you can simply use the Autoregression
procedure directly on the series with imbedded missing data. Alternatively, if you do not
need the best-quality estimates, you can stop after step 2 and get results as good as most
other packages give. 

PACF

Displaying partial autocorrelations (an option in the Autocorrelations dialog box) re-
quires the solution of a system of equations whose size grows with the number of lags.
Be careful about requesting partial autocorrelations to a high number of lags (over 24).
Even on a fast machine, this will take much longer than the autocorrelations. The max-
imum number of lags can be set in the Autocorrelations Options dialog box.

If you have a series with seasonal effects and need to look at high lags, look at the
autocorrelations alone until you are sure the series is stationary. Then ask for the partials
as well.

New Series

As described in “Automatic Creation of New Series” on p. 12, many Trends procedures
automatically generate new series. This facility can be a great aid—but not always. Pos-
sible difficulties with saving new series include: 

• Trends must read and write the entire file an extra time to add the new series. 

• Your file becomes larger—in some cases, dramatically so—and subsequent process-
ing therefore takes longer. 

• Most of the time, you do not need most of the new series. Merely keeping track of
their names becomes a problem. 

When you use commands in the

Analyze
Time Series �

submenu, it’s a good idea always to open the Save subdialog box and give a moment’s
thought to the creation of new variables. The default for these commands is to add new
variables permanently to your data file. If you are doing preliminary analysis and are not
yet certain of the models you want to use, the Replace existing alternative for new vari-
ables gives you the benefits of residuals and predicted values but does not keep all of
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them around. Once you have settled on a model, you may want to go back into the Save
subdialog box and choose the Add to file alternative. 

General Techniques for Efficiency 

For any iterative procedures in Trends, you may find it useful to: 

1. Relax the convergence criteria for the procedure. These are specified in the Options
dialog box for the specific procedure.

2. Perform exploratory analysis to determine the best model. 

3. Restore the stricter convergence criteria for the final estimation of your coefficients. 

The general point is that some estimation algorithms used in Trends require a lot of pro-
cessing and will take a long time if you use them blindly. Take advantage of the interac-
tive character of Trends. Loosen things up for speed while you are exploring your data,
and then—when you are ready to estimate your final coefficients—exploit the full accu-
racy of the Trends algorithms. 
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Notes on the Applications

Chapter 4 through Chapter 13 contain examples that show you how the different Trends
commands work together in solving real problems. All but one are based on real data,
and all the data are included with your system. You can compare the analyses presented
here with published analyses (cited in the Bibliography) and—if you like—with the re-
sults you get on your own PC. 

• We have not attempted original or profound analysis but rather have tried to show
how the commands in Trends work together in analyzing typical time series data. 

• When repeating a published analysis, we have generally followed the strategy used
by the original author rather than exploring alternatives. Doing so makes it easier
for you to compare the Trends commands and output with the published analysis. 

• We have not attempted to write a textbook in time series analysis. We do try to give
a reliable, intuitive explanation of important techniques such as exponential
smoothing, ARIMA analysis, intervention analysis, weighted least squares, and
two-stage least squares, but our discussion cannot replace more formal training in
time series analysis.

Generally speaking, the applications progress from easier to harder, but you should feel
free to browse through them as they fit your needs. At the end of this chapter, you will
find a table that shows which Trends procedures are used in each chapter. 

Working through the Applications on Your PC 
If you would like to work through the analysis in any of the following chapters, you
will find that the data files were included with your system. If you intend to work
through the applications, open the appropriate data file before beginning each chapter.

The Data Files 

The names of the data files are Trends chapter 4.sav, Trends chapter 5.sav, etc. Each
data file contains one line per observation. Some of the data files contain series that are
not used in the application chapters.

3
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Command Index 
Table 3.1 shows which analytical procedures in the Trends option are used in each ap-
plications chapter. Many of these chapters also illustrate the use of Base system proce-
dures that analyze time series data. Chapter 11 uses the Weighted Least Squares
procedure from the Regression Models option.

Table 3.1 Index of procedures by chapter 

Procedure Chapters

Autoregression 9 
ARIMA 6, 7, 8, 10, 12
Exponential Smoothing 4, 6, 7
Seasonal Decomposition 11
Spectral Plots 13
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An Inventory Problem: Exponential 
Smoothing

In this chapter, we apply the simple, intuitive method known as exponential smoothing
to a series of inventory records. Inventory management is typical of the problems to
which exponential smoothing is appropriate. It often requires the routine forecasting of
many series on a regular basis. With elaborate forecasting techniques, the sheer quan-
tity of calculations would be overwhelming. With exponential smoothing, once you
have determined a satisfactory model, the calculations needed to make forecasts are
simple and fast. 

For a technical discussion of exponential smoothing, see the review article by Gard-
ner (1985). 

The Inventory Data 
Inventory records are a common type of time series. The stock of an item rises and falls,
and you want to make sure it never drops to zero on the one hand, but never rises too
high on the other. And since there is usually some lead time needed to acquire new
stock, you need accurate projections of the next month’s inventory so you can order
new stock in advance. If your forecast is too large, you may order too little and later
have to place a rush order at extra cost. If your forecast is too small, you may order too
much, which ties up your capital in inventory and locks you in to a particular set of
specifications for the item. 

In this chapter, we will analyze a series named amount, which contains daily inven-
tory totals of power supplies used in computer printers. 

Plotting the Series 
The first step in analyzing a time series is to plot it. A plot gives you a general idea of
how the series behaves: 

• Does it have an overall trend (a persistent tendency to increase or decrease over
time)?   

• Does it show seasonality (a cyclical pattern that repeats over and over, typically ev-
ery year)? 

4
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• Does it vary smoothly from one period to the next, or is it choppy? 

• Is there a break or sudden change in the behavior of the series, or does it look much
the same from beginning to end? 

• Is the short-term variation about the same throughout the series? Does short-term
variation increase or decrease with time? With the overall level of the series? 

• Are there outliers—points that are far out of line? (Such points are often due to
unique events, and must be excluded when you search for the process underlying the
series as a whole.) 

To plot a time series, from the menus choose:

Graphs
Sequence...

This opens the Sequence Charts dialog box, as shown in Figure 4.1. A sequence plot
shows the values of one or more numeric variables in the sequential order of the cases.

Highlight the variable amount in the source list and click the W pushbutton to move it into
the Variables list. To obtain a sequence plot, click OK. The result is shown in Figure 4.2.

Figure 4.1 Sequence Charts dialog box
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As you can see from the plot: 

• The series does not show any trend but varies randomly around its mean level. 

• No seasonality is apparent. For daily data, one might expect periods of 7, 30, or 365.
We will see in Chapter 11 how to use the Seasonal Decomposition procedure to
extract the seasonal component of a series. Most of the time, you can tell from the
plot whether or not the series shows periodic variation. 

• The series has a “memory” in the sense that each value tends to be close to the
preceding value. This phenomenon is quite common in time series data and is called
positive autocorrelation. 

Series that show memory or autocorrelation are good candidates for smoothing
techniques. Smoothing techniques emphasize the regularity of a series by removing
some of the random variation. Once you have identified this regularity, you can use it to
make forecasts. 

Smoothing the Series 
The purpose of smoothing a series is to strip away the random fluctuations. This allows
you to capitalize on any pattern that is evident in the observed series and to use that
pattern to predict new values. 

Figure 4.2 Sequence plot 
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 Among the things you might want to consider in predicting the next value in a series
are: 

• The most recent value. Many (perhaps most) time series show positive autocorrela-
tion, which means that each value tends to be positively correlated with the preceding
value. 

• The overall average so far. This is sometimes your best guess when you can’t find
any pattern in the series. 

• The trend. If inventory has been decreasing by 10 units a day, you should adjust your
forecast to reflect this trend. (However, you would expect this trend to level off soon-
er or later—certainly when inventory reached 0.) 

• The seasonal averages. If you predict inventory of toys in the fall, you must take note
of the seasonal patterns that precede and follow Christmas. 

Based on the criteria in the above list, you can see that there are two extreme approaches
to predicting a value that might be taken: 

1. Forget the history of the series and predict that it will hold steady at the most recent
value. This approach is justified when positive serial correlation overwhelms any
prior patterns, as is often true when the time period used is very short. For example,
inventory at 10:31 is likely to be very close to inventory at 10:30, even for toys in
December. 

2. Forget the most recent value and base your prediction on the mean of the series and
any trend or seasonality you can find. This approach makes sense when the time
period is long enough to “wash out” the serial correlation. The most recent value isn’t
much more useful than any other, so you rely on the patterns established in the ob-
served history of the time series—the mean, trend, and seasonality. 

In more typical circumstances, you want to combine these approaches. You want to use
the observed mean, trend, and seasonality, but you want to give extra weight to more
recent observations. This strategy is the basis for a technique called exponential
smoothing. 

 The strategy of giving extra weight to recent observations can be applied to estimates
of the series level, its trend, and its seasonality. In general, recent observations are a
more reliable guide to: 

• Level, if the overall level of a series is changing slowly. 

• Trend, if the trend of a series is changing slowly. 

• Seasonality, if the intensity of seasonal variation is changing. (If the holiday effect is
growing stronger or weaker, you should give extra weight to recent holiday seasons.) 
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Depending on whether or not your series shows trend and seasonality, you can provide
as many as four values to control the relative importance given to recent observations.
All four of these parameters range from 0 to 1:

1. The general parameter, called alpha, controls the weight given to recent observations
in determining the overall level and is used for all series. When alpha = 1, the single
most recent observation is used exclusively; when alpha = 0, old observations count
just as heavily as recent ones. 

2. The trend parameter, gamma, is used only when the series shows a trend. When
gamma is high, the forecast is based on a trend that has been estimated from the most
recent points in the series. When gamma is low, the forecast uses a trend based on the
entire series with all points counting equally. 

3. The seasonality parameter, delta, is used only when the series shows seasonality.
Models with a high delta value estimate seasonality primarily from recent time
points; models with a low delta value estimate seasonality from the entire series with
all points counting equally. 

4. Phi is used in place of gamma when the series shows a trend and that trend is
damped, or dying out. When phi is high, the model responds rapidly to any indica-
tion that the trend is dying out. When phi is low, the estimated damping of the trend
is based on the entire series. 

All four parameters specify how quickly the exponential-smoothing model reacts to
changes in the process that generates the time series. The exponential smoothing algorithm
starts at the beginning of the series and works its way through, one period at a time. At
each step, it takes the most recent value and adjusts its estimate of the mean value of the
series and (if appropriate) its estimates of the trend, seasonality, and damping of the trend.
When the parameters alpha, gamma, delta, and phi are near 0, the estimates are inflexible
and remain about the same until a good deal of evidence accumulates that they need to
change. When the parameters are near 1, the estimates are very flexible and respond to any
indication that the level, trend, seasonality, or damping seem to be changing. 

Estimating the Parameter Values 

You are unlikely to look at a series and guess the value of alpha that fits it best, and less
likely still to guess all the values of all parameters needed for a series with seasonality
and a damped trend. In practice, you must try several values to see which one fits the
series best. Start by determining which parameters are not needed at all. For the inven-
tory series amount, the plots showed no trend (hence gamma and phi are unnecessary)
and no seasonality (hence delta is unnecessary). You need only estimate alpha, the over-
all smoothing parameter. 

You can do this most easily with what is called a “grid search.” When a grid is spec-
ified, SPSS uses a sequence of equally spaced values for alpha and for each value cal-
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culates a measure of how well the predictions agreed with the actual values. The actual
statistic is the sum of squared errors, or SSE. The parameters that produce the smallest
SSE are “best” for the series. By default, SPSS displays the 10 best-fitting sets of pa-
rameters and the SSE associated with each of them.

The default grid values for alpha start with 0 and end with 1, incrementing by 0.1.
Thus, the default grid generates 11 models, with values of alpha ranging from 0, 0.1, 0.2,
and so on up to 1. If you specify a grid search for more than one parameter, a model is
evaluated for each combination of values across all parameters. When your model con-
tains trend and seasonality, using the default grid for each parameter will smooth the
series and evaluate the SSE several hundred times for each series analyzed! For this rea-
son, you should be careful not to use more parameters than you need. 

Estimating a Simple Model 

Let’s see how all this works. From the menus choose:

Analyze
Time Series �

Exponential Smoothing...

The Exponential Smoothing dialog box opens, as shown in Figure 4.3.

Select amount from the source list and move it into the Variables list. Since this series
showed no trend and no seasonal variation, leave Simple selected in the Model group.
Click Parameters to indicate that you want a grid search for the best value of the alpha
parameter. The Exponential Smoothing Parameters dialog box is shown in Figure 4.4.

Figure 4.3 Exponential Smoothing dialog box
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This dialog box has a group of controls for each possible parameter and a separate group
in case you want to specify an initial value or an initial trend parameter. (Most of the time,
you can let SPSS determine the initial values.) Since the simple model was selected in the
main dialog box, only one group of parameter controls is active—those for the general
smoothing parameter, alpha. Click the Grid Search alternative. To accept the default grid
from 0 to 1 by increments of 0.1, click Continue.

Back at the main Exponential Smoothing dialog box, click OK. Figure 4.5 shows the
results.

 

Figure 4.4 Exponential Smoothing Parameters dialog box

Figure 4.5 Exponential smoothing, no trend or seasonality 
Results of EXSMOOTH procedure for Variable AMOUNT                               
MODEL=NN (No trend, no seasonality)                                             
                                                  
 Initial values:       Series            Trend                                  
                   1006.90604         Not used                                  
                                                  
DFE = 148.                                                                      
                                                  
The 10 smallest SSE’s are:      Alpha              SSE                          
                             .8000000     17291.25233                           
                             .9000000     17435.96280                           
                             .7000000     17470.24396                           
                             1.000000     17879.19675                           
                             .6000000     18033.12401                           
                             .5000000     19089.28926                           
                             .4000000     20820.58960                           
                             .3000000     23510.67242                           
                             .2000000     27541.47917                           
                             .1000000     32919.01373                           
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When you do a grid search for the best smoothing parameters, Trends displays the best
parameter value (or combinations of parameter values when your model includes trend
or seasonality). You can see that the SSE measure of error is lowest when alpha is 0.8.
This is a high value, indicating that inventory is best predicted when the most recent ob-
servation is weighted quite heavily in comparison to older observations. (Today’s inven-
tory is probably close to yesterday’s.) 

As shown in Figure 4.6, SPSS has added two new series to your file. The series fit_1
contains the predicted values from the exponential smoothing, and err_1 contains the er-
rors. These new variables are automatically assigned variable labels describing their
type, the series and procedure from which they were generated, and other information
including the parameter (A 0.8). 

Plotting the Results 

Now you can use the Sequence Charts procedure to compare the original series amount
with the forecasts generated by Exponential Smoothing. As before, from the menus
choose: 

Graphs
Sequence...

This time, move both amount and the new smoothed series fit_1 into the Variables list
and click OK. The resulting plot is shown in Figure 4.7. The original series amount and
the forecast series fit_1 both appear. The legend indicates the line pattern used for each;
you can change these patterns if you wish in the Chart Editor. As you can see, the fore-
casts track the original series closely. They are always a bit “behind” when the original
series changes rapidly, but they stay with it surprisingly well. This is because the Expo-
nential Smoothing algorithm bases each forecast on all the preceding data, and because
an alpha value of 0.8 allows just the right flexibility in the forecasts. 

Figure 4.6 FIT and ERROR series from exponential smoothing
                                                  
The following new variables are being created:                                  
                                                  
  NAME        LABEL                                                             
                                                  
  FIT_1       Fit for AMOUNT from EXSMOOTH, MOD_4 NN A .80                      
  ERR_1       Error for AMOUNT from EXSMOOTH, MOD_4 NN A .80                    
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Plotting Residuals 

The err_1 variable created by the Exponential Smoothing procedure contains the resid-
ual, or error. The residual is simply the difference between the actual value and the pre-
diction. It’s always a good idea to plot residuals. From the menus choose

Graphs
Sequence...

Move err_1 into the Variables list and click OK. Figure 4.8 shows the residual plot. 

Figure 4.7 Predictions from exponential smoothing

Figure 4.8 Residuals from exponential smoothing
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The universal rule for residuals is that they should be randomly distributed, without any
discernible pattern. If the residuals from any model show a pattern, the model is inade-
quate. The residuals in Figure 4.8 show no pattern. 

Using the Wrong Parameter Value 

To see the importance of finding a good value for alpha, you can force alpha to equal 0.1
and plot the results. Select the Exponential Smoothing command from the menus again,
make sure that amount is in the Variables list and that the Simple model is selected, and
click Parameters. This time, select the Value alternative for the general parameter, and
specify 0.1 as the value for alpha. Click Continue, and then from the main dialog box,
click OK to smooth the amount series with this inappropriate value for alpha. Figure 4.9
shows a plot of the amount with the fitted values from this analysis.

 

The low value of alpha has made the predictions inflexible. They stay close to the center
(the mean) and are unable to respond quickly to rapid fluctuations in the data. The opti-
mal value of alpha is a characteristic of each particular series. You must find it empirical-
ly. 

Forecasting with Exponential Smoothing 

The Exponential Smoothing procedure is best used for short-term forecasting, or what
are known as “one-period-ahead” or one-step-ahead forecasts. That is what it is de-
signed to do. When you choose the right values for its parameters, it extracts a lot of use-
ful information from the most recent observation, somewhat less from the next-most-

Figure 4.9 Exponential smoothing with a bad alpha 
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recent, and so on, and usually makes a good forecast. As it moves into the future, how-
ever, making n-step-ahead forecasts, it quickly runs out of the recent information on
which it thrives. 

Generally speaking: 

• You get one-step-ahead forecasts in the period for which you have data because data
from the previous observation(s) are available for use in making the forecasts. 

• You get n-step-ahead forecasts if you ask SPSS to predict past the end of your data, cre-
ating observations for which data from the previous observation(s) are not available. 

To see the result of predicting far beyond the available data, recall the Exponential
Smoothing dialog box. Select amount and the Simple model, if they are not already
selected. Since you already know that an alpha of 0.8 works best for this series, click
Parameters, choose the Value alternative for alpha, and specify 0.8 as the desired value.
(A grid search would only waste time, since the series hasn’t changed. The result would
be the same.) Click Continue to return to the Exponential Smoothing dialog box.

To predict cases past the end of the file, click Save, select the Predict through option,
and enter 180 into the Observation text box. This adds observations 150 through 180 to
the original series, which contained 149 observations.

When you execute the procedure and plot the resulting fit_3 series alongside amount,
you see the result shown in Figure 4.10. 

  

The forecasts from period 150 on remain “stuck” at their last value. With this high value
of alpha, the Exponential Smoothing algorithm relies heavily on recent data, and the
most recent data point available remains (and will always remain) the one at observation

Figure 4.10 Long-range forecasting with Exponential Smoothing
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149. With other parameters, the algorithm may behave differently, but its predictions in-
evitably get worse as it runs out of available data. 

When to Use Exponential Smoothing 
Exponential smoothing is not based on a theoretical understanding of the data. It fore-
casts one point at a time, adjusting its forecasts as new data come in. It is often a useful
technique, however, particularly when: 

• You are satisfied with forecasting one period at a time. 

• You are routinely forecasting many series over and over (as is often the case with in-
ventory data). 

Once you have determined the best parameters for a series, exponential smoothing is
computationally inexpensive. This makes a difference when you forecast next month’s
inventory for a hundred different items. If the model ceases to perform well and you
have to do frequent grid searches for the best parameters, the computational require-
ments are much heavier. 

How to Use Exponential Smoothing
The Exponential Smoothing procedure smooths one or more series by predicting each
value using the overall series mean, with recent observations given extra weight as de-
termined by the general parameter alpha. In models with seasonality, trend, or damped
trend, coefficients are similarly estimated case-by-case using a combination of overall
series values and values from recent cases, as determined by the parameters for season-
ality, trend, or damped trend.

The minimum specification is one or more numeric variables to smooth.

To apply Exponential Smoothing to your data, from the menus choose:

Analyze
Time Series �

Exponential Smoothing...

This opens the Exponential Smoothing dialog box, as shown in Figure 4.11.
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The numeric variables in your data file appear in the source variable list. Select one
or more variables and move them into the Variables list. To smooth the series using
the default simple model with the default value of 0.1 for the smoothing parameter al-
pha, click OK.

Model. Four model types are available in the Model group. You can select one model: 

� Simple. The series has no overall trend and shows no seasonal variation.

� Holt. The series has a linear trend but shows no seasonal variation.

� Winters. The series has a linear trend and shows multiplicative seasonal variation.
You cannot select this option unless you have defined seasonality with the Define
Dates command. 

� Custom. You can specify the form of the trend component and the way in which the
seasonal component is applied, as described below.

Seasonal Factors. For models with seasonal components (the Winters model and any cus-
tom model for which you specify a seasonal component), you can optionally move a
variable containing seasonal factors into the Seasonal Factors box. The Seasonal De-
composition procedure creates such variables. 

Parameters

Usually you will either request a grid search for the best parameter values or specify par-
ticular values for the parameters. To do so, click Parameters in the Exponential Smooth-

Figure 4.11  Exponential Smoothing dialog box
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ing dialog box. This opens the Exponential Smoothing Parameters dialog box, as shown
in Figure 4.12. 

This dialog box has four control groups for model parameters and one for initial values.
Parameter controls are disabled if they do not apply to the model specified in the main
Exponential Smoothing dialog box. The parameter control groups are:

General (Alpha). Alpha controls the relative weight given to recent observations, as op-
posed to the overall series mean. It ranges from 0 to 1, with values near 1 giving higher
weight to recent values. These controls are always available.

Seasonal (Delta). Delta controls the relative weight given to recent observations, as op-
posed to the overall series, in estimating the present seasonality. It ranges from 0 to 1,
with values near 1 giving higher weight to recent values. These controls are available
for the Winters model and for custom models with a seasonal component.

Trend (Gamma). Gamma controls the relative weight given to recent observations, as op-
posed to the overall series, in estimating the present series trend. It ranges from 0 to 1,
with values near 1 giving higher weight to recent values. These controls are available
for the Holt and Winters models, and for custom models with a linear or exponential
trend component.

Trend Modification (Phi). Phi controls the rate at which a trend is “damped,” or reduced in
magnitude over time. It ranges from 0 to 1 (but cannot equal 1), with values near 1 rep-
resenting more gradual damping. These controls are available for custom models with a
damped trend component.

Figure 4.12 Exponential Smoothing Parameters dialog box 
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For each control group, you can choose between two alternatives:

� Value. The parameter is assigned a single value. Enter the value after selecting this
alternative. It must be between 0 and 1; the value of phi should not equal 1.

� Grid Search. The parameter is assigned a starting value in the Start text box, an incre-
ment value in the By text box, and an ending value in the Stop text box. Enter these
values after selecting this alternative. The ending value must be greater than the start-
ing value, and the increment value must be less than their difference.

If you specify a grid search, smoothing is carried out for each value of the parameter. If
you specify grid searches for more than one parameter, smoothing is carried out for each
combination of parameter values. You can use the following to control the amount of
output displayed:

� Display only 10 best models for grid search. When this is selected, the parameter val-
ue(s) and sum of squared errors (SSE) are displayed only for the 10 parameter com-
binations with the lowest SSE, regardless of the number of parameter combinations
tested. If this option is not selected, all tested parameter combinations are displayed.

Initial Values. You can specify the starting and trend values used in smoothing the series
by selecting one of the following: 

� Automatic. SPSS calculates suitable starting and trend values from the data. This is
usually desirable.

� Custom. If you select Custom, enter a number in the Starting text box and, for models
with a trend, a number in the Trend text box. Poor choice of initial values can result
in an inferior solution.

Saving Predicted Values and Residuals

To save smoothed values and residuals as new variables, or to produce forecasts past the
end of your data, click Save in the Exponential Smoothing dialog box. This opens the
Exponential Smoothing Save dialog box, as shown in Figure 4.13. The current estima-
tion period is shown at the bottom of this dialog box.
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Create Variables. To control the creation of new variables, you can choose one of these
alternatives:

� Add to file. The new series created by Exponential Smoothing are saved as regular
variables in your working data file. Variable names are formed from a three-letter
prefix, an underscore, and a number. This is the default.

� Replace existing. The new series created by Exponential Smoothing are saved as tem-
porary variables in the working data file, and any existing temporary variables creat-
ed by Trends commands are dropped. Variable names are formed from a three-letter
prefix, a pound sign (#), and a number.

� Do not create. The new series are not added to the working data file. 

Predict Cases. If you select either Add to file or Replace existing above, you can specify
a forecast period:

� Predict from estimation period through last case. Predicts values for all cases from the
estimation period through the end of the file but does not create new cases. If you are
analyzing a range of cases that starts after the beginning of the file, cases prior to that
range are not predicted. The estimation period, displayed at the bottom of this dialog
box, is defined in the Range dialog box available through the Select Cases option on
the Data menu. If no estimation period has been defined, all cases are used to predict
values. This is the default.

� Predict through. Predicts values through the specified date, time, or observation num-
ber, based on the cases in the estimation period. This can be used to forecast values
beyond the last case in the time series. The text boxes that are available for specifying
the end of the prediction period depend on the currently defined date variables. (Use

Figure 4.13 Exponential Smoothing Save dialog box
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the Define Dates option on the Data menu to create date variables.) If there are no
defined date variables, you can specify the ending observation (case) number.

New cases created as forecasts have missing values for all series in the original data file
and for new series (such as residuals) whose definition requires an existing value. For
Exponential Smoothing, only the smoothed series fit has valid values past the end of the
original data.

Custom Models

If you select Custom in the Model group in the Exponential Smoothing dialog box, you
must click the Custom pushbutton to specify your custom model. This opens the Expo-
nential Smoothing Custom Model dialog box, as shown in Figure 4.14.

Select an alternative from the Trend Component group:

� None. The series has no overall trend.

� Linear. The mean level of the series increases or decreases linearly with time.

� Exponential. The mean level of the series increases or decreases exponentially with
time.

� Damped. The mean level of the series increases or decreases with time, but the rate of
change declines.

If you have defined the periodicity of your data with Define Dates on the Data menu,
you can also specify a Seasonal Component:

� None. The series has no variation at the seasonal periodicity specified in Define
Dates.

� Additive. The series has seasonal variation that is additive—the magnitude of seasonal
variation does not depend on the overall level of the series.

Figure 4.14 Exponential Smoothing Custom Model dialog box
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� Multiplicative. The series has seasonal variation that is multiplicative—the magnitude
of seasonal variation is proportional to the overall level of the series.

The Holt model in the main Exponential Smoothing dialog box is equivalent to selecting
Linear for Trend Component and None for Seasonal Component in the Custom dialog
box. The Winters model is equivalent to selecting Linear for Trend Component and Mul-
tiplicative for Seasonal Component. 

Additional Features Available with Command Syntax

You can customize your exponential smoothing if you paste your selections to a syntax
window and edit the resulting EXSMOOTH command syntax. The additional feature is:

• Seasonal factors can be specified numerically by providing as many additive or mul-
tiplicative numbers as the seasonal periodicity.

See the Syntax Reference section of this manual for command syntax rules and for com-
plete EXSMOOTH command syntax.
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Forecasting Sales with a Leading 
Indicator: Regression Forecasting

Methods based on regression analysis are widely applied to time series and forecasting.
In this chapter, we apply two different regression-based techniques to the common
problem of forecasting sales. 

The Sales Data 
 One of the examples in Box and Jenkins’ classic book Time Series Analysis: Forecast-
ing and Control, called “Series M,” studies sales data with a leading indicator. A lead-
ing indicator is a series that helps predict the values of another series one or more time
periods later. 

In this chapter, we will examine the sales data using two different regression-based
methods. First we will use the Curve Estimation procedure to try to extrapolate the
series; then we will see how to use the leading indicator and the Linear Regression pro-
cedure to get better predictions. (Both of these procedures are in the Base system.)

This example will be the first of several that illustrate the important technique of
dividing a time series into two periods: a historical or estimation period and a valida-
tion period. Data from the validation period are sometimes called the hold-out sam-
ple. As mentioned in Chapter 2, a common technique is to split a series in this way,
develop a model or models using only the data in the historical period, and then apply
the models to the data in the validation period as a test. 

Plotting the Sales Data 

We will use the first 100 points in the sales series as the historical period for this anal-
ysis. From the menus choose:

Data
Select Cases...

This opens the Select Cases dialog box, as shown in Figure 5.1.

5
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Select Based on time or case range and then click Range. This opens the Select Cases
Range dialog box, as shown in Figure 5.2.

If you have defined date variables for your data, this dialog box contains fields in which
you can specify a range of cases by date. Since no date variables are defined for this file,
the range is specified by observation number. Type 1 under First Case, tab to Last Case,
and type 100 there. Click Continue to return to the Select Cases dialog box. Make sure
that Filtered is specified under Unselected Cases Are, so that cases after 100 will be

Figure 5.1 Select Cases dialog box

Figure 5.2  Select Cases Range dialog box
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available later for use in the validation period. Click OK to establish the historical period
for the next few commands.

Now let’s take a look at the series. From the menus choose:

Graphs
Sequence...

This opens the familiar Sequence Charts dialog box. Move sales into the Variables list
and click OK. The plot of sales is shown in Figure 5.3.

Extrapolation with Curve Estimation
Over the first 100 points, the sales series shows an irregular increase, particularly at the
end. Like the inventory series in Chapter 4, it is positively autocorrelated—each point is
close to the previous point, as if the series had a memory. A straightforward way to fore-
cast such a series is to draw a simple curve that passes close to the existing points and
extend the curve to make forecasts. 

The Curve Estimation procedure does just that—it determines the best way to draw
any of about a dozen simple types of curves through your data and reports how well each
curve fits. It also generates four new time series showing the fitted value, or prediction;
the error; and upper and lower confidence limits around the fitted value. You can plot
these new series and analyze them to see how well the model works. 

Figure 5.3  Sales data (historical period) 
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Fitting Quadratic and Cubic Curves 

It is unclear what type of curve would best fit the series plotted in Figure 5.3. We will
estimate coefficients for the quadratic and cubic curves from the first 100 points in the
series (the historical period established above is still in effect). We will then calculate
forecasts based on these curves through the validation period and compare the two
models. 

Curve Estimation is one of the family of related techniques known as regression
analysis. To fit the quadratic curve to the sales series, from the menus choose:

Analyze
Regression �

Curve Estimation...

This opens the Curve Estimation dialog box, as shown in Figure 5.4.

Select sales and move it into the Dependent(s) list.
In the Independent group, select the Time alternative. In the Models group, deselect

Linear, and select the Quadratic and Cubic models. To compare the predictions of these
models with the sales series itself, click Save. This opens the Curve Estimation Save
dialog box, as shown in Figure 5.5.

Figure 5.4 Curve Estimation dialog box
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We will examine the predictions from the quadratic and cubic models first, so select
Predicted values in the Save Variables group. The estimation period, from observation
1 through observation 100, is displayed at the bottom of this dialog box. To get predicted
values through the last case in the data file, leave the default Predict from estimation
period through last case selected in the Predict Cases group. Click Continue to return
to the main Curve Estimation dialog box. Make sure both Include constant in equation
and Plot models are still selected. Then click OK to carry out the analysis.

First look at the statistical summary displayed in the Viewer (Figure 5.6).

The quadratic model is summarized on the first line, the line with QUA in the method
(Mth) column. The coefficients of the equation appear in the columns labeled b0 (the
constant), b1 (the linear term), and b2 (the quadratic term). The best-fitting quadratic
curve is given by 

where case is the sequential case number. The quadratic term is quite small; this qua-
dratic curve is almost a straight line. Now look at the cubic model summarized on the

Figure 5.5 Curve Estimation Save dialog box

Figure 5.6 Quadratic and cubic curve estimation
  Dependent Mth   Rsq  d.f.       F  Sigf      b0      b1      b2      b3

   SALES    QUA  .462    97   41.73  .000 206.517   .0593   .0021
   SALES    CUB  .877    96  227.80  .000 185.507  2.4952  -.0579   .0004

The following new variables are being created:

  Name        Label

  FIT_1       Fit for SALES from CURVEFIT, MOD_2 QUADRATIC
  FIT_2       Fit for SALES from CURVEFIT, MOD_2 CUBIC

sales 206.517 0.0593 case×( ) 0.0021 case2×( )+ +=
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next line, with CUB in the method column. In addition to b0, b1, and b2, this model has
a b3 coefficient for the cubic term. The cubic coefficient b3 is quite small. This makes
sense, because the cubed values of the observation number (which are multiplied by b3)
range from 1 to 1,000,000. When multiplied by a million, even a coefficient of 0.0004
makes a difference of 400 in the predicted sales. 

The best cubic equation, then, is: 

Which model is best? The R2 for the cubic equation is larger, but that is a foregone con-
clusion. A quadratic equation cannot have a larger R2 than a cubic equation estimated
with the same data. The cubic equation can always do as well as the quadratic equation
by setting b3 to 0, and for real data there is sure to be some value of b3 that does even
better. In general, you can always obtain a better fit by using a more complex model spec-
ification, but that does not always mean the complex model is more appropriate. A much
better comparison is the performance of the two models during the validation period. 

Plotting the Curves 

The Curve Estimation procedure generated predicted values for each of the two models.
As reported in the output in Figure 5.6, the new variables are named fit_1 and fit_2. Fig-
ure 5.7 shows a sequence plot of these predicted values with the original series.

During the historical period (through observation 100), the predictions from the cu-
bic model stay closer to sales than the predictions from the quadratic model. The more
complex cubic model seems to work better. In the validation period, however, it wan-
ders away from the actual sales. 

sales 185.507 2.4952 case×( ) 0.0579 case2×( )– 0.0004 case3×( )+ +=

Figure 5.7 Sequence plot of predicted values with sales
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Unlimited Growth? 

The cubic curve will continue to increase rapidly. Although you cannot see it yet, the
quadratic curve will do the same, less rapidly. In the long run, it is unlikely that sales
could keep up with either. Be wary of n-step-ahead forecasts based on models that show
exploding growth—sooner or later the real data will level off. Most of the models in the
Curve Estimation procedure, including the quadratic model and even the linear model,
suffer from this problem when extended too far. 

Regression with a Leading Indicator 
The Curve Estimation procedure performs regression analysis, which is discussed in de-
tail in the SPSS Base User’s Guide. We have been using time as the predictor (indepen-
dent) variable. Used in this way, Curve Estimation finds a curve that fits the shape of a
time series plot, without regard to why the plot has that shape. If you have another series,
an indicator, that does a good job of predicting the series you are interested in, you can
get much better forecasts. To be of practical use, the indicator must be a leading indi-
cator. That is, it must predict future levels of your series. 

The Leading Indicator 

Box and Jenkins’ sales data contain an indicator series known to be a good predictor of
sales at some later date. (They do not specify what it is; we shall call it index.) To use
it, you must first determine how far it leads the sales series. If this month’s index pre-
dicts sales four months from now, you may not get very far trying to predict next
month’s sales. 

 Sometimes you know from experience how far one series leads another. When you
do not, you can use the Cross-Correlations procedure to look at the cross-correlation
function, or CCF. The cross-correlation function shows the correlation between two
series at the same time and also with each series leading by one or more lags. By inspect-
ing the CCF between two series, you can often see the lag at which they are most highly
correlated. 

 Stationary and Nonstationary Series 

You should use the Cross-Correlations procedure only on series that are stationary. A
series is stationary if its mean and variance stay about the same over the length of the
series. (Stationary series play a very important role in time series analysis. We shall dis-
cuss them more in Chapter 6 and throughout the remainder of the book.) Looking at the
plot in Figure 5.3, you can see that the sales series is not stationary. It begins around
200, drifts up between 210 and 220, wanders there for a while, and eventually ends up
at about 250. 
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Differencing 

The most effective way to make a drifting series stationary is to difference it. Taking
differences simply means replacing the original series by the differences between adja-
cent values in the original series. 

For example, Table 5.1 shows the first few values of the sales series and their differ-
ences. The second differences are the differences of the differences. Notice that a differ-
enced series always begins with as many missing values as the order of differencing. 

Differencing a nonstationary series once, or occasionally twice, usually makes it station-
ary. Since the differencing operation is so useful in time series analysis, many of the
commands used for analyzing time series can do it on the fly, analyzing the differences
rather than the original series. The Cross-Correlations procedure is one that offers this
option. 

The Cross-Correlations Procedure

The Cross-Correlations procedure calculates cross-correlation coefficients. It is simple
to use. From the menus choose:

Graphs
Time Series �

Cross-Correlations...

This opens the Cross-Correlations dialog box, as shown in Figure 5.8.

Table 5.1 Sales and differences 

sales First differencing Second differencing

200.1 (not defined) (not defined) 
199.5 −0.6 (not defined) 
199.4 −0.1 0.5 
198.9 −0.5 −0.4 
199.0 0.1 0.6 
200.2 1.2 1.1 
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Select both index and sales and move them into the Variables list. Since the series are
not stationary, select Difference in the Transform group. Leave the degree of differenc-
ing at 1 and click OK. The resulting plot is shown in Figure 5.9.

As shown in the plot, most of the correlations are small. There is a fairly large negative
correlation of −0.345 at lag 2, and a very large positive correlation of 0.715 at lag 3. Note
that the plot displays correlations at both negative and positive lags. A negative lag in-

Figure 5.8  Cross-Correlations dialog box

Figure 5.9 Cross-correlations of index and sales
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dicates that the first series specified, index, follows the second series, sales. A positive
lag indicates that the first series leads the second series. We conclude that the leading
indicator index really is a leading indicator and that it works best at predicting the value
of sales three periods later. 

Creating the Indicator 

The observations in the data file have a value for sales and a value for index, both mea-
sured at the same time. However, to predict sales you need to generate a series where
each observation contains the value of the index from three periods ago—the value that
you know is a good predictor. In other words, you want to lag the indicator by three pe-
riods so that each value of sales is associated with the value of index from three periods
before it. Trends performs this operation easily. From the menus choose:

Transform
Create Time Series...

The Create Time Series dialog box is shown in Figure 5.10.

Select index and press W. Trends then generates the following assignment statement,
which appears in the New Variable(s) list:

index_1=DIFF(index,1)

If you clicked OK, this expression would create a new variable named index_1, contain-
ing the differences for series index. Trends chooses differencing by default, since this is
one of the most common time series transformations. To use other transformations, you
use the controls in the Name and Function group:

Figure 5.10 Create Time Series dialog box
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• Highlight the contents of the Name text box (index_1) and type a name that you want
to replace it. In the rest of this chapter, we will use the name lead3ind, since the new
series is going to be a leading indicator with a lag of three cases.

� Choose the Lag function from the Function drop-down list. Since index leads the
series of interest, a lagged copy of index will be correlated with that series.

• The Order text box shows a value of 1. Highlight this and type 3 to lag the value of
index by three cases.

• Click Change. The New Variables list should now contain:

lead3ind=LAG(index,3)

• Click OK to create the new time series. 

If you go to the Data Editor, you will see a new column containing the new variable
lead3ind. The first three observations will have a period, representing a missing value,
since the file lacks information about the index prior to observation 1. Other observa-
tions will equal the value of index three rows higher. 

Simple Regression 

The Linear Regression procedure, which is part of the Base system, can be used to gen-
erate regression predictions. Since the historical period defined above is still in effect,
you can proceed by choosing the following from the menus:

Analyze
Regression �

Linear...

This opens the Linear Regression dialog box, as shown in Figure 5.11.
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Move sales into the Dependent box and lead3ind into the Independent(s) list, and click
OK. The results are shown in Figure 5.12.

The regression coefficients in the column labeled B show that the best prediction equa-
tion is: 

Linear Regression displays other statistics too—standard errors, t tests, R2 (not shown),
and an analysis of variance table. These statistics from Linear Regression are often not
valid in time series analysis because the assumptions of ordinary least-squares regres-
sion analysis sometimes do not hold. 

Figure 5.11 Linear Regression dialog box

Figure 5.12  Linear regression with leading indicator 
Analysis of Variance                                                            
                    DF      Sum of Squares      Mean Square                     
Regression           1         11238.47698      11238.47698                     
Residual            95          1380.93622         14.53617                     
                                                  
F =     773.13876       Signif F =  .0000                                       
                                                  
                                                  
------------------ Variables in the Equation ------------------                 
                                                  
Variable              B        SE B       Beta         T  Sig T                 
                                                  
LEAD3IND      14.685254     .528144    .943700    27.805  .0000                 
(Constant)    54.406312    5.861806                9.281  .0000                 
                                                  
                                                  
End Block Number   1   All requested variables entered.                         

sales 54.4 14.7 lead3ind×( )+=
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 Regression Assumptions 

One of the assumptions made in ordinary regression analysis is that the residuals or er-
rors from the regression are uncorrelated among themselves. The most common cause
of autocorrelated errors is failure to include in the equation an important explanatory
variable which itself is autocorrelated. Because of the difficulty of including all the im-
portant explanatory variables, time series regression frequently violates the assumption
of uncorrelated errors. When this happens, the significance levels and goodness-of-fit
statistics reported by Linear Regression are unreliable. You will see in later chapters
how to detect and measure autocorrelation in residuals and how to use the Trends com-
mand Autoregression, which corrects for autocorrelated residuals. 

You can, however, use the regression equation to make forecasts on the basis of a
leading indicator. The regression coefficients themselves are not biased by the autocor-
related errors, and Linear Regression requires much less processing than Autoregres-
sion. Of course, you need to know the values of your leading indicator. If you plan to
forecast a dependent series value for which a leading indicator does not exist, you must
first forecast the indicator and then use it to help forecast your series. 

Forecasts from Linear Regression 

The Linear Regression procedure is able to create new series containing predictions and
residuals, but it does so only for the observations that it analyzes. To make forecasts for
both the historical and validation sample periods, you must first compute the predicted
values yourself from the regression equation. This is easy to do with the Compute pro-
cedure on the Transform menu. From the menus choose: 

Transform
Compute...

In the Compute Variable dialog box, type predict into the Target Variable text box. Click
in the Numeric Expression text box and type 54.4 + 14.7*lead3ind. (If you like, you can
click on buttons in the dialog box to build this expression. Typing is usually faster,
though.) Click OK to compute the new variable predict.

Now you can plot the new series predict along with the original series sales. From
the menus choose:

Data
Select Cases...

and select All cases. Figure 5.13 shows the plot. 
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The forecasts look pretty good. In the validation period (past case 100), the forecasts are
consistently low but do continue to track the sales series reasonably well. 

Figure 5.13 Linear regression forecasts 
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A Quality-Control Chart: Introduction 
to ARIMA

Quality control in manufacturing offers an application of time-series methods in which
the object is to determine if and when random fluctuations exceed their usual levels. A
certain amount of variation is inevitable in production processes, but when excessive
variation occurs, you suspect a problem that can be corrected. If you do not catch a
problem quickly, you will produce defective products, but if you stop the line for every
random variation that occurs, your plant will be paralyzed. 

Various types of control charts such as the X-bar and range chart are commonly
used to provide an approximate answer to the question of whether random variation is
exceeding its usual bounds. Trends lets you derive a more accurate model for the ran-
dom variation in your data so that your control chart will be more reliable. 

The Quality-Control Data 
The quality-control series used here consists of print-quality scores taken at regular in-
tervals at a plant that manufactures computer printers. Excessively high or low scores
indicate something is amiss with the production process. 

Plotting the Series 

To build a model of the typical variation in the print-quality scores, you begin by plot-
ting the series during a period of normal operation. Figure 6.1 shows the plot. The anal-
ysis has been restricted to the first 100 points with the Select Cases Range dialog box
available through the Select Cases option on the Data menu. As you can see in the plot,
the series shows neither trend nor seasonality. 

6
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Exponential Smoothing 

If you use exponential smoothing on this series, you find that the best-fitting value of
alpha is 0 (Figure 6.2). To verify this, from the menus choose:

Analyze
Time Series �

Exponential Smoothing...

This opens the Exponential Smoothing dialog box. As in Chapter 4, move score into the
Variables list. Leaving the model set at Simple, click Parameters and request a grid
search for alpha. Click Continue to return to the main Exponential Smoothing dialog
box, and click Save. From the Create Variables group, select Do not create, since the
purpose here is not to create a smoothed series.

Click Continue again, and then click OK to carry out the exponential smoothing. The
results are shown in Figure 6.2.

Figure 6.1  Quality-control data 
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With alpha=0, exponential smoothing does not use information from the most recent ob-
servation in its forecasts. It simply predicts the overall mean, and hence is of little use.
You need a more sophisticated modeling technique for this series: ARIMA. 

ARIMA Models: An Overview 
ARIMA models are flexible and widely used in time series analysis. ARIMA stands for
AutoRegressive Integrated Moving Average, after the three components of the general
ARIMA model. These “Box-Jenkins” models (after Box and Jenkins, 1976) work well for
a large variety of time series. The methods used to solve for the parameters of ARIMA
models require quite a lot of computation; for practical use, you need computer software
such as Trends. 

The methods used in identifying, estimating, and diagnosing ARIMA models are
quite involved. If you are going to use ARIMA, you should read one of the standard texts
on the subject, such as Box and Jenkins (1976) or McCleary and Hay (1980). In this sec-
tion, we give only a brief overview of ARIMA modeling. 

ARIMA models combine as many as three types of processes: autoregression (AR);
differencing to strip off the integration (I) of the series; and moving averages (MA). All
three are based on the simple concept of random disturbances or shocks. Between two
observations in a series, a disturbance occurs that somehow affects the level of the series.
These disturbances can be mathematically described by ARIMA models. Each of the three
types of processes has its own characteristic way of responding to a random disturbance. 

The most general ARIMA model involves all three processes. Each is described by
a small integer. The general model, neglecting seasonality, is traditionally written as
ARIMA(p,d,q), where p is the order of autoregression, d is the degree of differencing,
and q is the order of moving average involved. Although they are related, each aspect of
the model can be examined separately. 

Figure 6.2 Exponential smoothing of quality data 
Results of EXSMOOTH procedure for Variable SCORE                                
MODEL= NN (No trend, no seasonality)                                            
                                                  
 Initial values:       Series            Trend                                  
                   2200.21000         Not used                                  
                                                  
DFE = 99.                                                                       
                                                  
The 10 smallest SSE’s are:      Alpha             SSE                           
                             .0000000     16640.59000                           
                             .1000000     18371.71939                           
                             .2000000     20283.01731                           
                             .3000000     22425.62140                           
                             .4000000     24849.88356                           
                             .5000000     27609.29659                           
                             .6000000     30766.92829                           
                             .7000000     34400.65016                           
                             .8000000     38608.21333                           
                             .9000000     43513.74357                           



56 Chapter 6

Autoregression 

The first of the three processes included in ARIMA models is autoregression. In an au-
toregressive process, each value in a series is a linear function of the preceding value or
values. In a first-order autoregressive process, only the single preceding value is used;
in a second-order process, the two preceding values are used; and so on. These processes
are commonly indicated by the notation AR(n), where the number in parentheses indi-
cates the order. Thus, AR(1) is a first-order autoregressive process, where: 

The coefficient Φ is estimated from the observed series and indicates how strongly each
value depends on the preceding value. Since the order of autoregression is the first ARI-
MA parameter, an AR(n) model is the same as an ARIMA(n,0,0) model. 

Conceptually, an autoregressive process is one with a “memory,” in the sense that
each value is correlated with all preceding values. In an AR(1) process, the current value
is a function of the preceding value, which is a function of the one preceding it, and so
on. Thus, each shock or disturbance to the system has a diminishing effect on all subse-
quent time periods. When the coefficient Φ is greater than –1 and less than +1, as is usu-
ally the case, the influence of earlier observations dies out exponentially. (In this
respect, autoregressive forecasts are similar to those made with exponential smoothing.
The algorithm used in ARIMA is quite different, however, from that used in exponential
smoothing.) 

Differencing 

Time series often reflect the cumulative effect of some process. The process is respon-
sible for changes in the observed level of the series but is not responsible for the level
itself. Inventory levels, for example, are not determined by receipts and sales in a single
period. Those activities cause changes in inventory levels. The levels themselves are the
cumulative sum of the changes in each period. 

 A series that measures the cumulative effect of something is called integrated. In
the long term, the average level of an integrated series might not change, but in the short
term values can wander quite far from the average level purely by chance. You can study
an integrated series by looking at the changes, or differences, from one observation to
the next. When a series wanders, the difference from one observation to the next is often
small. Thus, the differences of even a wandering series often remain fairly constant.
This steadiness, or stationarity, of the differences is highly desirable from a statistical
point of view. 

The standard shorthand for integrated models, or models that need to be differenced,
is I(1) or ARIMA(0,1,0). Occasionally you will need to look at differences of the differ-
ences; such models are termed I(2) or ARIMA(0,2,0). 

Valuet disturbancet Φ Valuet 1–×+=
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One way of looking at an I(1) process is that it has a perfect memory of the previous
value—but only the previous value. Except for random fluctuations, each value equals
the previous value. This type of I(1) process is often called a random walk because each
value is a (random) step away from the previous value. You can also think of an I(1) or
ARIMA(0,1,0) model as an autoregressive model—AR(1) or ARIMA(1,0,0)—with a
regression coefficient Φ of 1.0. It is always easier to look at differences than to work
with regression coefficients near 1.0. 

Moving Averages 

The last type of process used in ARIMA models, and the most difficult to visualize, is
the moving average. In a moving-average process, each value is determined by the av-
erage of the current disturbance and one or more previous disturbances. The order of the
moving average process specifies how many previous disturbances are averaged into the
new value. The equation for a first-order moving average process is: 

In the standard notation, an MA(n) or ARIMA(0,0,n) process uses n previous distur-
bances along with the current one. 

The difference between an autoregressive process and a moving-average process is
subtle but important. Each value in a moving-average series is a weighted average of the
most recent random disturbances, while each value in an autoregression is a weighted
average of the recent values of the series. Since these values in turn are weighted aver-
ages of the previous ones, the effect of a given disturbance in an autoregressive process
dwindles as time passes. In a moving-average process, a disturbance affects the system
for a finite number of periods (the order of the moving average) and then abruptly ceases
to affect it. 

Steps in Using ARIMA 

Since the three types of random processes in ARIMA models are closely related, there
is no computer algorithm that can determine the correct model. Instead, there is a model-
building procedure, described by Box and Jenkins (1976), that allows you to construct
the best possible model for a series. This procedure consists of three steps—identifica-
tion, estimation, and diagnosis—which you repeat until your model is satisfactory. 

Identification 

The first and most subjective step is the identification of the processes underlying
the series. You must determine the three integers p, d, and q in the ARIMA(p,d,q)
process generating the series. (Seasonal models also require another set of parame-
ters, analogous to these, to describe seasonal variation. As described in Chapter 12,

Valuet disturbancet θ disturbancet 1–×–=



58 Chapter 6

ARIMA models can be extended to handle seasonal variation, but the discussion
here assumes that no seasonal variation is present.) 

 To identify the process underlying a series, you first determine from a plot whether
or not the series is stationary, since the identification process for the AR and MA com-
ponents requires stationary series. A stationary series has the same mean and variance
throughout. Autoregressive and moving-average processes are inherently stationary,
given certain sensible constraints on their parameters; integrated series are typically not
stationary. 

When a series is not stationary—when its average level varies in the short term or
when the short-term variation is greater in some places than in others—you must trans-
form the series until you obtain a series that is stationary. The most common transfor-
mation is differencing, which replaces each value in the series by the difference between
that value and the preceding value. Logarithmic and square-root transformations are
useful in the relatively frequent situation in which there is more short-term variation
where the actual values are large than where they are small. 

Once you have obtained a stationary series, you know the second ARIMA parameter
d—it is simply the number of times you had to difference the series to make it stationary.
Usually it is 0 or 1. Next you must identify p and q, the orders of autoregression and of
moving average. In nonseasonal processes: 

• Both p and q are usually small—0, 1, or 2 at most. 

• The autocorrelation function (ACF) and partial autocorrelation function (PACF) of a
series usually reveal the correct values of p and q. 

The autocorrelation function simply gives the autocorrelations calculated at lags 1, 2,
and so on; the partial autocorrelation function gives the corresponding partial auto-
correlations, controlling for autocorrelations at intervening lags. 

• AR(p) models have exponentially declining values of the ACF (possibly with alter-
nating positive and negative values) and have precisely p spikes in the first p values
of the PACF. 

• MA(q) models have precisely q spikes in the first q values of the ACF and exponen-
tially declining values of the PACF. 

• If the ACF declines very slowly, you need to take differences before identifying the
model. 

• Mixed AR and MA models have more complex ACF and PACF patterns. Identifying
them often takes several cycles of identification-estimation-diagnosis. 

Appendix B shows plots of the theoretical ACF and PACF functions for the most com-
mon AR and MA models. 
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Estimation 

The Trends ARIMA procedure estimates the coefficients of the model you have tenta-
tively identified. You supply the parameters p, d, and q, and ARIMA performs the iter-
ative calculations needed to determine maximum-likelihood coefficients and adds new
series to your file representing the fit or predicted value, the error (residual), and the con-
fidence limits for the fit. You use these new series in the next step, the diagnosis of your
model. 

Diagnosis 

The final step in the ARIMA modeling procedure, diagnosis, is discussed in detail in
most textbooks that cover ARIMA. The following checks are essential:   

• The ACF and PACF of the error series should not be significantly different from 0.
One or two high-order correlations may exceed the 95% confidence level by chance;
but if the first- or second-order correlation is large, you have probably misspecified
the model. ARIMA adds the residuals to your file as a new series. Always check their
ACF and PACF. 

• The residuals should be without pattern. That is, they should be white noise. A com-
mon test for this is the Box-Ljung Q statistic, also called the modified Box-Pierce sta-
tistic. You should look at Q at a lag of about one quarter of the sample size (but no
more than 50). This statistic should not be significant. The Trends Autocorrelation
procedure displays the Box-Ljung statistic and its significance level at each lag
alongside the ACF plot in the Viewer, so you can check it easily. 

A traditional Box-Jenkins analysis also estimates the standard error of the coefficients
and verifies that each is statistically significant. When the identification of the model is
uncertain, a complex model is “overfit” and the coefficients that are not statistically sig-
nificant are dropped. 

Many statisticians today prefer to use other criteria to identify the form of the model
and accept the best-fitting model even if it includes coefficients that are not significant
according to simple univariate tests. The ARIMA procedure in Trends provides several
criteria for choosing among models. 

Using ARIMA with the Quality-Control Data 
To apply this procedure to the quality-control series, you begin by examining a plot (Fig-
ure 6.1) to determine whether the series is stationary. The mean of the series appears to be
about 2200 from beginning to end, and likewise the variance does not noticeably change.
Evidently there is no need to take differences, or to transform it in any other way. 
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Identifying the Model 

The next step is always to obtain plots of the ACF and PACF. From the menus choose:

Graphs
Time Series �

Autocorrelations...

This opens the Autocorrelations dialog box, as shown in Figure 6.3.

Move score into the Variables list and click OK to get a plot of the autocorrelations and
partial autocorrelations for this series. Figure 6.4 shows the plots.

Figure 6.3 Autocorrelations dialog box 



A Quality-Control Chart: Introduction to ARIMA 61

In addition to the correlation coefficients, the ACF and PACF plots show 95% confi-
dence limits, which serve as rough guides to which correlations should be taken serious-
ly. The ACF shows a strong negative “spike” at lag 1, with a few marginally significant
correlations scattered through the rest of the plot. The PACF shows rapidly declining
values at the first few lags. If you compare these plots with those in Appendix B, the
nearest pattern is ARIMA(0,0,1), which has a spike at lag 1 in the ACF and an exponen-
tial decline in the PACF. You should try the ARIMA(0,0,1) model—which is the same
as MA(1)—as a first attempt. 

Figure 6.4 ACF and PACF plots 
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Estimating with ARIMA 

To estimate parameters for a simple ARIMA(0,0,1) model for the score series, from the
menus choose:

Analyze
Time Series �

ARIMA...

This opens the ARIMA dialog box, as shown in Figure 6.5.

Move score into the Dependent box. In the Model group, type 1 in the Moving Average
(q) text box. Make sure that Include constant in model is selected and click OK. The re-
sults are shown in Figure 6.6.

Figure 6.5 ARIMA dialog box
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ARIMA reports how many iterations were required (5), summarizes each iteration, and
explains why it stopped iterating (the sum of squared errors decreased by less than
0.001% after the last iteration). The ARIMA procedure in Trends gives you a great deal
of control over the iterative search for a solution. The tradeoff is simple—more itera-
tions take longer but yield more accurate coefficients. The default criteria were chosen

Figure 6.6 An ARIMA(0,0,1) model 
Split group number: 1  Series length: 100
No missing data.
Melard’s algorithm will be used for estimation.

Termination criteria:
Parameter epsilon: .001
Maximum Marquardt constant: 1.00E+09
SSQ Percentage: .001
Maximum number of iterations: 10

Initial values:

MA1        .64081
CONSTANT 2200.166

Marquardt constant = .001
Adjusted sum of squares = 10681.408

              Iteration History:

  Iteration   Adj. Sum of Squares    Marquardt Constant

          1             10431.585             .00100000
          2             10426.464             .00010000
          3             10425.782             .00001000
          4             10425.675             .00000100

Conclusion of estimation phase.
Estimation terminated at iteration number 5 because:
   Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS:

Number of residuals  100
Standard error       10.265823
Log likelihood       -374.23949
AIC                  752.47899
SBC                  757.68933

            Analysis of Variance:

              DF  Adj. Sum of Squares    Residual Variance
Residuals     98            10425.658            105.38713

           Variables in the Model:

                     B         SEB     T-RATIO   APPROX. PROB.
MA1             .78105   .06411139     12.1828        .0000000
CONSTANT    2200.16919   .23323983   9433.0765        .0000000

The following new variables are being created:

  Name        Label

  FIT_1       Fit for SCORE from ARIMA, MOD_3 CON
  ERR_1       Error for SCORE from ARIMA, MOD_3 CON
  LCL_1       95% LCL for SCORE from ARIMA, MOD_3 CON
  UCL_1       95% UCL for SCORE from ARIMA, MOD_3 CON
  SEP_1       SE of fit for SCORE from ARIMA, MOD_3 CON
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as a reasonable compromise, but you are free to relax them (for faster solutions) or tight-
en them (for more accurate estimates). 

When ARIMA has obtained a solution, it reports its final parameters (see Figure
6.6), which include several statistics describing how well the model fits your data, an
analysis of variance table, and the coefficients of the model. Among the goodness-of-
fit statistics are two labeled AIC and SBC. These are the Akaike information criterion
(AIC) and the Schwartz Bayesian criterion (SBC). They measure how well the model
fits the series, taking into account the fact that a more elaborate model is expected to
fit better. Generally speaking, the AIC is for autoregressive models while the SBC is
a more general criterion. You can use these in choosing between different models for
a given series. The model with the lowest AIC or SBC is the best. 

As in regression output, the actual coefficients appear in a column labeled B, along
with their estimated standard errors, t ratios, and significance levels. For the simple
model in Figure 6.6, an MA1 coefficient and a constant are calculated and displayed.
The MA1 coefficient is called θ in the ARIMA literature. For this model, θ=0.78.
Books on ARIMA modeling discuss the algebraic interpretation of θ; for this model,
each value in the series equals the current random disturbance minus 0.78 times the
previous disturbance. 

Diagnosing the MA(1) Model 

Before leaving the ARIMA output in Figure 6.6, you may want to check the statistical
significance of the estimated coefficients. These significance levels are given on the
same lines as the estimated coefficients themselves. As you can see, both t ratios are
statistically significant. 

The main way of diagnosing an ARIMA model is with the residual series. To check
the residuals, plot the ACF and PACF of the error series created by ARIMA. The error
series contains the residuals from the model and is listed along with the other new
series in Figure 6.6. Each new series is given a label describing the type of series it
is, the original series being analyzed, the model name of the analysis, and whether or
not a constant was estimated. 

To check the ACF and PACF of the residuals from the above analysis, from the
menus choose:

Graphs
Time Series �

Autocorrelations...

This opens the Autocorrelations dialog box again. If score is still in the Variables list,
select it and move it out. Then select err_1 (the error or residual variable reported by
ARIMA) and move it into the Variables list. Click OK to see the plots.

Figure 6.7 shows the autocorrelation and partial autocorrelation plots of the residuals.
Figure 6.8 shows the ACF output with the values for the Box-Ljung statistic.
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Figure 6.7 ACF and PACF plots of residuals 
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The ACF and PACF appear to be randomly distributed—only a few scattered correla-
tions exceed the 95% confidence limits, which appear as dotted lines on the plots. Fur-
thermore, the Box-Ljung statistic for the ACF function is not statistically significant at
any lag. This is consistent with the null hypothesis that the population autocorrelation
function is 0. You can accept the ARIMA(0,0,1) model with the MA(1) parameter θ
equal to 0.78. 

Applying the Control Chart 

As shown in Figure 6.6, ARIMA produces new series containing predictions (fit_1), re-
siduals (err_1), standard errors (sep_1), and the upper and lower confidence limits
(ucl_1 and lcl_1) for the original series. To make a control chart, you need to predict the
upper and lower bounds for the variation of the series beyond the end of the data you
used to estimate the model. From the menus choose:

Analyze
Time Series �

ARIMA...

Your previous variable selection (score) and model specification (q=1) should still be
showing in the ARIMA dialog box. Click Save to display the ARIMA Save dialog box,
as shown in Figure 6.9.

Figure 6.8 ACF
Autocorrelations:   ERR_1       Error for SCORE from ARIMA, MOD_5 CON           
                                                  
     Auto- Stand.                                                               
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 
                   +----+----+----+----+----+----+----+----+                    
  1  -.002   .099                  .   *   .                        .000   .985 
  2   .009   .098                  .   *   .                        .008   .996 
  3   .125   .098                  .   |** .                       1.639   .651 
  4  -.086   .097                  . **|   .                       2.426   .658 
  5   .040   .097                  .   |*  .                       2.596   .762 
  6  -.068   .096                  .  *|   .                       3.100   .796 
  7  -.102   .095                  . **|   .                       4.237   .752 
  8   .017   .095                  .   *   .                       4.271   .832 
  9  -.052   .094                  .  *|   .                       4.573   .870 
 10  -.239   .094                 *.***|   .                      11.053   .353 
 11   .030   .093                  .   |*  .                      11.159   .430 
 12  -.067   .093                  .  *|   .                      11.672   .472 
 13  -.090   .092                  . **|   .                      12.616   .478 
 14   .077   .092                  .   |** .                      13.323   .501 
 15   .065   .091                  .   |*  .                      13.829   .539 
 16   .013   .091                  .   *   .                      13.851   .610 
                                                  
Plot Symbols:      Autocorrelations *     Two Standard Error Limits .           
                                                  
Total cases:  100     Computable first lags:  99 
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The only thing you need to do here is change from 95% to 99% confidence limits. The
99% limits are typically used in control charts. Click the � arrow next to % Confidence
Intervals to open the drop-down list and from it select 99. Back at the main ARIMA dialog
box, click OK to generate the 99% confidence limits. Before requesting the plot, restore
the cases in the forecast period. From the menus choose:

Data
Select Cases...

In the Select Cases dialog box, choose All Cases. Then obtain the plot by choosing

Graphs
Sequence...

In the Sequence Charts dialog box, move score, fit_2, lcl_2, and ucl_2 into the Variables
list. Make sure that One chart per variable is not selected and click OK. The resulting
plot is shown in Figure 6.10.

Figure 6.9 ARIMA Save dialog box
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Superimposed on the plot of the original series you have ARIMA predictions (fit_2), as
well as the confidence limits lcl_2 and ucl_2. During the first 100 observations, the pe-
riod used to estimate the model, these three ARIMA series bounce around with the orig-
inal series. During the forecast period, the predictions and the confidence limits are
constant because the model had no seasonal component or trend and because no current
data are being used to update the moving average. However, the confidence limits accu-
rately capture the amount of variation that you should expect from this first-order mov-
ing average model. They are in fact a control chart—and a reliable one, because they are
based on a good model. As long as the underlying process remains the same, you should
expect 99% of the series to remain between the upper and lower confidence limits. 

A Real-Life Ending 

As you can see, the observed series begins to exceed the confidence limits around point
160. For several periods, the quality-control scores were higher than they should have
been if the process had remained the same. Quality-control engineers noticed the excess
variation and stopped the production line for a detailed examination. Inspection revealed
that bad print wheels had been introduced at about the time where the series went out of
its control bounds. When the faulty components were replaced, the series returned to
normal. The identification of the process underlying this series enabled the engineers to
detect the change in that process and hence to correct the underlying cause. 

Figure 6.10 N-step-ahead ARIMA forecasts 
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How to Obtain an ARIMA Analysis
The first step in ARIMA analysis is to identify the model using plots of the autocorrela-
tion and partial autocorrelation functions. 

• Determine if the series is stationary, that is, if it is without overall trend. 

• If it is not, difference the series once or perhaps twice until a stationary series results.
You can difference the series within the Autocorrelations procedure, as discussed in
the SPSS Base system documentation. 

• Compare the ACF and PACF of the stationary series to the idealized versions in Ap-
pendix B to determine the parameters p, d, and q of the model.

The next step is to estimate the coefficients of the model. From the menus choose:

Analyze
Time Series �

ARIMA...

This opens the ARIMA dialog box, as shown in Figure 6.11.

The numeric variables in your data file appear in the source list. To obtain a nonseasonal
ARIMA analysis, select one variable as the Dependent variable and specify at least one
positive integer for the parameters in the Model group, as determined by the results of
the model identification step.

Figure 6.11  ARIMA dialog box
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� Transform. To analyze the dependent variable in a logarithmic scale, select one of
the alternatives on the Transform drop-down list. If you select a log transformation,
ARIMA transforms the predicted values (fit) and confidence limits (lcl and ucl) that
it creates back into the original metric but leaves the residuals (err) in the log metric
for diagnostic purposes.

None. The untransformed variable is analyzed.

Natural log. The logarithm to base e of the variable is analyzed.

Log base 10. The logarithm to base 10 of the variable is analyzed.

Independent(s). You can move one or more numeric variables into the Independent(s) list.
These are used as regressors or predictor variables. 

Model. The Model group contains six text boxes, each of which can contain 0 or a posi-
tive integer, usually 1. You must specify at least one of the six; in practice, you must
specify at least one of the autoregressive or moving-average orders. The parameters in
the first column are for nonseasonal model components. For a nonseasonal model, you
can specify one, two, or all three parameters: 

Autoregressive. The autoregressive order p of the process.

Difference. The number of times d that the series must be differenced to make it stationary.

Moving Average. The order q of moving average in the process.

If the seasonality of the data has been defined in the Define Dates dialog box, three anal-
ogous text boxes let you specify the corresponding parameters sp, sd, and sq of the pro-
cess at seasonal lags. For seasonal models, you can specify these parameters in addition
to the parameters in the first column. Again, these values can be 0 or a positive integer,
usually 1. Identification of seasonal ARIMA models is discussed in Chapter 12.

� Include constant in model. Deselect this option if you can assume that the constant in the
model equals 0.

Saving Predicted Values and Residuals

To save predicted values, confidence limits, or residuals as new variables, or to produce
forecasts past the end of your data, click Save in the ARIMA dialog box. This opens the
ARIMA Save dialog box (see Figure 6.12). The current estimation period is shown at
the bottom of the box.
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Create Variables. To control the creation of new variables, you can choose one of these
alternatives:

� Add to file. The new series ARIMA creates are saved as regular variables in your
working data file. Variable names are formed from a three-letter prefix, an under-
score, and a number. This is the default.

� Replace existing. The new series ARIMA creates are saved as temporary variables in
your working data file. At the same time, any existing temporary variables created by
Trends commands are dropped when you execute the ARIMA procedure. Variable
names are formed from a three-letter prefix, a pound sign (#), and a number.

� Do not create. The new variables are not added to the working data file. 

If you select either Add to file or Replace existing above, you can select:

� % Confidence intervals. Select either 90, 95, or 99% from the drop-down list.

Predict Cases. If you select Add to file or Replace existing above, you can specify a fore-
cast period:

� Predict from estimation period through last case. Predicts values for all cases from the
estimation period through the end of the file but does not create new cases. If you are
analyzing a range of cases that starts after the beginning of the file, cases prior to that
range are not predicted. The estimation period, displayed at the bottom of this dialog
box, is defined with the Range dialog box available through the Select Cases option
on the Data menu. If no estimation period has been defined, all cases are used to pre-
dict values. This is the default.

� Predict through. Predicts values through the specified date, time, or observation num-
ber, based on the cases in the estimation period. This can be used to forecast values

Figure 6.12  ARIMA Save dialog box
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beyond the last case in the time series. The text boxes that are available for specifying
the end of the prediction period depend on the currently defined date variables. (Use
the Define Dates option on the Data menu to create date variables.) If there are no
defined date variables, you can specify the ending observation (case) number.

New cases created as forecasts have missing values for all series in the original data file
and for new series (such as residuals) whose definition requires an existing value. For
ARIMA, only the predicted values (fit), the standard errors (sep), and the confidence
limits (lcl and ucl) have valid values past the end of the original data.

ARIMA Options

To control convergence criteria and initial values used in the iterative algorithm, or to
specify the amount of output to be displayed, click Options in the ARIMA dialog box.
This opens the ARIMA Options dialog box, as shown in Figure 6.13.

Convergence Criteria. The convergence criteria determine when the iterative algorithm
stops and the final solution is reported.

Maximum iterations. By default, iteration halts after 10 iterations, even if the algorithm
has not converged. You can specify a positive integer here.

� Parameter change tolerance. By default, iteration stops if no parameter changes by
more than 0.001 from one iteration to the next. You can choose a smaller or larger
value for more or less precision in the parameter estimates. For greater precision, it
may also be necessary to increase the maximum iterations.

Figure 6.13 ARIMA Options dialog box
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� Sum of squares change. By default, iteration stops if the adjusted sum of squares does
not decrease by 0.001% from one iteration to the next. You can choose a smaller or
larger value for more or less precision in the parameter estimates. For greater preci-
sion, it may also be necessary to increase the maximum iterations.

Initial Values for Estimation. Choose one of these alternatives:

� Automatic. ARIMA chooses initial values.

� Apply from previous model. The parameter estimates from the previous execution of
ARIMA (in the same session) are used as initial estimates. This can save time if the
data and model are similar to the last one used.

Display. Choose one of these alternatives to indicate how much detail you want to see.

� Initial and final parameters with iteration summary. ARIMA displays initial and final pa-
rameter estimates, goodness-of-fit statistics, the number of iterations, and the reason
that iteration terminated.

� Initial and final parameters with iteration details. In addition to the above, ARIMA dis-
plays parameter estimates after each iteration.

� Final parameters only. ARIMA displays final parameters and goodness-of-fit statistics.

Additional Features Available with Command Syntax

You can customize your ARIMA analysis if you paste your selections to a syntax win-
dow and edit the resulting ARIMA command syntax. The additional features are:

• Constrained models in which autoregressive or moving average parameters (either
regular or seasonal) are estimated only for specified orders. For example, you can re-
quest a second-order autoregressive parameter, while constraining the first-order pa-
rameter to 0.

• More precise control over convergence criteria.

See the Syntax Reference section of this manual for command syntax rules and for com-
plete ARIMA command syntax.
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A Random Walk with Stock Prices: 
The Random-Walk Model

One of the most important processes sometimes found to underlie time series data is
the random walk. A random-walk process is inherently unpredictable but serves as a
standard of comparison for series with more structure. In this chapter, we will use both
exponential smoothing and ARIMA to study a series that is expected, on theoretical
grounds, to follow a random walk. 

Johnson & Johnson Stock Prices 
Financial theory predicts that stock prices should fluctuate randomly if the stock market
is efficient. Since the market should have already adjusted for any public information
that might affect the future price of the stock, daily price fluctuations appear, in theory,
as random white noise. A process that generates random changes in the level of a series
is known as a random walk. In this chapter, we will examine the stock prices of
Johnson & Johnson during 1984 and 1985 to see if they do indeed show the character-
istics of a random walk. 

Dating the Stock Series 

Stocks are not traded on weekends or holidays. At first glance, this seems to violate the
basic time series requirement that observations be taken at regularly spaced intervals.
The requirement, however, is that the time intervals be regularly spaced in terms of the
process underlying the series. Here, the underlying process is the trading of stock, so
prices at the end of each business day are perfectly appropriate. 

If stocks were traded every weekday, we could create date variables for a five-day
work week by selecting Weeks, work days(5) in the Define Dates dialog box. This al-
most works—but holidays such as the Fourth of July and Labor Day are not trading
days and hence are absent from the data. We will forego the use of Define Dates, there-
fore, and identify observations simply by sequential position in the series. 

7
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Plotting the Series

The stock series includes 251 observations. We will use the first 200 observations for
the historical period and the last 51 for the validation period. From the menus choose:

Data
Select Cases...

This opens the Select Cases dialog box. Select Based on time or case range and click
Range. This opens the Select Cases Range dialog box. Type 1 in the First Case text box
and 200 in the Last Case text box. Click Continue to return to the Select Cases dialog
box and click OK.

To plot the stock prices, from the menus choose:

Graphs
Sequence...

This opens the Sequence Charts dialog box. Move stock from the source list to the Variables
list. Click Format to open the Sequence Charts Format dialog box. Select Reference line at
mean of series and click Continue. To obtain the sequence chart, click OK. This produces
the chart shown in Figure 7.1. 

The data appear to drift above and below the mean value (where the reference line is),
indicating that the series is not stationary. Other than this, the series shows no apparent
pattern. If the stock prices are indeed based on a random-walk process, we will be driven
to quite a simple model. Let us apply exponential smoothing first. 

Figure 7.1 Johnson & Johnson stock prices, historical period 
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Exponential Smoothing of the Stock Series 
To request exponential smoothing, from the menus choose:

Analyze
Time Series �

Exponential Smoothing...

In the Exponential Smoothing dialog box, move stock to the Variables list. The chart in
Figure 7.1 shows no evidence of trend or seasonality, so leave Simple selected in the
Model group.

To define the smoothing parameters, click Parameters. This opens the Exponential
Smoothing Parameters dialog box. Since a grid search will find the best value of the gen-
eral smoothing parameter alpha, select Grid Search in the General (Alpha) group and
click Continue and OK. The output is shown in Figure 7.2. 

The best-fitting model—the one with the smallest sum of squared errors, or SSE—is the
one where alpha equals 1.0. An alpha of 1.0 represents an extreme model, where the best
prediction is simply the most recent value. Earlier values in the series are given no
weight at all in the predictions. This is, in fact, the model for a pure random walk. If fluc-
tuations in stock prices are random, the best prediction for tomorrow’s price is today’s
price. 

Figure 7.2 Exponential smoothing with no trend or seasonality 
Results of EXSMOOTH procedure for Variable STOCK                                
MODEL= NN (No trend, no seasonality)                                            
                                                  
 Initial values:       Series            Trend                                  
                     33.29125         Not used                                  
                                                  
DFE = 199.                                                                      
                                                  
The 10 smallest SSE’s are:      Alpha              SSE                          
                             1.000000        72.73826                           
                             .9000000        74.01562                           
                             .8000000        76.70986                           
                             .7000000        81.05149                           
                             .6000000        87.53897                           
                             .5000000        97.18905                           
                             .4000000       112.22474                           
                             .3000000       138.20934                           
                             .2000000       192.32206                           
                             .1000000       352.34995                           
                                                  
The following new variables are being created:                                  
                                                  
  NAME        LABEL                                                             
                                                  
  FIT_1       Fit for STOCK from EXSMOOTH, MOD_2 NN A1.00                       
  ERR_1       Error for STOCK from EXSMOOTH, MOD_2 NN A1.00 
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Plotting the Residuals 

The exponential smoothing procedure adds two new series to the file for the best predic-
tion, one holding the prediction and one holding the error or residual (the observed value
minus the prediction). As you can see in Figure 7.2, the residuals for the model with al-
pha=1.0 are in a series named err_1. To test whether these residuals really are white
noise, you can plot the autocorrelations. From the menus choose:

Graphs
Time Series �

Autocorrelations...

Move err_1 to the Variables list, deselect Partial autocorrelations in the Display group,
and click OK. Figure 7.3 shows the plot, which includes the actual values of the auto-
correlation function as well as the Box-Ljung statistic (the plot appears in the Viewer). 

• The plotted autocorrelations all fall within the dotted lines, which show the 95% con-
fidence intervals. Since the actual values and standard errors appear at the left of the
plot, you can confirm that none of the values is twice as large as its standard error. 

• The Box-Ljung statistics to the right of the plot are never statistically significant (the
probability is always substantially greater than 0.05). As you recall from Chapter 6,
this statistic estimates the probability that autocorrelations as large or larger than
those observed could have been the result of random variation. The probability at lag
16 is 0.932, which means that white noise would generate autocorrelations as large
or larger than these sixteen values over 93% of the time. 
 

Figure 7.3  ACF for exponential smoothing residuals
Autocorrelations:   ERR_1       Error for STOCK from EXSMOOTH, MOD_2 NN         
                                                  
     Auto- Stand.                                                               
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 
                   +----+----+----+----+----+----+----+----+                    
  1   .041   .070                   .  |* .                         .349   .555 
  2  -.027   .070                   . *|  .                         .501   .778 
  3  -.062   .070                   . *|  .                        1.279   .734 
  4  -.056   .070                   . *|  .                        1.916   .751 
  5  -.007   .069                   .  *  .                        1.927   .859 
  6  -.024   .069                   .  *  .                        2.047   .915 
  7   .080   .069                   .  |**.                        3.387   .847 
  8   .024   .069                   .  *  .                        3.504   .899 
  9   .004   .069                   .  *  .                        3.507   .941 
 10   .017   .069                   .  *  .                        3.566   .965 
 11   .094   .068                   .  |**.                        5.436   .908 
 12  -.013   .068                   .  *  .                        5.473   .940 
 13   .010   .068                   .  *  .                        5.493   .963 
 14  -.046   .068                   . *|  .                        5.944   .968 
 15  -.108   .068                   .**|  .                        8.505   .902 
 16  -.008   .067                   .  *  .                        8.520   .932 
                                                  
Plot Symbols:      Autocorrelations *     Two Standard Error Limits .           
                                                  
Total cases:  200     Computable first lags:  199                               
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Exponential smoothing seems to confirm the random-walk theory of stock prices, at
least for this stock. The best model simply predicts the most recent value, and the resid-
uals from that model appear to be white noise. 

An ARIMA Model for Stock Prices 
Perhaps the pattern in these prices is too subtle for exponential smoothing. A more so-
phisticated technique such as ARIMA might detect a deviation from the random-walk
pattern. 

Identifying the Model 

Figure 7.4 shows the autocorrelations and partial autocorrelations for the Johnson &
Johnson stock prices. The ACF dies out quite slowly, confirming our earlier observation
that this series is nonstationary. (Compare this plot with those in Appendix B.)

To properly identify the ARIMA model, we need to first difference the series and
then check the ACF and PACF plots. However, if you did not recognize the fact that the
series was nonstationary, you might erroneously interpret the fading ACF and spiked
PACF as evidence of an AR(1) autoregressive model. Let’s go ahead and estimate this
model without differencing to see what happens when we use a nonstationary series.
From the menus choose:

Analyze
Time Series �

ARIMA...

This opens the ARIMA dialog box. Move stock to the Dependent list and type 1 in the
Autoregressive text box in the Model group. Click Options and select Final parameters
only in the Display group. Click Continue and then click OK. Figure 7.5 shows the re-
sults of the AR(1) model. 
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Figure 7.4 ACF and PACF for stock prices 
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The autoregressive coefficient φ (labeled AR1 in Figure 7.5) equals 0.97, which is very
close to its limit of stationarity, 1.0. Autoregressive models with the absolute value of
φ greater than or equal to 1.0 are not stationary. When φ = 1.0 exactly, the AR(1) model
is identical to a random-walk model. This is easy to see. The AR(1) model is 

When φ=1.0, this becomes 

or

Figure 7.5 ARIMA(1,0,0) on stock prices 
Split group number: 1  Series length: 200                                       
No missing data.                                                                
Melard’s algorithm will be used  for estimation.                                
                                                  
                                                  
                                                  
Conclusion of estimation phase.                                                 
Estimation terminated at iteration number 2 because:                            
   Sum of squares decreased by less than .001 percent.                          
                                                  
FINAL PARAMETERS:                                                               
                                                  
Number of residuals  200                                                        
Standard error       .5744063                                                   
Log likelihood       -173.30938                                                 
AIC                  350.61876                                                  
SBC                  357.21539                                                  
                                                  
                                                  
            Analysis of Variance:                                               
                                                  
               DF  Adj. Sum of Squares    Residual Variance                     
Residuals     198            66.255997            .32994259                     
                                                  
                                                  
           Variables in the Model:                                              
                                                  
                    B         SEB     T-RATIO   APPROX. PROB.                   
AR1           .969712    .0163268   59.393801        .0000000                   
CONSTANT    33.887538   1.1671238   29.035084        .0000000                   
                                                  
The following new variables are being created:                                  
                                                  
  Name        Label                                                             
                                                  
  FIT_2       Fit for STOCK from ARIMA, MOD_4 CON                               
  ERR_2       Error for STOCK from ARIMA, MOD_4 CON                             
  LCL_2       95% LCL for STOCK from ARIMA, MOD_4 CON                           
  UCL_2       95% UCL for STOCK from ARIMA, MOD_4 CON                           
  SEP_2       SE of fit for STOCK from ARIMA, MOD_4 CON                         

Valuet φ Valuet 1– disturbancet+×=

Valuet Valuet 1– disturbancet+=

Valuet Value t 1–– disturbance t=
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The changes from one observation to the next are a random disturbance or shock. This
is the definition of a random-walk model. 

Differencing the Series 

Since the φ coefficient estimated above is very nearly equal to 1, the differences between
stock prices from one observation to the next should be distributed as white noise. To
plot the differences, from the menus choose:

Graphs 
Sequence...

Move stock to the Variables list and in the Transform group select Difference. The de-
fault value is 1. (Specifying 2 for Difference indicates second differences, which are
simply the differences of the differences. You rarely need to take second or higher dif-
ferences.) Click Format, and in the Sequence Charts Format dialog box, select Refer-
ence line at mean of series. Click Continue and OK. The sequence chart is shown in
Figure 7.6. 

As shown in Figure 7.6, the differenced series is stationary. Its short-term average is al-
ways about the same. In fact, it is always around 0. 

It is possible for the differenced series to be stationary and to have a mean value other
than 0. If the mean of the differenced stock prices were about 1, for example, that would
indicate that the average difference from one observation to the next was +1—in other
words, that stock prices were steadily rising. Since the plot of the original series (Figure
7.1) shows no long-term trend, you know that the average change is near 0. Figure 7.6
confirms this. 

Figure 7.6 Differenced Johnson & Johnson stock prices 
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Comparing Differences to White Noise 

To verify that the differenced stock prices in Figure 7.6 are essentially white noise, you
can plot ACF and PACF. From the menus choose:

Graphs
Time Series �

Autocorrelations...

In the Transform group, select Difference to indicate that you want autocorrelations of
the differences in the stock prices rather than the prices themselves. In the Display
group, select Autocorrelations and Partial autocorrelations. Figure 7.7 shows the ACF
and PACF of the differenced stock prices. 

Figure 7.7 ACF and PACF for differenced stock prices 
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None of the values of the ACF or PACF equals twice its standard error (they do not ex-
ceed the confidence limits on the plots). If you looked at the plot in the Viewer, you
would see that the probability value of the Box-Ljung statistic is high at all lags, indi-
cating that this ACF could easily be generated by a white-noise process. Since the dif-
ferences are white noise, the original series is accurately described as a random walk. 

When differencing a series reduces it to white noise, the ARIMA modeling procedure
is complete. The model is simply an ARIMA(0,1,0) model. 

Comparing the Two Models 

We began analyzing the Johnson & Johnson stock prices by developing an exponential
smoothing model with alpha=1.0. When alpha=1.0, the model’s prediction always
equals the previous observation, without regard to prior observations. The residuals or
errors from that model equal the difference between the prediction—which is the previ-
ous observation—and the current observation. In Figure 7.3, we found these errors to be
white noise. 

Using ARIMA methodology, we then developed an ARIMA(0,1,0) model. We did
not use the ARIMA command itself with this model because an ARIMA(0,1,0) model
has no coefficients to estimate. If you use the ARIMA procedure with a (0,1,0) model,
it terminates processing after 0 iterations! 

In fact, the differenced series is identical to the error series from the exponential-
smoothing model with alpha=1.0. You can verify that the residual autocorrelations from
exponential smoothing (Figure 7.3) are virtually the same as the autocorrelations for the
differenced series (Figure 7.7). Models for a random walk all look about the same. 

Forecasting a Random Walk 
In “Dating the Stock Series” on p. 75, we established the historical period as the first
200 observations. To generate forecasts for the validation period (the remaining 51 ob-
servations), follow these steps. From the menus choose:

Analyze
Time Series �

ARIMA...

Select stock as the Dependent variable. In the Model group, specify 0 for p, 1 for d, and
0 for q. Click Options, which opens the ARIMA Options dialog box. In the Display
group, select Final parameters only. Click Continue to return to the ARIMA dialog box,
and then click Save. You can see that Predict from estimation period through last case
is selected by default. Click Continue and then click OK. Figure 7.8 shows the output
from this procedure. Notice that: 
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• ARIMA displays a message saying that estimation was terminated after 0 iterations
because there were no ARMA (autoregressive or moving average) parameters to es-
timate. 

• The value estimated for the constant is very close to 0, as we noticed from the plot of
the differenced series in Figure 7.6. 

• The new series containing forecasts is named fit_3, and the series containing confi-
dence limits are named lcl_3 and ucl_3. 
 

To plot the stock price series along with the forecasts and confidence limits for the val-
idation period, from the menus choose:

Data
Select Cases...

In the Select Cases dialog box, select Based on time or case range and click Range. In
the Select Cases Range dialog box, specify 201 in the First Case text box and 250 in the
Last Case text box. Click Continue and then click OK. From the menus choose: 

Graphs 
Sequence...

Figure 7.8 N-step-ahead forecasts from random-walk model 
Split group number: 1  Series length: 200                                       
No missing data.                                                                
Melard’s algorithm will be used  for estimation.                                
                                                  
                                                  
                                                  
Conclusion of estimation phase.                                                 
Estimation terminated at iteration number 0 because:                            
   No ARMA parameters were available for estimation.                            
                                                  
FINAL PARAMETERS:                                                               
                                                  
Number of residuals  199                                                        
Standard error       .5776222                                                   
Log likelihood       -172.65054                                                 
AIC                  347.30109                                                  
SBC                  350.59439                                                  
                                                  
                                                  
            Analysis of Variance:                                               
                                                  
               DF  Adj. Sum of Squares    Residual Variance                     
Residuals     198            66.062186            .33364740                     
                                                  
                                                  
           Variables in the Model:                                              
                                                  
                     B         SEB      T-RATIO   APPROX. PROB.                 
CONSTANT    -.00125628   .04094655   -.03068101       .97555494                 
                                                  
The following new variables are being created:                                  
                                                  
  Name        Label                                                             
                                                  
  FIT_3      Fit for STOCK from ARIMA, MOD_8 CON                               
  ERR_3      Error for STOCK from ARIMA, MOD_8 CON                             
  LCL_3      95% LCL for STOCK from ARIMA, MOD_8 CON                           
  UCL_3      95% UCL for STOCK from ARIMA, MOD_8 CON                           
  SEP_3      SE of fit for STOCK from ARIMA, MOD_8 CON                         
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This opens the Sequence Charts dialog box. Move stock, fit_3, lcl_3, and ucl_3 to the
Variables list and click OK. Figure 7.9 shows the chart. 

 

Note in Figure 7.9 that the forecasts remain “stuck” on the last value in the historical
period, while the confidence limits expand as our confidence in the forecasts dwindles
with time. Since the changes in stock prices are completely random in this model, we
can do no better than to predict that the price will be somewhere around where it was
the last time we knew it. 

This conclusion may be disappointing, but it is not surprising. If you could predict that
a stock was going to rise on the basis of its recent history, so could other people. They
would buy the stock, driving its price up, until the prediction method said that it would
rise no further. This implies that most of the time any good prediction method based on
public information must predict that a stock will remain at the same price. In greatly sim-
plified form, this is the theoretical argument for why stock prices are expected to follow
a random-walk pattern. 

Why Bother with the Random Walk? 
The random walk is an important class of time series, not because there is much to say
about it—there is not—but because it has characteristics to which we can compare other
series. 

• A random walk is defined as the cumulative sum of random disturbances. If the mean
of the random disturbances is 0, as is often the case, the random walk will show no
overall trend; but it can and often does drift far away from its long-term mean. 

Figure 7.9 Stock forecasts in the validation period 
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• The differences between successive observations in a random walk are white noise. 

• When the mean of the disturbances is 0, the best forecast for a random walk is simply
the most recent observation. 
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Tracking the Inflation Rate: Outliers 
in ARIMA Analysis

Most time series are not as simple as the stock prices we analyzed in Chapter 7. In this
chapter, we use ARIMA techniques once again on a more difficult series. This series is
also afflicted with an outlier—an observation far out of line with those around it. 

The Inflation Rate Data 
In this example, we follow the monthly inflation rate from January, 1970, through De-
cember, 1985. These data are contained in a series named inflat. To create appropriate
date variables for the series, from the menus choose:

Data
Define Dates...

This opens the Define Dates dialog box. Scroll to the top of the Cases Are list and select
Years, months. Specify 1970 in the Year text box in the First Case Is group, as shown
in Figure 8.1.

 
Figure 8.1 Define Dates dialog box 

8
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Click OK and Trends calculates each observation’s value for the new variables year_,
month_, and date_. (Trends puts an underscore at the end of these names so that they
are less likely to conflict with similarly named variables in your data.) Now plot the se-
ries. From the menus choose:

Graphs
Sequence...

In the Sequence Charts dialog box, move inflat into the Variables list. Move date_ into
the Time Axis Labels box, and click OK. The resulting chart is shown in Figure 8.2.

As you can see in Figure 8.2, the inflation rate varied considerably, with one exception-
ally high point in the summer of 1973. The fact that the series wanders tells us that it is
not stationary. In other words, the short-term mean level is not constant but varies over
the course of the series. We must remember this when identifying a model. 

The Outlier 

The monthly inflation rate in August, 1973, was 1.8%, which if continued would have
produced an annual rate of over 23%. This was far higher than any other monthly rate.
Extreme observations such as this are called outliers. You should always note outliers
when you plot a series, since they can seriously affect your analysis. 

It is easy to assign a cause to this particular outlier. Wage and price controls had re-
cently been lifted, and the OPEC oil consortium had just imposed an oil embargo. The
embargo affected the inflation statistics very suddenly in August. 

Figure 8.2 Monthly inflation rates 1970–1985 
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When you know what causes an outlier, as you do here, you can always remove it
and model the process underlying the normal behavior of the series. It is revealing, how-
ever, to see how the presence of an outlier affects an analysis. We therefore begin by
analyzing the inflation series as it is, including the outlier. 

ARIMA with an Outlier 
We will try to develop an ARIMA model for the inflation series. Like the series in Chap-
ter 7, this one is nonstationary. There is more pattern to the inflation rates, however, than
the random walk we found in stock prices. 

Historical and Validation Periods 

We will use the period 1970 through 1980 as a historical or estimation period and the
period 1981 through 1985 as a validation period. To restrict the analysis to the historical
period, from the menus choose:

Data
Select Cases...

In the Select Cases dialog box, choose Based on time or case range. Click Range to
open the Select Cases Range dialog box, as shown in Figure 8.3.

 

There is no need to specify values for Year and Month for the first case you want to use,
since Trends assumes, if you do not indicate otherwise, that you want to start at the be-
ginning of your data. Click in the Year text box for Last Case and type 1980, and then
click in (or tab to) the Month text box and type 12. Click Continue to return to the Select
Cases dialog box, and then click OK to establish the historical period for the following
analysis.

Figure 8.3  Select Cases Range dialog box
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Identifying the Model 

The sequence chart of the inflation series suggested that the series was not stationary. To
verify this, you can inspect the ACF plot. From the menus choose:

Graphs
Time Series �

Autocorrelations...

Move inflat into the Variables list. Deselect Partial autocorrelations in the Display group
to save time; partial autocorrelations require quite a bit of calculation and aren’t needed
yet. Click OK. The resulting ACF plot is shown in Figure 8.4. 

Like the ACF of the stock series in Chapter 7, this autocorrelation plot starts out with
large positive values, which die out very slowly at increasing lags. This pattern confirms
that the series is not stationary and that we must take differences when analyzing it.
Rather than creating a new series containing the differences in inflation rates, we can
simply request differencing in the Autocorrelations dialog box. This time we ask for the
PACF also, since we need both plots to identify an ARIMA model. From the menus,
once again choose: 

Graphs
Time Series �

Autocorrelations...

The Variables list should still contain inflat. Select Difference in the Transform group,
leaving the degree of differencing set to 1. Select Partial autocorrelations, if you dese-
lected it before, and click OK. The resulting ACF and PACF plots of the differences in
inflat are shown in Figure 8.5.

Figure 8.4 ACF of inflation series 
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The ACF of the differenced series shows a spike at lag 1, while the PACF shows rapid
attenuation from its initial value. These patterns suggest an MA(1) process. (Refer to
Appendix B for the characteristic patterns exhibited by common ARIMA processes.)
Since we differenced the original series to obtain the MA(1) patterns, our ARIMA
identification includes one degree of differencing and a first-order moving average. In
conventional ARIMA notation, we have tentatively identified an ARIMA(0,1,1) model. 

Figure 8.5 ACF and PACF for differenced series 
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Estimating the Model 

You took differences in the inflation series to make it stationary (although there are
instances when a differenced series is still nonstationary). Taking differences often has
another consequence—the mean of a differenced series is frequently 0. 

It is easy to see why this is so. Although the original inflation series was not station-
ary, it did not seem to show a long-term trend. It wandered around a long-term average
that stayed about the same. From this fact, you know that the differences in the series
average out to 0—increases in the inflation rate roughly balance out decreases in the in-
flation rate over the whole period. 

The Constant in an ARIMA Model 

The general ARIMA model includes a constant term, whose interpretation depends on
the model you are using: 

• In MA models, the constant is the mean level of the series. 

• In AR(1) models, the constant is a trend parameter. 

• When a series has been differenced, the above interpretations apply to the differences. 

Our ARIMA(0,1,1) model is an MA model of a differenced series. Therefore, the
constant term will represent the mean level of the differences. Since you know that the
mean level of the differences is about 0 for the inflation series, the constant term in
the ARIMA model should be 0. The Trends implementation of ARIMA lets you sup-
press the estimation of the constant term. This speeds up the computation, simplifies the
model, and yields slightly smaller standard errors on the other estimates. 

To estimate the ARIMA(0,1,1) model, from the menus choose:

Analyze
Time Series �

ARIMA...

This opens the ARIMA dialog box, as shown in Figure 8.6.
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Move inflat into the Dependent box. In the Model group:

• Specify 1 for the Difference parameter d.

• Specify 1 for the Moving Average parameter q.

• Leave the Autoregressive parameter p and all three of the Seasonal parameters at 0.

• Deselect Include constant in model.

Now click Save, which opens the ARIMA Save dialog box, as shown in Figure 8.7.
 

Figure 8.6 ARIMA dialog box

Figure 8.7 ARIMA Save dialog box
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In the Create Variables group, select Replace existing and click Continue. This keeps
Trends from adding a lot of variables to the working data file while you are still search-
ing for the best model.

 The output from the ARIMA analysis appears in Figure 8.8. In the historical period
(January, 1970, through December, 1980), the first differences in monthly inflation rates
followed an MA(1) process with θ=0.685. 

  

Because you indicated in the Define Dates dialog box that this series is monthly,
ARIMA is aware of the seasonal period of 12 observations. Since the specified model
contains no seasonal component, ARIMA displays a warning (not shown) that it is ig-

Figure 8.8 ARIMA(0,1,1) for the inflation series 
Split group number: 1  Series length: 132
No missing data.
Melard’s algorithm will be used for estimation.

Termination criteria:
Parameter epsilon: .001
Maximum Marquardt constant: 1.00E+09
SSQ Percentage: .001
Maximum number of iterations: 10

Initial values:

MA1        .65199

Marquardt constant = .001
Adjusted sum of squares = .00089164

              Iteration History:

  Iteration   Adj. Sum of Squares    Marquardt Constant
          1             .00089041             .00100000
          2             .00089035             .00010000

Conclusion of estimation phase.
Estimation terminated at iteration number 3 because:
   Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS:

Number of residuals  131
Standard error       .00261071
Log likelihood       593.5097
AIC                  -1185.0194
SBC                  -1182.1442

            Analysis of Variance:

               DF  Adj. Sum of Squares    Residual Variance
Residuals     130            .00089035            .00000682

           Variables in the Model:

               B         SEB     T-RATIO   APPROX. PROB.
MA1    .68464518   .06432286   10.643886        .0000000

The following new variables are being created:

  Name        Label

  FIT_1       Fit for INFLAT from ARIMA, MOD_4 NOCON
  ERR_1       Error for INFLAT from ARIMA, MOD_4 NOCON
  LCL_1       95% LCL for INFLAT from ARIMA, MOD_4 NOCON
  UCL_1       95% UCL for INFLAT from ARIMA, MOD_4 NOCON
  SEP_1       SE of fit for INFLAT from ARIMA, MOD_4 NOCON
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noring the seasonality in the data. In Chapter 13, we will see a series that requires us to
specify a seasonal ARIMA model. 

Diagnosing the Model 

Before proceeding, it is wise to check that the residuals are white noise. From the menus
choose:

Graphs
Time Series �

Autocorrelations...

Move inflat out of the Variables list, and move err#1 (the name of the residual variable
created by the ARIMA command) into the list. Deselect Difference in the Transform
group, and make sure both Display options are selected. Click OK. 

Figure 8.9 shows the autocorrelation function for the ARIMA residuals. None of the
residual autocorrelations exceeds the confidence limits around 0. With residuals, it’s
also a good idea to look at the ACF output so that you can see the significance levels for
the Box-Ljung statistic (Figure 8.10). It is not statistically significant at any lag, so you
cannot reject the null hypothesis that the residuals are white noise. 

 
Figure 8.9 Autocorrelation function for residuals
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Plotting Residuals 

Figure 8.11 shows a sequence chart of the ARIMA residuals. In general, the residuals
show no pattern, although the large outlier of August, 1973, is still present. Let’s see
what happens if we remove the outlier. 

 

Figure 8.10 Autocorrelation function for residuals 
Autocorrelations:   ERR_1       Error for INFLAT from ARIMA, MOD_6 NOCON        
                                                  
     Auto- Stand.                                                               
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 
                   +----+----+----+----+----+----+----+----+                    
  1   .012   .086                   .  *  .                         .019   .891 
  2   .074   .086                   .  |* .                         .757   .685 
  3  -.005   .086                   .  *  .                         .761   .859 
  4  -.165   .085                   ***|  .                        4.482   .345 
  5  -.079   .085                   .**|  .                        5.349   .375 
  6  -.038   .085                   . *|  .                        5.551   .475 
  7  -.028   .084                   . *|  .                        5.659   .580 
  8  -.068   .084                   . *|  .                        6.319   .612 
  9   .102   .084                   .  |**.                        7.797   .555 
 10   .089   .083                   .  |**.                        8.938   .538 
 11   .088   .083                   .  |**.                       10.064   .525 
 12   .053   .083                   .  |* .                       10.481   .574 
 13   .100   .082                   .  |**.                       11.962   .531 
 14  -.046   .082                   . *|  .                       12.271   .585 
 15  -.030   .082                   . *|  .                       12.408   .648 
 16  -.022   .081                   .  *  .                       12.481   .710 
                                                  
Plot Symbols:      Autocorrelations *     Two Standard Error Limits .           
                                                  
Total cases:  132     Computable first lags:  130                               

Figure 8.11 Residuals from ARIMA including outlier 
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ARIMA without the Outlier 

The main problem with the above analysis is that we have included the outlier from
August, 1973. We developed an ARIMA model for a random process that supposedly
produced the entire series, yet we know that the prominent bounce in 1973 was due to
the oil embargo and associated one-time events. Let’s see what happens when we ex-
clude the observation from August, 1973, from the analysis. We can do this in two ways: 

• Assign a missing value to the observation. The Trends ARIMA command handles
imbedded missing data, so this is a feasible alternative. ARIMA with missing data,
however, uses an algorithm that is computationally intensive and requires a lot of
processing time. Until you are certain of the model you want, you are better off taking
the other route. 

• Interpolate a value for August, 1973. This value would probably be closer to the typ-
ical value of the series and therefore would influence estimation of ARIMA coeffi-
cients less than the outlier did. 

Removing the Outlier 

The Data Editor in SPSS makes it easy to assign a missing value to the observation for
August, 1973. Activate the Data Editor window and scroll down to the observation for
that month. Highlight the cell for inflat, which contains the value of 0.018086. Press the
d key followed by r to delete this unusually large value. The August value is re-
placed by a period, and the highlight moves to the next cell. The period stands for the
system-missing value, a value that can never occur in real data and that all SPSS com-
mands recognize. If you analyze the inflation series after the above command, ARIMA
discovers a gap in the series at August, 1973—as if the inflation rate for that month were
unknown—and carefully works around it. 

To interpolate a substitute value for August, 1973, you can use the Replace Missing
Values procedure. From the menus choose:

Transform
Replace Missing Values...

This opens the Replace Missing Values dialog box, as shown in Figure 8.12.
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Highlight inflat in the source variable list and move it into the New Variable(s) list,
where it appears in an expression:

inflat_1=SMEAN(inflat)

If it is executed, this expression creates a new series, named inflat_1, which is identical
to inflat except that missing values have been replaced by the overall series mean
(SMEAN). In a series with positive autocorrelation, like this one, you can do better by
interpolating between the neighboring values. Click the � arrow next to the Method
drop-down list and select the Linear interpolation method. Then click Change.

The expression in the New Variable(s) list now shows the LINT function. When you
click OK, Trends creates a new series, inflat_1, that is identical to inflat except that any
missing values in inflat are replaced using a linear interpolation of the neighboring valid
values. This replaces the system-missing value (which we substituted above for the ac-
tual value of 1.8%) with a more typical monthly rate of 0.26%, which is midway be-
tween the rates for July and September. If you scroll the Data Editor to the far right, you
can see the new series with its interpolated value for August, 1973. (To keep track of
which case you are interested in, click on the case number (44) to highlight the entire
row.)

We do not insist that the interpolated value is a particularly good estimate of what the
inflation rate would have been if the oil embargo had not taken place. It is, however, an
unobtrusive estimate, one that will not have any great effect on the analysis of the series
as a whole. For this modest purpose, a simple linear interpolation is quite adequate. 

Figure 8.12 Replace Missing Values dialog box
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Identifying the Model 

To identify the model after replacing the outlier, you simply plot the ACF and PACF of
inflat_1, remembering to take differences since the series is not stationary (see “Identi-
fying the Model” on p. 92). The resulting plots are shown in Figure 8.13. 

Figure 8.13 ACF plots with outlier replaced 
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Comparing these plots with Figure 8.5, you see that removing the outlier has reduced
the size of the negative ACF at lag 1. There is an unexpected peak in the PACF at lag 6,
which we will ignore for the time being, in the absence of any explanation of why infla-
tion rates might follow a six-month seasonal pattern. Aside from the peak, both ACF and
PACF show declines from their initial value at lag 1, rather than spikes. This suggests a
model with both autoregressive and moving-average components. Since the series was
differenced for the ACF plots, we have an ARIMA(1,1,1) model. 

By removing a single outlier from this series, we have changed the identification of
the model! Even when an outlier does not affect the type of model, it can affect estimates
of the coefficients drastically. If you estimated the ARIMA(0,1,1) model without the
outlier, you would find the fit improves and the θ parameter decreases noticeably. 

Estimating the Model 

Figure 8.14 shows the estimation of an ARIMA(1,1,1) model for the inflation series af-
ter removing the outlier. (To obtain this analysis, you would open the ARIMA dialog
box, move inflat out of the Dependent box, move inflat_1 into the Dependent box, and
change the Autoregressive parameter p from 0 to 1.)

Compare these results with Figure 8.8. The log-likelihood has increased, and the AIC
and SBC have decreased. The standard error of the estimate is smaller. The model esti-
mated without the outlier seems to be much better on all of these statistical grounds. That
is not surprising, since the outlier was due to factors that are ignored in these models.



Tracking the Inflation Rate: Outliers in ARIMA Analysis 103

Figure 8.14 ARIMA(1,1,1) after replacing outlier 
Split group number: 1  Series length: 132
No missing data.
Melard’s algorithm will be used for estimation.

Termination criteria:
Parameter epsilon: .001
Maximum Marquardt constant: 1.00E+09
SSQ Percentage: .001
Maximum number of iterations: 10

Initial values:

AR1        .33674
MA1        .72357

Marquardt constant = .001
Adjusted sum of squares = .00067359

              Iteration History:

  Iteration   Adj. Sum of Squares    Marquardt Constant
          1             .00066685             .00100000
          2             .00066584             .00010000
          3             .00066577             .00001000

Conclusion of estimation phase.
Estimation terminated at iteration number 4 because:
   Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS:

Number of residuals  131
Standard error       .0022672
Log likelihood       612.54406
AIC                  -1221.0881
SBC                  -1215.3377

            Analysis of Variance:

               DF  Adj. Sum of Squares    Residual Variance
Residuals     129            .00066577            .00000514

           Variables in the Model:

               B         SEB     T-RATIO   APPROX. PROB.
AR1    .40987963   .12585801    3.256683       .00144044
MA1    .83249607   .07776481   10.705305       .00000000

The following new variables are being created:

  Name        Label

  FIT_3       Fit for INFLAT_1 from ARIMA, MOD_13 NOCON
  ERR_3       Error for INFLAT_1 from ARIMA, MOD_13 NOCON
  LCL_3       95% LCL for INFLAT_1 from ARIMA, MOD_13 NOCON
  UCL_3       95% UCL for INFLAT_1 from ARIMA, MOD_13 NOCON
  SEP_3       SE of fit for INFLAT_1 from ARIMA, MOD_13 NOCON
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Diagnosing the Final Model 

As Figure 8.15 shows, the residual ACF for this last model is acceptable. A couple of
the autocorrelations are marginally significant considered alone, but the Box-Ljung sta-
tistic is not statistically significant at any lag. 

ARIMA with Imbedded Missing Values 

If you prefer, you can use the ARIMA procedure without replacing the missing data. A
technique known as Kalman filtering allows the generation of maximum-likelihood es-
timates for series with missing data. 

For some models, the Kalman filtering algorithm takes much longer to reach its so-
lution. However, you can minimize the time by applying a solution obtained with inter-
polated values as an initial estimate. (This and similar performance considerations are
discussed in Chapter 2.) For example, to apply the solution obtained in Figure 8.14,
which was estimated using a smoothed value for the outlier, as an initial estimate,
choose:

Analyze
Time Series �

ARIMA...

This opens the ARIMA dialog box, as before. Move inflat_1 out of the Dependent box,
and move inflat (which still has the missing value) in. Leaving the Model specifications
as they are, click Options. This opens the ARIMA Options dialog box, as shown in Fig-
ure 8.16.

Figure 8.15 Residual ACF 
Autocorrelations:   ERR_4       Error for INFLAT1 from ARIMA, MOD_13 NOC        
                                                  
     Auto- Stand.                                                               
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 
                   +----+----+----+----+----+----+----+----+                    
  1   .030   .072                   .  |* .                         .177   .674 
  2  -.018   .072                   .  *  .                         .243   .885 
  3   .040   .071                   .  |* .                         .556   .907 
  4  -.068   .071                   . *|  .                        1.466   .833 
  5  -.048   .071                   . *|  .                        1.930   .859 
  6  -.171   .071                   ***|  .                        7.745   .257 
  7  -.040   .071                   . *|  .                        8.069   .327 
  8   .042   .070                   .  |* .                        8.425   .393 
  9   .126   .070                   .  |***                       11.644   .234 
 10   .052   .070                   .  |* .                       12.205   .272 
 11   .186   .070                   .  |**.*                      19.258   .057 
 12   .038   .070                   .  |* .                       19.556   .076 
 13   .017   .069                   .  *  .                       19.616   .105 
 14  -.088   .069                   .**|  .                       21.243   .096 
 15   .035   .069                   .  |* .                       21.494   .122 
 16   .073   .069                   .  |* .                       22.627   .124 
                                                  
Plot Symbols:      Autocorrelations *     Two Standard Error Limits .           
                                                  
Total cases:  192     Computable first lags:  190                               



Tracking the Inflation Rate: Outliers in ARIMA Analysis 105

 

In the Initial Values for Estimation group, select Apply from previous model. This means
that ARIMA should use the final solution of the most recent ARIMA command (that in
Figure 8.14) as an initial estimate. Since the inflat series is almost identical to inflat_1,
this a good initial estimate and ARIMA will converge on a solution more quickly.

Execute the ARIMA command. A portion of the output is shown in Figure 8.17.
ARIMA reports that an imbedded missing value is present, and that Kalman filtering
will be used for estimation. The estimates in Figure 8.17 are close to those in Figure
8.14. Sometimes the discrepancies will be larger. In general, estimates with Kalman fil-
tering will take longer but will be more reliable because they use all the data.

The Validation Period

At this point you are ready to see how well the model performs in the validation period.
From the menus choose:

Data
Select Cases...

Select All Cases and then repeat the ARIMA analysis. As you can see, the model con-
tinues to fit the series well in the validation period. 

Figure 8.16 ARIMA Options dialog box
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Another Approach 
In this chapter, we simply removed an observation that was due to factors beyond those
normally influencing the series. In Chapter 11, we will see how to include such factors
explicitly in a model—a technique known as intervention analysis.

Figure 8.17 ARIMA with missing data 
Split group number: 1  Series length: 132
Number of cases containing missing values: 1
Kalman filtering will be used for estimation.

Termination criteria:
Parameter epsilon: .001
Maximum Marquardt constant: 1.00E+09
SSQ Percentage: .001
Maximum number of iterations: 10

Initial values:

AR1        .38924
MA1        .82392

Marquardt constant = .001
Adjusted sum of squares = .00066588

Conclusion of estimation phase.
Estimation terminated at iteration number 1 because:
   Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS:

Number of residuals  130
Standard error       .00227366
Log likelihood       607.36132
AIC                  -1210.7226
SBC                  -1204.9876

            Analysis of Variance:

               DF  Adj. Sum of Squares    Residual Variance
Residuals     128            .00066588            .00000517

           Variables in the Model:

               B         SEB     T-RATIO   APPROX. PROB.
AR1    .38909849   .12830115    3.032697       .00293489
MA1    .82383779   .07980484   10.323155       .00000000

The following new variables are being created:

  Name        Label

  FIT_5       Fit for INFLAT from ARIMA, MOD_15 NOCON
  ERR_5       Error for INFLAT from ARIMA, MOD_15 NOCON
  LCL_5       95% LCL for INFLAT from ARIMA, MOD_15 NOCON
  UCL_5       95% UCL for INFLAT from ARIMA, MOD_15 NOCON
  SEP_5       SE of fit for INFLAT from ARIMA, MOD_15 NOCON
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Consumption of Spirits: Correlated 
Errors in Regression

In this chapter, we use regression methods, as we did in Chapter 5. This time we will
look more closely at the assumption underlying regression analysis and particularly at
the problem of autocorrelated errors. 

The Durbin-Watson Data 
The Durbin-Watson data (Durbin & Watson, 1951) consist of three log-transformed se-
ries: the consumption of alcoholic spirits in England between 1870 and 1938, real per-
capita income, and an inflation-adjusted price index. Our goal is to develop a regression
model in which income and price predict consumption of spirits. First we apply some
smoothing techniques to the spirit-consumption series. 

Smoothing the Series 
The initial step is always to plot the time series. First we will create a date variable, so
we can label the plot with dates. From the menus choose:

Data
Define Dates...

Scroll to the top of the Cases Are list and select the first item, Years. The data were
recorded for each year, starting with 1870, so type 1870 in the Year text box in the First
Case Is group. Click OK. This creates two new variables, year_ and date_. To obtain a
sequence plot, from the menus choose:

Graphs
Sequence...

Move consump to the Variables list and the variable date_ to the Time Axis Labels
box. Figure 9.1 shows the resulting chart. 

9
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The data points in Figure 9.1 are not scattered randomly across the plot. With the excep-
tion of the years around World War I, consumption of spirits in each year was close to
that in the previous year. Over the longer period, a decline in consumption seems to be-
gin sometime around 1910. The most striking pattern is that the points line up into a
squiggly line across the plot, with only occasional jumps. In other words, the value of
consump acts as if it has a memory—it does not change much from one year to the next.
In statistical terms, the consumption of spirits is positively autocorrelated. 

Autocorrelation is typical of time series analysis. It reflects the fact that most things
you measure turn out to be about what they were the last time you measured them. If
they are not—perhaps because too long a period intervenes between measurements—
the time series degenerates into the random pattern called white noise. 

Fitting a Curve to the Data: Curve Estimation 

The Curve Estimation procedure, which we used in Chapter 5, determines how best to
draw any of about a dozen simple types of curves through your data. It then reports how
well this best curve fits and generates new time series showing the fitted value, or pre-
diction; the error; and confidence limits around the fitted value. 

The simplest kind of curve is a straight line. To fit a straight line to the consump
series, from the menus choose:

Analyze
Regression �

Curve Estimation...

Move consump to the Dependent(s) list, and in the Independent group select Time. In
the Models group, Linear is selected by default. Since we will be plotting a detailed chart

Figure 9.1 Initial plot: Consumption of spirits
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by using the Sequence Charts dialog box, deselect Plot models. Click Save to open the
Curve Estimation Save dialog box. In the Save Variables group, select Predicted values,
Residuals, and Prediction intervals. 

Figure 9.2 shows the output. The prediction intervals are lcl_1 and ucl_1. 

To plot the original series, the linear model, and the prediction intervals all on one plot,
from the menus choose:

Graphs
Sequence...

In the Sequence Charts dialog box, move consump, fit_1, lcl_1, and ucl_1 to the Vari-
ables list. Move date_ to the Time Axis Labels box, if it is not already there. The chart
is shown in Figure 9.3. 

Although the values of consump shown in Figure 9.3 all lie within the confidence limits,
the straight line is not an acceptable model for the series because of the pronounced pat-

Figure 9.2 Fitting a straight line 
 Dependent Mth   Rsq  d.f.       F  Sigf      b0      b1                        
                                                  
  CONSUMP  LIN  .820    67  305.97  .000  2.1989  -.0122                        
                                                  
The following new variables are being created:                                  
                                                  
  Name        Label                                                             
                                                  
  FIT_1       Fit for CONSUMP from CURVEFIT, MOD_2 LINEAR                       
  ERR_1       Error for CONSUMP from CURVEFIT, MOD_2 LINEAR                     
  LCL_1       95% LCL for CONSUMP from CURVEFIT, MOD_2 LINEAR                   
  UCL_1       95% UCL for CONSUMP from CURVEFIT, MOD_2 LINEAR 

Figure 9.3 Sequence plot with prediction intervals



110 Chapter 9

tern in the residuals. For the first couple of decades, consumption is below the linear pre-
diction; then consumption rises above the line and remains there until about 1920; and
from then on consumption remains below the line.   

Whenever there is a pattern in the residuals, you should try to improve your model
so that it explains the pattern. A parabola, or quadratic curve, might fit the consumption
series rather well. To find out, open the Curve Estimation dialog box again and in the
Models group deselect Linear and then select Quadratic. Click Save, and make sure that
Predicted values, Residuals, and Prediction intervals are still selected. The output is
shown in Figure 9.4.

  

To plot the quadratic model and its prediction intervals, from the menus choose:

Graphs
Sequence...

In the Sequence Charts dialog box, leave consump in the Variables list, but move fit_1,
lcl_1, and ucl_1 out, replacing them with fit_2, lcl_2, and ucl_2. Move date_ to the Time
Axis Labels box, if it is not already there. The plot is shown in Figure 9.5.

Figure 9.4 Fitting a quadratic curve (parabola) 
 Dependent Mth   Rsq  d.f.       F  Sigf      b0      b1      b2                
                                                  
  CONSUMP  QUA  .952    66  649.97  .000  1.9710   .0070  -.0003                
                                                  
The following new variables are being created:                                  
                                                  
  Name        Label                                                             
                                                  
  FIT_2       Fit for CONSUMP from CURVEFIT, MOD_4 QUADRATIC                    
  ERR_2       Error for CONSUMP from CURVEFIT, MOD_4 QUADRATIC                  
  LCL_2       95% LCL for CONSUMP from CURVEFIT, MOD_4 QUADRATIC                
  UCL_2       95% UCL for CONSUMP from CURVEFIT, MOD_4 QUADRATIC
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The fit is reasonably good. The consump series stays close to the fit_2 series throughout
the period. You have made no attempt to understand the factors affecting consumption
of spirits in the years 1870–1938, but you have found a simple curve—a parabola—that
comes reasonably close to fitting the data. 

 Forecasting with Curve Estimation

Once you have found a curve that fits the series well, you can use it to forecast. With the
Curve Estimation procedure, there is no theory behind the forecast—the program simply
extends the curve. When the curve fits well, this is a very straightforward method of short-
term forecasting. It’s not reliable for more than a few time periods unless you have good
reason to believe that the series really is following the kind of curve that you specified. 

 To get forecasts with the Curve Estimation procedure, from the menus choose:

Analyze
Regression �

Curve Estimation...

The variable consump is probably already in the Variables list from the previous Curve
Estimation procedure, and Quadratic is selected. Click Save to open the Curve Estima-
tion Save dialog box. In the Predict Cases group, select Predict through year and type
1945 in the Year box. Predicted Values, Residuals, and Prediction intervals should all
be selected as before. Then return to the Sequence Charts dialog box and request a plot
of consump, fit_3, lcl_3, and ucl_3. The plot is shown in Figure 9.6. 

Figure 9.5 Plot of quadratic model
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Notice that the forecast simply continues the same curve that seemed to fit the ex-
isting data. The quadratic curve is sloping down sharply in 1938, so the Curve Estimation
procedure predicts that consumption of spirits will continue to decline at an ever-in-
creasing rate. Sooner or later, any forecast of this type will become obviously wrong—
the prediction may drop below zero, for example. And if anything were to happen during
the forecast years 1939–1945 that affected consumption of spirits, the series might
deviate far from your prediction. 

Regression Methods 
The Curve Estimation procedure looked for patterns in the spirit-consumption data as if
consumption were an unexplained process, having a life of its own. Often you know that
other variables affect the level of a time series and you want to use them in a regression
analysis to understand or predict it. Time series data present special problems for regres-
sion analysis because the statistical assumptions underlying regression analysis are
frequently invalid for time series. 

Note: This section assumes a basic understanding of ordinary regression. If you are
unfamiliar with regression analysis, consult the SPSS Base system documentation. 

Figure 9.6 Forecasting with Curve Estimation
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Ordinary Least-Squares Regression 

Durbin and Watson’s data on the consumption of spirits include two explanatory vari-
ables, real per-capita income and the adjusted price level of the spirits in question. To
run an ordinary regression model with residuals analysis, from the menus choose:

Analyze
Regression �

Linear...

This opens the Linear Regression dialog box. Move the variable consump to the Depen-
dent box and income and price to the Independent(s) list, as shown in Figure 9.7. 

Click Plots and in the Standardized Residual Plots group, select Normal probability plot.
Click Continue and then click Statistics. In the Residuals group, select Durbin-Watson,
Casewise diagnostics, and All cases. Click Continue to return to the Linear Regression
dialog box and click Save. Select Unstandardized in both the Predicted Values and the
Residuals groups.

Some of the output from this regression appears in Figure 9.8. Price has a statistically
significant regression coefficient (T = −24.5), but income does not (T = −1.1). R2 is very
high, as is typical of regression with time series. However, residuals analysis reveals that
the assumptions underlying these statistics are violated. 

Figure 9.7 Linear Regression dialog box
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Residuals Analysis 

Figure 9.9 shows the residuals analysis produced by the regression analysis. The
Durbin-Watson statistic is 0.24878. Values of this statistic range from 0 to 4, with values
less than 2 indicating positively correlated residuals and values greater than 2 indicating
negatively correlated residuals. From the table in Appendix A, you can see that this val-
ue is significant at the 0.01 level. The residuals are positively autocorrelated. 

Figure 9.8 Output from ordinary regression 
           * * * *   M U L T I P L E   R E G R E S S I O N   * * * *            
                                                  
                                                  
Listwise Deletion of Missing Data                                               
                                                  
Equation Number 1    Dependent Variable..   CONSUMP                             
                                                  
Beginning Block Number  1.  Method:  Enter      INCOME   PRICE                  
                                                  
                                                  
Variable(s) Entered on Step Number                                              
   1..    PRICE                                                                 
   2..    INCOME                                                                
                                                  
                                                  
Multiple R           .97766                                                     
R Square             .95581                                                     
Adjusted R Square    .95447                                                     
Standard Error       .05786                                                     
                                                  
Analysis of Variance                                                            
                    DF      Sum of Squares      Mean Square                     
Regression           2             4.77917          2.38959                     
Residual            66              .22095           .00335                     
                                                  
F =     713.78788       Signif F =  .0000                                       
                                                  
                                                  
------------------ Variables in the Equation ------------------                 
                                                  
Variable              B        SE B       Beta         T  Sig T                 
                                                  
INCOME         -.120141     .108436   -.042713    -1.108  .2719                 
PRICE         -1.227648     .050052   -.945573   -24.527  .0000                 
(Constant)     4.606734     .152035               30.301  .0000                 
                                                  
                                                  
End Block Number   1   All requested variables entered.                         
                                                  
From Equation   1:   2 new variables have been created.                         
                                                  
  Name       Contents                                                           
  ----       --------                                                           
                                                  
  PRE_1    Predicted Value                                                   
  RES_1    Residual                                                          
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The normal probability plot shown in Figure 9.10 indicates that the residuals are nor-
mally distributed, as they should be. (This plot shows the residuals on the vertical axis
and the expected value—if the residuals were normally distributed—on the horizontal
axis. If the residuals are normally distributed, the cases fall near the diagonal, as they do
here.) 

The main problem uncovered by residuals analysis so far is the indication from the
Durbin-Watson statistic of positively autocorrelated residuals. The casewise output in
Figure 9.11 confirms this problem. The residuals snake back and forth across the center
line and are obviously not randomly distributed. 

Figure 9.9 Residuals analysis 
           * * * *   M U L T I P L E   R E G R E S S I O N   * * * *            
                                                  
Equation Number 1    Dependent Variable..   CONSUMP                             
                                                  
                                                  
Residuals Statistics:                                                           
                                                  
                   Min           Max     Mean  Std Dev   N                      
                                                  
*PRED           1.2822        2.0922   1.7704    .2651  69                      
*RESID          -.1352         .1154    .0000    .0570  69                      
*ZPRED         -1.8413        1.2138    .0000   1.0000  69                      
*ZRESID        -2.3372        1.9951    .0000    .9852  69                      
                                                  
Total Cases =       69                                                          
                                                  
                                                  
Durbin-Watson Test =    .24878 

Figure 9.10 Normal probability plot
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Figure 9.11 Casewise plot of residuals from Linear Regression
           -3.0      0.0      3.0                                               
  Case #    O:........:........:O   CONSUMP       *PRED      *RESID             
       1    .     *   .         .    1.9565      2.0403      -.0838             
       2    .     *   .         .    1.9794      2.0535      -.0741             
       3    .     *   .         .    2.0120      2.0856      -.0736             
       4    .       * .         .    2.0449      2.0922      -.0473             
       5    .         *         .    2.0561      2.0580 -1.9394E-03             
       6    .         .*        .    2.0678      2.0401       .0277             
       7    .         .*        .    2.0561      2.0353       .0208             
       8    .         *         .    2.0428      2.0355  7.2622E-03             
       9    .         .*        .    2.0290      2.0044       .0246             
      10    .         *         .    1.9980      1.9903  7.6955E-03             
      11    .        *.         .    1.9884      2.0108      -.0224             
      12    .        *.         .    1.9835      1.9983      -.0148             
      13    .        *.         .    1.9773      1.9913      -.0140             
      14    .        *.         .    1.9748      1.9905      -.0157             
      15    .         *         .    1.9629      1.9633 -3.7952E-04             
      16    .         .*        .    1.9396      1.9272       .0124             
      17    .         .*        .    1.9309      1.9139       .0170             
      18    .         .*        .    1.9271      1.9063       .0208             
      19    .         .*        .    1.9239      1.9033       .0206             
      20    .         . *       .    1.9414      1.9069       .0345             
      21    .         .  *      .    1.9685      1.9047       .0638             
      22    .         .  *      .    1.9727      1.9058       .0669             
      23    .         .  *      .    1.9736      1.9138       .0598             
      24    .         . *       .    1.9499      1.9088       .0411             
      25    .         .  *      .    1.9432      1.8807       .0625             
      26    .         .    *    .    1.9569      1.8649       .0920             
      27    .         .    *    .    1.9647      1.8644       .1003             
      28    .         .    *    .    1.9710      1.8770       .0940             
      29    .         .   *     .    1.9719      1.8953       .0766             
      30    .         .     *   .    1.9956      1.8802       .1154             
      31    .         .    *    .    2.0000      1.9112       .0888             
      32    .         .   *     .    1.9904      1.9060       .0844             
      33    .         .   *     .    1.9752      1.9061       .0691             
      34    .         . *       .    1.9494      1.9136       .0358             
      35    .         .*        .    1.9332      1.9198       .0134             
      36    .         *         .    1.9139      1.9180 -4.0622E-03             
      37    .        *.         .    1.9091      1.9214      -.0123             
      38    .        *.         .    1.9139      1.9317      -.0178             
      39    .       * .         .    1.8886      1.9226      -.0340             
      40    .  *      .         .    1.7945      1.9280      -.1335             
      41    .     *   .         .    1.7644      1.8464      -.0820             
      42    .     *   .         .    1.7817      1.8509      -.0692             
      43    .    *    .         .    1.7784      1.8659      -.0875             
      44    .     *   .         .    1.7945      1.8755      -.0810             
      45    .     *   .         .    1.7888      1.8667      -.0779             
      46    .    *    .         .    1.8751      1.9805      -.1054             
      47    .  *      .         .    1.7853      1.9205      -.1352             
      48    .      *  .         .    1.6075      1.6584      -.0509             
      49    .      *  .         .    1.5185      1.5801      -.0616             
      50    .         . *       .    1.6513      1.6050       .0463             
      51    .         . *       .    1.6247      1.5916       .0331             
      52    .         *         .    1.5391      1.5477 -8.5632E-03             
      53    .         . *       .    1.4922      1.4565       .0357             
      54    .         .  *      .    1.4606      1.4056       .0550             
      55    .         . *       .    1.4551      1.4082       .0469             
      56    .         . *       .    1.4425      1.4076       .0349             
      57    .         . *       .    1.4023      1.3726       .0297             
      58    .         .*        .    1.3991      1.3785       .0206             
      59    .         *         .    1.3798      1.3751  4.7159E-03             
      60    .         .*        .    1.3782      1.3677       .0105             
      61    .         *         .    1.3366      1.3453 -8.7389E-03             
      62    .         *         .    1.3026      1.3110 -8.4091E-03             
      63    .       * .         .    1.2592      1.2966      -.0374             
      64    .        *.         .    1.2635      1.2822      -.0187             
      65    .       * .         .    1.2549      1.2846      -.0297             
      66    .       * .         .    1.2527      1.2898      -.0371             
      67    .        *.         .    1.2763      1.3027      -.0264             
      68    .       * .         .    1.2906      1.3275      -.0369             
      69    .      *  .         .    1.2721      1.3347      -.0626             
  Case #    O:........:........:O   CONSUMP       *PRED      *RESID             
           -3.0      0.0      3.0                                               
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Autocorrelated residuals commonly occur when you have omitted important explanato-
ry variables from the regression analysis. When the residuals from a regression analysis
are strongly autocorrelated, you cannot rely on the results. The significance levels re-
ported for the regression coefficients are wrong, and the R2 value does not accurately
summarize the explanatory power of the independent variables. 

Plotting the Residuals 

It is always a good idea to plot the residuals from a regression analysis against the
predicted values and also against each of the predictor variables. You can get plots of
the residuals, predicted values, and the dependent variable within the Linear Regression
procedure by specifying scatterplots in the Linear Regression Plots dialog box.

You can also create scatterplots of any saved variables. After you have run the Linear
Regression procedure and saved the variables, from the menus choose:

Graphs
Scatter...

Specify the variables you want to plot. For more information on scatterplots, see the
SPSS Base system documentation. 

Figure 9.12 shows the plots of the residuals (res_1) versus the predicted values
(pre_1), residuals versus income, and residuals versus price. 
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Figure 9.12  Residual scatterplots
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The plot shows that the variance of the residuals (their vertical “spread”) increases as
the predicted values increase. Residuals should show no pattern, and this violates one of
the assumptions of regression analysis. In addition, the other two plots reveal that the
variance of the residuals increases with increasing income and decreases with increasing
price. 

Autocorrelation Plots 

The most glaring problem revealed by the residuals analysis is the autocorrelation of the
residuals. Autocorrelation is common in time series analysis, so SPSS provides proce-
dures to calculate and plot the sample autocorrelation function (ACF) and others like it.
You have seen these procedures in earlier chapters. To produce autocorrelations and par-
tial autocorrelations, from the menus choose:

Graphs
Time Series �

Autocorrelations...

• When Autocorrelations is selected in the Display group, the Autocorrelations proce-
dure calculates and plots the autocorrelation function, which gives the correlation be-
tween values of the series and lagged values of the series, for different lags. 

• When Partial autocorrelations is selected in the Display group, the Autocorrelations
procedure calculates and plots the partial autocorrelation function, which gives the
autocorrelations controlling for intervening lags. 

Figure 9.13 shows autocorrelations and partial autocorrelations of the variable res_1,
which was created by the Linear Regression procedure. As you can see, the plot shows
the actual values of the ACF and the Box-Ljung statistic, which tests whether an ob-
served ACF could come from a population in which the autocorrelations were 0 at all
lags. 
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The autocorrelations start quite high and fade. The first-order autocorrelation is 0.851,
the second-order is 0.738, and the third-order is 0.629. They die out by the eighth lag,
then become negative, and then start to die out again. There is a single spike in the PACF
plot. This pattern indicates that the regression residuals are those of a first-order autore-
gressive process. (You know it is a first-order process from the PACF, which is nearly 0
from lag 2 on. After removing the effect of the first-order autocorrelation, no autocorre-
lation remains at lag 2. Refer to Appendix B for the typical ACF and PACF plots of var-
ious types of process.) 

Figure 9.13 Autocorrelations of residuals 
 Autocorrelations:   RES_1     Residual                                        
                                                  
     Auto- Stand.                                                               
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 
                   +----+----+----+----+----+----+----+----+                    
  1   .851   .118                 .    |****.************         52.156   .000 
  2   .738   .117                 .    |****.**********           91.932   .000 
  3   .629   .116                 .    |****.********            121.281   .000 
  4   .500   .115                 .    |****.*****               140.155   .000 
  5   .392   .114                 .    |****.***                 151.896   .000 
  6   .284   .113                 .    |****.*                   158.172   .000 
  7   .149   .112                  .   |***.                     159.932   .000 
  8   .005   .112                  .   *   .                     159.934   .000 
  9  -.081   .111                  . **|   .                     160.464   .000 
 10  -.199   .110                  ****|   .                     163.750   .000 
 11  -.255   .109                 *.***|   .                     169.235   .000 
 12  -.308   .108                **.***|   .                     177.367   .000 
 13  -.395   .107              ****.***|   .                     191.010   .000 
 14  -.432   .106             *****.***|   .                     207.602   .000 
 15  -.431   .105             *****.***|   .                     224.427   .000 
 16  -.389   .104              ****.***|   .                     238.404   .000 
                                                  
Plot Symbols:      Autocorrelations *     Two Standard Error Limits .           
                                                  
Total cases:  69     Computable first lags:  68                                 
                                                  
                                                  
Partial Autocorrelations:   RES_1     Residual                                
                                                  
   Pr-Aut- Stand.                                                               
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1                    
                   +----+----+----+----+----+----+----+----+                    
  1   .851   .120                 .    |****.************                       
  2   .049   .120                 .    |*   .                                   
  3  -.035   .120                 .   *|    .                                   
  4  -.133   .120                 . ***|    .                                   
  5  -.027   .120                 .   *|    .                                   
  6  -.064   .120                 .   *|    .                                   
  7  -.177   .120                 .****|    .                                   
  8  -.180   .120                 .****|    .                                   
  9   .074   .120                 .    |*   .                                   
 10  -.174   .120                 . ***|    .                                   
 11   .089   .120                 .    |**  .                                   
 12  -.076   .120                 .  **|    .                                   
 13  -.189   .120                 .****|    .                                   
 14   .020   .120                 .    *    .                                   
 15   .059   .120                 .    |*   .                                   
 16   .131   .120                 .    |*** .                                   
                                                  
Plot Symbols:      Autocorrelations *     Two Standard Error Limits .           
                                                  
Total cases:  69     Computable first lags:  68                                    
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Plotting the Regression Results 

To see how well ordinary regression did, you can produce a sequence plot of consump
together with the regression predictions (pre_1), as in Figure 9.14. 

 

The predictions from the Linear Regression procedure, using the two predictor variables
price and income, are noticeably better than those from the Curve Estimation procedure.
These fitted values do a good job of tracking the “bounce” in consumption during the
First World War, 1914–1918. (There was also a dip in the relative price of spirits during
those years, which partially explains the bounce in consumption.) 

However, ordinary regression with serially correlated time series is unreliable. It isn’t
hard to understand why this is true. Most time series have some trend, either up or down,
and any two trending time series will correlate simply because of the trends, regardless
of whether they are causally related or not. An increasing trend will likely continue to
increase, but that doesn’t mean you should use just any other trend to predict that it will
continue to increase. When you regress one time series on another, you want estimates
of the linear relationship apart from accidental similarities resulting from autocorrela-
tion. Trends provides a procedure, Autoregression, that allows you to do this. 

Regression with Autocorrelated Error 

The Autoregression procedure estimates true regression coefficients from time series
with first-order autocorrelated errors. It offers three algorithms. Two algorithms (Prais-
Winsten and Cochrane-Orcutt) transform the regression equation to remove the autocor-
relation. The third (maximum likelihood), shown here, uses the same algorithm that the
ARIMA procedure uses for estimating autocorrelation. Maximum likelihood, or ML, es-

Figure 9.14 Predictions from Linear Regression
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timation is more demanding computationally but gives better results—and it can tolerate
missing data in the series. To use the Autoregression procedure, from the menus choose:

Analyze
Time Series �

Autoregression...

This opens the Autoregression dialog box, as shown in Figure 9.15.

Move consump to the Dependent box and income and price to the Independent(s) list.
The method Exact maximum-likelihood is selected by default. With this method, the Au-
tocorrelations procedure performs many calculations. This takes a while, but it gives the
best possible estimates. Figure 9.16 shows some of the output. 

Figure 9.15 Autoregression dialog box
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Compare the Autocorrelation regression coefficients in Figure 9.16 with those from the
Linear Regression procedure in Figure 9.8. Ordinary regression showed a small negative
relationship between income and consump, one that was not statistically significant.
The Autoregression procedure shows a statistically significant positive relationship.
Both ordinary regression and the Autoregression procedure show a strong and signifi-
cant negative relationship between price and consump. The estimates from the Autore-
gression procedure are much more likely to represent the true relationships among these
variables because they take the correlated errors into account. 

Plotting the Fit from Autoregression 

Figure 9.17 shows a sequence plot of the fit_4 values from the above Autoregression pro-
cedure, along with the confidence limits. Notice how closely the predicted values track
the original series, and how narrow the confidence limits are. That is because this regres-
sion model, unlike the previous one, takes note of the autocorrelation in the consumption

Figure 9.16 Maximum-likelihood regression with autocorrelated errors 
Split group number: 1  Series length: 69                                        
Number of cases skipped at end because of missing values: 7                     
Melard’s algorithm will be used  for estimation.                                
                                                  
                                                  
                                                  
Conclusion of estimation phase.                                                 
Estimation terminated at iteration number 5 because:                            
   All parameter estimates changed by less than .001                            
                                                  
FINAL PARAMETERS:                                                               
                                                  
Number of residuals  69                                                         
Standard error       .02266242                                                  
Log likelihood       163.29783                                                  
AIC                  -318.59566                                                 
SBC                  -309.65925                                                 
                                                  
                                                  
            Analysis of Variance:                                               
                                                  
              DF  Adj. Sum of Squares    Residual Variance                      
Residuals     65            .03554182            .00051359                      
                                                  
                                                  
           Variables in the Model:                                              
                                                  
                     B         SEB      T-RATIO   APPROX. PROB.                 
AR1           .9933525   .01169890    84.909921       .00000000                 
INCOME        .6233058   .14689313     4.243260       .00007154                 
PRICE        -.9280837   .07816891   -11.872797       .00000000                 
CONSTANT     2.4488569   .37368189     6.553320       .00000000                 
                                                  
The following new variables are being created:                                  
                                                  
  Name        Label                                                             
                                                  
  FIT_4       Fit for CONSUMP from AREG, MOD_10                                 
  ERR_4       Error for CONSUMP from AREG, MOD_10                               
  LCL_4       95% LCL for CONSUMP from AREG, MOD_10                             
  UCL_4       95% UCL for CONSUMP from AREG, MOD_10                             
  SEP_4       SE of fit for CONSUMP from AREG, MOD_10                            
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series. Each year’s consumption of spirits is very close to that of the previous year, with
changes that may be due to changes in price and income. This is a common situation in
time series analysis, and one to which the Autoregression procedure is particularly suited. 

 

Forecasting with the Autoregression Procedure 

In “Forecasting with Curve Estimation” on p. 111, we defined the years 1939–1945 as
the forecast period in the Curve Estimation Save dialog box. Yet the Autoregression pro-
cedure did not produce forecasts. There is a simple reason for this. Autoregression mod-
els are based not only on the main series but also on information in the predictor
variables. To forecast with the Autoregression procedure, you need to know the values
of the predictor variables for the forecast period. 

Since we have no data for the prediction period, we must first extend the price and
income series. One way to do this is with the Curve Estimation procedure. From the
menus choose:

Analyze
Regression �

Curve Estimation...

This opens the Curve Estimation dialog box, as shown in Figure 9.18.

Figure 9.17 Fitted values and confidence limits from the Autoregression procedure
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Move income and price into the Dependent(s) box. For Independent, select Time. Select
the Linear model, and deselect Plot Models. Click Save. This opens the Curve Estima-
tion Save dialog box, as shown in Figure 9.19. In the Save Variables group, select Pre-
dicted values. Then click Continue and OK. Curve Estimation creates variables fit_5,
which contains predicted values for income, and fit_6, which contains predicted values
for price.

Figure 9.18 Curve Estimation dialog box

Figure 9.19 Curve Estimation Save dialog box



126 Chapter 9

In this example, we use the linear model. You can extend a series any way you like—as
long as you believe the results. 

Because forecasts for consump through 1945 were created earlier with Curve Esti-
mation (Figure 9.6), the series income and price have already been extended to include
the forecast period 1939–1945. However, the observations in this period were assigned
system-missing values for these two variables. To replace the missing values in the fore-
cast period with predicted values for income and price, from the menus choose:

Transform
Compute...

This displays the Compute Variable dialog box. Type income into the Target Variable
list, spelling it exactly as shown here. You want to modify the values of this existing
variable, not create a new variable. Now select fit_5, the forecast values for income, in
the source variable list, and move it into the Numeric Expression text box. Click If to
open the Compute Variable If Cases dialog box, as shown in Figure 9.20.

Select Include if case satisfies condition. Scroll the Functions list until you see
SYSMIS(numvar). This function returns the logical value True if the numeric variable
within its parentheses has the system-missing value. Click SYSMIS(numvar), and then
click the Y button to move it into the box above the Functions list. It appears in that
box with a question mark highlighted within its parentheses. Select income in the source
variable list (to the left) and click W. The variable name income replaces the question
mark to form the expression SYSMIS(income). Click Continue to return to the Compute
Variable dialog box, and notice that the conditional expression is now displayed next to
the If button. Click OK to execute the command.

Figure 9.20 Compute Variable If Cases dialog box
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Before changing values of an existing variable, such as income, SPSS asks if it is OK
to do so, in case you typed an existing variable name by mistake. Click OK. Then go
back into the Compute Variable dialog box and do the same transformation for price:

• Replace income with price in the Target Variable box.

• Replace fit_5 with fit_6 in the Numeric Expression text box.

• Click If. Highlight income in the expression, and then select price in the source vari-
able list and move it into the expression, replacing income. (Make sure the parenthe-
ses are intact. If necessary, you can delete the entire expression, move the SYSMIS
function back in, and then move price into the parentheses.)

When you execute this transformation, you must again confirm that it is OK to replace
the values of the existing variable price.

Now you are ready to predict consump with the Autoregression procedure—the pre-
dictor variables price and income both have projected values through the forecast peri-
od. From the menus choose:

Analyze
Time Series �

Autoregression...

This opens the Autoregression dialog box, with your previous specifications intact. You
do not need to change any of the specifications; the two independent variables, income
and price, now have nonmissing values through the forecast period. Click OK to run the
command again.

Figure 9.21 shows a sequence plot of consump, the new forecast series fit_7 from the
Autoregression procedure, and the extended independent variables income and price.

Figure 9.21 Sequence chart of consump, fit_7, income, and price
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The projections are not startling. Both income and price have been projected to show a
small positive trend in the forecast period 1939–1945, based on their trend in the histor-
ical period. In Figure 9.16, the negative coefficient of price is greater (in absolute value)
than the positive coefficient of income, so the model predicts slowly declining con-
sumption during the forecast years. 

This projection depends upon both the model developed with the Autoregression pro-
cedure and the projections we made for income and price using the Curve Estimation
procedure. Either of these could turn out to be unreliable during the forecast period.
Nevertheless, the Autoregression projections—based on realistic estimates of the effect
of price and income upon consumption—are much better than those from the Curve Es-
timation procedure or from Linear Regression. 

Summary of Regression Methods 

The ordinary least-squares (OLS) regression algorithm used by the Linear Regression
procedure gave inaccurate results because the autocorrelation in the time series violated
its assumption of independence in the residuals: 

• It overestimated the influence of price on consumption because during this period
price showed a more consistent trend that could be matched to the trend in consump-
tion. OLS regression with time series data often gives undue importance to trends that
arise from other causes.

• It underestimated the influence of income on consumption. There was no statistically
significant relationship between these two variables with OLS (Figure 9.8), but there
was one when the Autoregression procedure corrected for autocorrelation (Figure
9.16). 

• It underestimated the standard errors of the coefficients, which indicate the precision
with which b’s are estimated. 

The Trends procedure Autoregression corrected these problems and gave more reliable
estimates. 

How to Obtain an Autoregression Analysis
To estimate the parameters and goodness-of-fit of a first-order autoregressive model,
from the menus choose:

Analyze
Time Series �

Autoregression...

This opens the Autoregression dialog box, as shown in Figure 9.22.
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The numeric variables in your data file appear in the source list. Move one variable into
the Dependent box and one or more variables into the Independent(s) list.

Method. You can select one of three alternatives for the method by which the autoregres-
sive model is estimated:

� Exact maximum-likelihood. This method can handle missing data within the series and
can be used when one of the independent variables is the lagged dependent variable.

� Cochran-Orcutt. This is a simple and widely used method for estimating a first-order
autoregressive model. It cannot be used when a series contains imbedded missing
values.

� Prais-Winsten. This is a generalized least-squares method. It cannot be used when a
series contains imbedded missing values. 

You can also specify the following: 

� Include constant in model. The regression model includes a constant term. This is the
default. To suppress this term and obtain regression through the origin, deselect this
item.

Saving Predicted Values and Residuals

To save predicted values, confidence limits, or residuals as new variables, or to produce
forecasts past the end of your dependent series, click Save in the Autoregression dialog
box. This opens the Autoregression Save dialog box (see Figure 9.23). The current esti-
mation period is shown at the bottom of this box.

Figure 9.22 Autoregression dialog box 
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Create Variables. The Autoregression procedure can create five new variables: fitted (pre-
dicted) values, residuals, the standard errors of the prediction, and the lower and upper
confidence limits of the prediction. To control the creation of new variables, you can
choose one of these alternatives:

� Add to file. The five new series Autoregression creates are saved as regular variables
in your working data file. Variable names are formed from a three-letter prefix, an
underscore, and a number. This is the default.

� Replace existing. The five new series Autoregression creates are saved as temporary
variables in your working data file. At the same time, any existing temporary vari-
ables created by time series commands are dropped when you run the Autoregression
procedure. Variable names are formed from a three-letter prefix, a pound sign (#),
and a number.

� Do not create. The new variables are not added to the working data file.

If you select either Add to file or Replace existing above, you can select:

� % Confidence intervals. Select either 90, 95, or 99% from the drop-down list.

Predict Cases. If you select either Add to file or Replace existing above, you can specify
a forecast period. Autoregressive forecasts require valid (nonmissing) data for all of the
independent variables.

� Predict from estimation period through last case. Predicts values for all cases with valid
data for the independent variable(s), from the estimation period through the current
end of the file, but does not create new cases. If you are analyzing a range of cases
that starts after the beginning of the file, cases prior to that range are not predicted.

Figure 9.23 Autoregression Save dialog box
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The estimation period, displayed at the bottom of this box, is defined with the Range
dialog box available through the Select Cases option on the Data Menu. If no estima-
tion period has been defined, all cases are used to predict values. This is the default.

� Predict through. Predicts values through the specified date, time, or observation num-
ber, based on the cases in the estimation period. This can be used to forecast values
beyond the last case in the time series. The text boxes that are available for specifying
the end of the prediction period depend on the currently defined date variables. (Use
the Define Dates option on the Data menu to create date variables.) If there are no
defined date variables, you can specify the ending observation (case) number.

New cases created as forecasts have missing values for residuals, whose definition re-
quires an existing value.

Autoregression Options

To control convergence criteria and initial values used in the iterative algorithm, or to
specify the amount of output to be displayed, click Options in the Autoregression dialog
box. This opens the Autoregression Options dialog box, as shown in Figure 9.24.

Initial value of autoregressive parameter (Rho). This is the value from which the iterative
search for the optimal value of rho begins. You can specify any number less than 1 and
greater than −1, although negative values of rho are uncommon in this procedure. The
default is 0.

Convergence Criteria. The convergence criteria determine when the iterative algorithm
stops and the final solution is reported.

Figure 9.24 Autoregression Options dialog box
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Maximum iterations. By default, iteration stops after 10 iterations, even if the algorithm
has not converged. You can specify a positive integer in this text box.

� Sum of squares change. By default, iteration stops if the adjusted sum of squares does
not decrease by 0.001% from one iteration to the next. You can choose a smaller or
larger value for more or less precision in the parameter estimates. For greater preci-
sion it may also be necessary to increase the maximum iterations.

Display. Choose one of these alternatives to indicate how much detail you want to see.

� Initial and final parameters with iteration summary. The Autoregression procedure dis-
plays initial and final parameter estimates, goodness-of-fit statistics, the number of
iterations, and the reason that iteration terminated.

� Initial and final parameters with iteration details. In addition to the above, the Autoregres-
sion procedure displays parameter estimates after each iteration.

� Final parameters only. The Autoregression procedure displays final parameters and
goodness-of-fit statistics.

Additional Features Available with Command Syntax

You can customize your Autoregression analysis if you paste your selections to a syntax
window and edit the resulting AREG command syntax. The additional features are:

• Use of the final estimate of Rho from a previous execution of Autoregression as the
initial estimate for iteration.

• More precise control over convergence criteria.

See the Syntax Reference section of this manual for command syntax rules and for com-
plete AREG command syntax.
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An Effective Decay-Preventive 
Dentifrice: Intervention Analysis

The examples so far have tried to produce models for the typical behavior of a time
series. A technique called intervention analysis concentrates instead on a disruption
in the normal behavior of a series. Intervention analysis was first applied to this series
by Wichern and Jones (1977), and we will follow their analysis. 

The Toothpaste Market Share Data 
In this chapter, we analyze a pair of series containing the weekly market shares of
Colgate and Crest toothpastes during the years 1958 through 1963. At the beginning
of this period, Colgate held a substantial lead in market share. On August 1, 1960, the
Council on Dental Therapeutics of the American Dental Association made an unprec-
edented endorsement of Crest as an aid in preventing tooth decay. As some of you
may remember, Procter and Gamble, the makers of Crest, advertised this endorse-
ment heavily for two weeks (and less heavily thereafter). The effect upon the market
shares of both Crest and Colgate was immediate and dramatic. 

We will use the technique of intervention analysis, introduced by Box and Tiao
(1975), to assess the impact of the ADA endorsement and the subsequent advertising
campaign. The two series we will analyze are crest and colgate, which contain the mar-
ket shares of the two toothpastes. 

Plotting the Market Shares 

Figure 10.1 shows the two series around the time of the endorsement, which occurred
in week 135. The impact of the endorsement is evident.

10
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Intervention Analysis 
The basic strategy of intervention analysis is: 

• Develop a model for the series before intervention. 

• Add one or more dummy variables that represent the timing of the intervention. 

• Reestimate the model, including the new dummy variables, for the entire series. 

• Interpret the coefficients of the dummy variables as measures of the effect of the intervention. 

We will carry out this strategy for both the crest and the colgate data. As a first step,
then, we must develop a model for each series using the first 134 observations. From the
menus choose:

Data
Select Cases...

In the Select Cases dialog box, select Based on time or case range and click Range. In
the Select Cases Range dialog box, enter 1 in the text box for First Case and 134 in the
text box for Last Case. This establishes the range of cases from which the model will be
identified.

Figure 10.1 Market shares of Colgate and Crest 
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Identifying the Models 

The first step is to identify the ARIMA model using the ACF and PACF plots. Since we
assume that the underlying process is similar for the two toothpaste series, we will show
the ACF plot just for one (colgate) (Figure 10.2). 

Figure 10.2 shows that the autocorrelations do not die out rapidly, indicating that the
series is not stationary and must be differenced. Figure 10.3 shows the ACF and PACF
of the differenced series. 

• The ACF shows a spike at lag 1. 

• The PACF attenuates rapidly (if not altogether neatly) from lag 1. 

These plots indicate an MA(1) process. Since the series has been differenced, the overall
identification is ARIMA(0,1,1). 

Figure 10.2 ACF for COLGATE 
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More ARIMA Notation 

To see how intervention analysis works, you must understand how to express an ARI-
MA model as an equation. The only novelty is the “backshift operator” B. 

• For any series, say crest, B(crest) is the series shifted back in time by one observa-
tion. If you index the series, B(crestt) means exactly the same as crestt-1. 

Figure 10.3 ACF and PACF for COLGATE (differenced) 
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• The differences between crestt and crestt-1 are simply crest − B(crest). It is conve-
nient, for the sake of notation, to “factor” this expression:

Using this notation, a random-walk model is simply

An MA(1), or ARIMA(0,0,1), model states that an observation is an average of the current
disturbance and some proportion of the previous disturbance. The proportion is given by
a number θ, which must be between −1 and +1. This translates into the formula 

When you get used to this standard notation, it is not hard to read. The value of crest at time
t equals the disturbance at time t minus θ times the backshifted disturbance—which is the
disturbance at time t−1. (The minus sign before θ is conventional in ARIMA analysis.) 

To get an equation for the ARIMA(0,1,1) model that describes the toothpaste market
shares, you simply substitute the expression for the differences in the crest series into
the MA(1) equation: 

Equation 10.1

That is the equation for an ARIMA(0,1,1) model, as you might find it in an ARIMA
textbook. It says that the change in Crest market share at time t—the left side of the
equation—equals the disturbance at time t minus some fraction (θ) of the disturbance
at time t−1. 

Creating Intervention Variables 

Now that you have a linear equation for the market share at any time prior to the ADA
endorsement, you must figure out a way to incorporate a term for the endorsement it-
self—the “intervention,” as it is called. Figure 10.4 shows values of the market-share
series around the time of the endorsement. 

crest B(crest)– 1 B–( )crest=

1 B–( )crest t disturbance t=

crest t disturbancet θ disturbancet 1––=

crest t disturbancet θ B disturbance t( )–=

crest t 1 θ B–( )disturbance t=

1 B–( )crest t 1 θ B–( )disturbance t=
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You would like to pinpoint precisely when the effect of the endorsement showed up in
the market shares of both toothpastes. The endorsement was advertised most heavily in
weeks 135 and 136. From the listing of the two series you can see that the Crest market
share was volatile during this period; it jumped up in week 135 and again in week 136,
seemed to settle back, and then resumed its high level. The Colgate share dropped sharp-
ly in week 135 and again in week 136, and then basically remained at its new, low level.
A simple model would say that the effect showed up over the two weeks 135 and 136,
perhaps in two stages. 

Dummy Variables 

A variable or series that has only the values 0 or 1 is called a dummy variable. It rep-
resents the presence or absence of something. You can easily include a dummy variable
in a model—just write it into the equation, with a coefficient of its own. Here we call the
coefficient β: 

You want a dummy variable that reflects the presence or absence of the intervention. Prior
to week 135, then, the dummy variable dummy should equal 0. Then β × dummy equals
0 and the predicted market share is given by the rest of the model. Starting with week 135,
dummy should equal 1 and the prediction becomes (rest of the model) + β. By using the
dummy variable you can thus produce a “step” in the prediction—regardless of what the
rest of the model involves. 

Figure 10.4 Data values for weeks 130 through 140

Market share rest of model β dummy( )+=
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The coefficient β must be estimated along with all the rest of the coefficients in the
model. When β is positive, the step goes up (like Crest market share in week 135); when
β is negative, the step goes down (like Colgate market share in week 135). 

To represent the ADA endorsement, whose effect occurred over a two-week period,
you need two dummy variables, one for week 135 and one for week 136. Each will have
a coefficient β that indicates the effect of the endorsement in that week. The equation for
the model becomes 

Equation 10.2

Before you can estimate the coefficients of the dummy variables, you must decide how
to build them. In order to work as described above, they must equal 0 when the interven-
tion is not present and 1 when the intervention is present. 

Steps and Pulses 

The most common types of dummy variables in time series analysis are step functions
and pulse functions. The names are descriptive. A step function is 0 until some crucial
moment comes, when it “steps” immediately to 1. It remains at 1 thereafter. A pulse
function similarly jumps to 1 at a crucial moment but then returns immediately to 0
and remains there. When you represent step and pulse functions by the values of a time
series, the relationship between the two is clear: 

• The differences in a step variable form a pulse variable. (All the differences are 0
except when the step occurs, and that difference is 1—so the differences are a pulse
variable.) 

• The cumulative total of a pulse variable makes a step variable. (The cumulative total
starts as 0, becomes 1 at the time of the pulse, and then never changes.) 

You can easily create variables representing steps or pulses in SPSS using the Compute
Variable dialog box. Here we will create step variables; in “Alternative Methods” on
p. 146 we will create pulse variables. 

First, restore all cases. From the menus choose:

Data
Select Cases...

Select All Cases and click OK. 
Next, create the step variables. From the menus choose: 

Transform
Compute...

This opens the Compute Variable dialog box, as shown in Figure 10.5.

1 B–( )crest t 1 θB–( )disturbance t β1dummy1 β2dummy2++=
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• In the Target Variable text box, type step135.

• Click the Numeric Expression text box and type week_ >= 135.

When you click OK, SPSS calculates the values of the new variable step135. This is a
logical variable—it has the value 1 for cases in which it is true that week_ is greater
than or equal to 135, and the value 0 for cases in which that expression is false. Now
repeat this process, creating another logical variable, step136, with the expression
week_ >= 136.

A Model for the ADA Endorsement 

For the toothpaste market-share series, the “rest of the model” was an ARIMA(0,1,1)
process (Equation 10.1). In other words, the differences in market share followed a first-
order moving average, or MA(1), model. The effect of the intervention on market share
had the shape of a double step function. Crest market share stepped up on week 135 and
again on week 136, while Colgate market share stepped down on each of the two weeks.
You can approach this intervention in either of two ways: 

1. Use two step functions as dummy predictor variables for the original series, using an
ARIMA(0,1,1) model. 

2. Use two pulse functions as dummy predictor variables for the differences in the series,
using an ARIMA(0,0,1) model. 

The two approaches are equivalent, as explained above. A step function in the market-
share series is the same as a pulse function in the differences of the market-share series.

Figure 10.5 Compute Variable dialog box
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Here we choose the first approach. At the end of the chapter, we will discuss the second
method also. 

We have created two dummy variables, as described above. The series step135 takes
its step at week 135; step136 takes its step the following week. After week 136, both of
these dummy variables contribute to the level of the series. 

Specifying Predictor Variables in ARIMA 

The Trends ARIMA procedure allows you to specify one or more predictor variables
(also called regressors) for the series you are analyzing. ARIMA treats these predictors
much like predictor variables in regression analysis—it estimates the coefficients for
them that best fit the data. 

We will use the same two predictor variables, step135 and step136, for both Crest
market share and Colgate market share. We expect positive coefficients for both pre-
dictor variables in the Crest model and negative coefficients in the Colgate model. The
sum of the Crest coefficients will represent the total increase in Crest market share
over the two-week period, and the sum of the Colgate coefficients will represent the
total decrease in Colgate market share. 

Estimating the Models 

To estimate the intervention analysis model, from the menus choose:

Analyze
Time Series �

ARIMA...

This opens the ARIMA dialog box, as shown in Figure 10.6.
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• Move colgate into the Dependent box.

• Move step135 and step136 into the Independent(s) list.

• Specify 1 for the Difference parameter d, and specify 1 for the Moving Average
parameter q. Leave all the other parameters 0.

• Deselect Include constant in model. Since an ARIMA(0,1,1) model analyzes dif-
ferences and neither series showed a long-term trend (aside from the effect of the
intervention), we expect the average differences to be 0.

• Click OK.

To obtain the same analysis for crest, you can simply go to the ARIMA dialog box,
move colgate out of the Dependent list, and move crest in. (If you want to reduce pro-
cessing time for this second analysis, click Options, and in the Initial Values for Estima-
tion group in the ARIMA Options dialog box select Apply from previous model, as
explained in Chapter 8.) Figure 10.7 and Figure 10.8 show the results for the interven-
tion analysis. 

Figure 10.6 ARIMA dialog box
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Figure 10.7 Intervention analysis for Colgate 

Split group number: 1  Series length: 276
No missing data.
Melard’s algorithm will be used for estimation.

Termination criteria:
Parameter epsilon: .001
Maximum Marquardt constant: 1.00E+09
SSQ Percentage: .001
Maximum number of iterations: 10

Initial values:

MA1        .57105
STEP135   -.06619
STEP136   -.06061

Marquardt constant = .001
Adjusted sum of squares = .63460269

              Iteration History:

  Iteration   Adj. Sum of Squares    Marquardt Constant
          1             .59567279             .00100000
          2             .59430370             .00010000
          3             .59427067             .00001000

Conclusion of estimation phase.
Estimation terminated at iteration number 4 because:
   Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS:

Number of residuals  275
Standard error       .04665299
Log likelihood       453.65255
AIC                  -901.3051
SBC                  -890.45479

            Analysis of Variance:

               DF  Adj. Sum of Squares    Residual Variance
Residuals     272            .59426928            .00217650

           Variables in the Model:

                    B         SEB      T-RATIO   APPROX. PROB.
MA1         .80588760   .03671173    21.951775       .00000000
STEP135    -.05245968   .04665299    -1.124466       .26180685
STEP136    -.06085701   .04665299    -1.304461       .19317882

The following new variables are being created:

  Name        Label

  FIT_1       Fit for COLGATE from ARIMA, MOD_8 NOCON
  ERR_1       Error for COLGATE from ARIMA, MOD_8 NOCON
  LCL_1       95% LCL for COLGATE from ARIMA, MOD_8 NOCON
  UCL_1       95% UCL for COLGATE from ARIMA, MOD_8 NOCON
  SEP_1       SE of fit for COLGATE from ARIMA, MOD_8 NOCON
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As reported in the ARIMA output, the residuals for the analysis of Colgate market share
are in the new series err_1, and those for the analysis of Crest market share are in err_2. 

Figure 10.8 Intervention analysis for Crest 
Split group number: 1  Series length: 276
No missing data.
Melard’s algorithm will be used for estimation.

Termination criteria:
Parameter epsilon: .001
Maximum Marquardt constant: 1.00E+09
SSQ Percentage: .001
Maximum number of iterations: 10

Initial values:

MA1        .63926
STEP135    .06103
STEP136    .10316

Marquardt constant = .001
Adjusted sum of squares = .53437524

              Iteration History:

  Iteration   Adj. Sum of Squares    Marquardt Constant
          1             .51922627             .00100000
          2             .51921252             .00010000

Conclusion of estimation phase.
Estimation terminated at iteration number 3 because:
   Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS:

Number of residuals  275
Standard error       .04361667
Log likelihood       472.2175
AIC                  -938.43499
SBC                  -927.58468

            Analysis of Variance:

               DF  Adj. Sum of Squares    Residual Variance
Residuals     272            .51921166            .00190241

           Variables in the Model:

                   B         SEB     T-RATIO   APPROX. PROB.
MA1        .77839041   .03816927   20.393119       .00000000
STEP135    .06539159   .04361667    1.499234       .13497251
STEP136    .11187739   .04361667    2.565014       .01085377

The following new variables are being created:

  Name        Label

  FIT_2       Fit for CREST from ARIMA, MOD_9 NOCON
  ERR_2       Error for CREST from ARIMA, MOD_9 NOCON
  LCL_2       95% LCL for CREST from ARIMA, MOD_9 NOCON
  UCL_2       95% UCL for CREST from ARIMA, MOD_9 NOCON
  SEP_2       SE of fit for CREST from ARIMA, MOD_9 NOCON
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Diagnosis 

Figure 10.9 shows the residual autocorrelations from the two models estimated above.
There are no significant values of the ACF, and the Box-Ljung statistic indicates that the
observed autocorrelations are quite consistent with the hypothesis that these residuals
are white noise. Both models fit well. 

Figure 10.9 Diagnosis of intervention models 
Autocorrelations:   ERR_1       Error for COLGATE from ARIMA, MOD_5 NOCO        
                                                  
     Auto- Stand.                                                               
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 
                   +----+----+----+----+----+----+----+----+                    
  1   .055   .060                    . |*.                          .834   .361 
  2  -.002   .060                    . * .                          .835   .659 
  3  -.048   .060                    .*| .                         1.493   .684 
  4  -.094   .060                    **| .                         3.964   .411 
  5   .053   .060                    . |*.                         4.751   .447 
  6  -.001   .059                    . * .                         4.752   .576 
  7  -.004   .059                    . * .                         4.757   .690 
  8   .078   .059                    . |**                         6.494   .592 
  9   .003   .059                    . * .                         6.496   .689 
 10  -.022   .059                    . * .                         6.636   .759 
 11  -.005   .059                    . * .                         6.644   .827 
 12  -.070   .059                    .*| .                         8.074   .779 
 13  -.064   .059                    .*| .                         9.274   .752 
 14  -.073   .059                    .*| .                        10.848   .698 
 15   .011   .058                    . * .                        10.882   .761 
 16  -.051   .058                    .*| .                        11.655   .767 
                                                  
Plot Symbols:      Autocorrelations *     Two Standard Error Limits .           
                                                  
Total cases:  276     Computable first lags:  274                               
                                                  
                                                  
Autocorrelations:   ERR_2       Error for CREST from ARIMA, MOD_6 NOCON         
                                                  
     Auto- Stand.                                                               
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob. 
                   +----+----+----+----+----+----+----+----+                    
  1  -.012   .060                    . * .                          .037   .847 
  2  -.004   .060                    . * .                          .041   .980 
  3   .046   .060                    . |*.                          .629   .890 
  4  -.029   .060                    .*| .                          .872   .929 
  5   .061   .060                    . |*.                         1.918   .860 
  6   .030   .059                    . |*.                         2.173   .903 
  7  -.054   .059                    .*| .                         2.988   .886 
  8  -.004   .059                    . * .                         2.994   .935 
  9  -.078   .059                    **| .                         4.749   .856 
 10  -.031   .059                    .*| .                         5.034   .889 
 11  -.096   .059                    **| .                         7.690   .741 
 12  -.015   .059                    . * .                         7.758   .804 
 13  -.068   .059                    .*| .                         9.111   .765 
 14  -.082   .059                    **| .                        11.080   .680 
 15  -.014   .058                    . * .                        11.137   .743 
 16  -.026   .058                    .*| .                        11.331   .789 
                                                  
Plot Symbols:      Autocorrelations *     Two Standard Error Limits .           
                                                  
Total cases:  276     Computable first lags:  274  
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Assessing the Intervention 

Figure 10.8 shows that the coefficient for the dummy variable step135 was 0.065 in the
Crest model. This means that the Crest market share jumped up by about 6.5% at week
135. Likewise, the coefficient for step136 indicates an additional increase of 11.2% in
week 136, on top of the existing level. In all, then, Crest market share increased by about
17.7% in those two weeks and stayed at the new high level. The endorsement by the
ADA and the heavy publicity given to it by Proctor and Gamble had a strong and lasting
effect on the market share of Crest toothpaste. 

The corresponding coefficients for the Colgate model in Figure 10.7 show a decrease
of 5.2% in week 135 and 6.1% in week 136, for a total drop of about 11.3%. About two-
thirds of Crest’s gain in market share came at the expense of Colgate. 

These estimates of the effect of the intervention are based on the entire series of mar-
ket shares, not on a simple comparison of a few weeks’ data. 

Alternative Methods 
As explained above, a model using step functions for the intervention dummy variables
is equivalent to one using pulse functions with the differences in the series. A permanent
step in the level of a market-share series shows up as a one-time pulse in the differences
of market share from one period to the next. 

An ARIMA(0,1,1) model is, in fact, a moving-average model for the differences of
the original series. The expression on the left side of Equation 10.2 represents differ-
ences in the level of crest. The ARIMA procedure works by taking differences in the
original series and estimating a (0,0,1) model on those differences. In order to preserve
the “shape” of the intervention you specified, ARIMA also took differences in the pre-
dictor series. You specified a step function as the predictor for market share. ARIMA
took differences in both series and used a pulse function as the predictor for changes in
market share. 

You can take the differences in market share yourself if you prefer and specify an
ARIMA(0,0,1) model for the differences. When you do this you are “hiding” the differ-
encing from ARIMA. From the menus choose:

Transform
Create Time Series...

Move colgate and crest into the New Variable(s) list. The DIFF function is already
selected, so you can simply click OK to create new series colgat_1 and crest_1, con-
taining the differences in the original series.

You must supply dummy variables to describe the effect of the intervention on the
series ARIMA analyzes, which is now the differences in market share. The intervention



An Effective Decay-Preventive Dentifrice: Intervention Analysis 147

produced pulses in these differences, so you create two series to represent pulse func-
tions. From the menus choose:

Transform
Compute...

Type pulse135 into the Target Variable text box. Click the Numeric Expression text
box and type (or paste) week_ = 135. Click OK to create this variable; then repeat the
operation with pulse136 and the expression week_ = 136.

To repeat the ARIMA analysis for crest, go back to the ARIMA dialog box, which
still shows your previous specifications. Move crest out of the Dependent box, and put
crest_1 in its place. Move the step variables step135 and step136 out of the Indepen-
dent(s) list, and move the pulse variables pulse135 and pulse136 in their place. Change
the order of differencing, d, from 1 to 0. You have already taken differences in crest,
colgate, and the intervention variables, so you do not want ARIMA to take differences
again.

The output from this analysis is equivalent to that from the one performed earlier in
the chapter. The fit series that ARIMA generates is not the same, however, because it
contains predicted values for the differences in crest. 

Predictors in Differenced ARIMA Models 

The above discussion brings up a consideration worth noting: 

• When the ARIMA procedure takes differences in the series you are analyzing (when
the Difference parameter d is greater than 0), it also takes differences in any indepen-
dent (predictor) variables that you specify. 

Sometimes this is a feature; sometimes it is a nuisance. With intervention models, this
behavior is often what you want. You can set up an intervention variable that gives the
effect of the intervention on the original series. If your ARIMA model requires differ-
encing, ARIMA takes differences in your intervention variable so that it will correspond
to the same type of intervention. 

When you do not want ARIMA to difference your predictor variables, you must take
charge of the differencing yourself. If you want to specify an ARIMA model in which
the dependent variable is differenced but not the predictor, you must do all the differ-
encing prior to ARIMA, in the Create Time Series dialog box. Since ARIMA does not
have to take differences in the dependent variable (because you used Create Time Series
to do so), it will leave the independent variable or variables undifferenced also. As noted
above, the fit_ values, when the series is differenced outside of ARIMA, will be for the
differenced series, not the original series. 
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Trends in the Ozone: Seasonal 
Regression and Weighted Least 
Squares

Some scientists have found that chemicals called chlorofluorocarbons (CFC’s), widely
used in refrigeration and other industrial processes, promote chemical reactions in the
upper atmosphere that destroy the ozone that protects the earth from ultraviolet radia-
tion. Consequently, CFC’s are no longer used as aerosol propellants, and industries that
use them are under pressure to convert to some other kind of technology. 

In this chapter, we use regression techniques to analyze a series of ozone readings
from a study of this problem. Many of the problems that can occur in time-series regres-
sion analysis turn up in this series: 

• Missing data 

• Strong seasonal variation 

• A change in measurement technique

• Outliers 

• Heteroscedasticity 

Ozone Readings at Churchill 
The series we are concerned with includes monthly measurements of the ozone level
taken from weather balloons 15 kilometers above a weather station at Churchill, Mani-
toba, on Hudson Bay. The series runs from October, 1973, through September, 1983, al-
though several observations are missing. A plot of the series shows the seasonal
variation in the ozone readings (Figure 11.1). 

11
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The original study of these ozone readings (Tiao et al., 1986) included data from several
altitudes at many stations. In this chapter, we will analyze the single series from 15 kilo-
meters at Churchill. 

 We want to know whether or not the Churchill ozone readings show a trend. To do
this, we build a regression model, expressing the ozone level as a linear combination of
other variables, including time. If the model is satisfactory, the coefficient of time indi-
cates the trend. A negative coefficient indicates a decreasing ozone level, as predicted
by environmentalists. 

Defining the Seasonal Periodicity

Since the ozone readings show seasonal variation, our analysis will need to take into
account the 12-month period of seasonality. From the menus choose:

Data
Define Dates...

This opens the Define Dates dialog box, as shown in Figure 11.2.

Figure 11.1 Ozone readings (partial) 



Trends in the Ozone: Seasonal Regression and Weighted Least Squares 151

Since the dating of the series has not been defined, the Cases Are list shows Not dated.
Scroll to the top of the list and select Years, months. Text boxes appear in the First Case
Is group, into which you can enter the year and month of the first case. (Notice that Trends
recognizes that the periodicity of monthly data is 12.) Select the contents of the Year text
box and enter 1973, and then select the contents of the Month text box and enter 10. Click
OK to define the date variables and establish the length of the seasonal period.

Replacing the Missing Data 

First, we must deal with the missing data. There are two considerations: 

• In time series analysis, you cannot have any missing time periods, since observations
must be evenly spaced. In a monthly series like this one, you must have an observation
for every month—even if the observation contains missing data. You must address this
question before you begin analysis with Trends. 

• Once the series has a complete set of time periods, the next step is to decide how to
deal with any missing observations within the series. Some Trends procedures cannot
process a series that contains missing data. Seasonal Decomposition, which we use
below, is one of them. Before using one of the procedures that require valid data, you
must fill in reasonable values in place of the missing data, either by hand or with the
Replace Missing Values procedure on the Transform menu. 

The sample data file for this chapter includes a complete set of time periods for every
month from October, 1973, to September, 1983. Suppose, however, that a month was

Figure 11.2 Define Dates dialog box
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missing from the ozone file. For example, if part of the data file looked like this (here
we show year, month, and ozone level) 

74 6 24.0
74 7 24.4
74 9 25.6
74 10 24.8

you would have to insert another line for the missing month, August, 1974, prior to
using Trends: 

74 6 24.0
74 7 24.4
74 8
74 9 25.6
74 10 24.8

In the SPSS Data Editor, a missing value (such as that for ozone in the example above)
appears as a period, which represents the system-missing value. (Missing values in the
Data Editor are discussed in the SPSS Base User’s Guide.)

We now need to decide how to handle the missing observations. From the menus
choose:

Transform
Replace Missing Values...

This opens the Replace Missing Values dialog box, as shown in Figure 11.3.

Move ozone into the New Variable(s) list. By default, Trends uses the series mean func-
tion, which appears as SMEAN in the New Variable(s) list. Since the ozone data are so
seasonal, a value midway between the preceding and following months is likely to be a
better guess, so we will use linear interpolation instead.

Figure 11.3 Replace Missing Values dialog box
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� Select Linear interpolation from the Method drop-down list and click Change. Then
click OK to remove the missing values in the new series ozone_1.

For the data above, linear interpolation supplies a value of 25 for August, 1974, which
is midway between the values for July and September. You can verify this and other
interpolated values for ozone_1 in the Data Editor.

Calculating a Trend Variable 

We are trying to determine if there is a trend in the ozone data. Since the trend per
month would be quite small, we would prefer to see the trend per year. To express the
trend in parts per year, we need a variable to indicate how many years each observa-
tion is from the beginning of the study. There are several ways to compute such a vari-
able; perhaps the simplest is to use the system variable $casenum, which
automatically gives the sequential number of each monthly observation in the data
file. Dividing it by 12 gives the number of years since the first observation. From the
menus choose:

Transform
Compute...

This opens the Compute Variable dialog box. Type trend in the Target Variable text
box, and type $casenum/12 in the Numeric Expression text box. Click OK to compute
the new variable.

A Change in Measurement Technique 

Starting in September, 1979, a newer and more sensitive measuring instrument was used
to record ozone levels. We take account of this change in measurement technique with
a “dummy variable,” much as we did in the intervention analysis of Chapter 10. There
are various ways to create this dummy variable. The most straightforward is to use two
steps. Once again, from the menus choose:

Transform
Compute...

Type techniq in the Target Variable text box. Clear the contents of the Numeric
Expression text box and enter 0. Click OK to create the variable techniq, which now
equals 0 for all cases.

To set techniq equal to 1 for cases starting in September, 1979, open the Compute
Variable dialog box again. Select the 0 in the Numeric Expression text box, and type
1 to replace it. Then, to specify the condition under which techniq should be set
equal to 1, click If. This opens the Compute Variable If Cases dialog box, as shown
in Figure 11.4. 
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First, at the top of the dialog box select Include if case satisfies condition. Then click
the large text box and carefully build the condition, either by typing this expression:

year_ > 1979 | (year_ = 1979 & month_ >=9)

or by copying variable names and symbols, as discussed in the SPSS Base User’s Guide:

1. Select the variable year_ and click W to move it into the condition box.

2. Click the > symbol on the keypad.

3. Type 1979, or click the numeric keys 1 9 7 9.

4. Click the vertical bar (|), which means “or.”

5. Click the parentheses, which are immediately below the vertical bar. Notice that the
cursor is inside the parentheses.

6. Select year_ again, if it is not still selected, and move it into the expression. It will
show up within the parentheses, where the cursor was positioned.

7. Continue by typing, or clicking, the equals sign (=), 1979, and the ampersand (&).

8. Select month_ and move it to follow the ampersand.

9. Click the >= key, which means “greater than or equal to.”

10. Finally, type (or click) 9.

Compare the condition that you have built with that given above and correct it, if you
need to. When it looks right, click Continue and then OK. SPSS will ask if it’s OK to

Figure 11.4 Compute Variable If Cases dialog box
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change the values of an existing variable, since techniq is already present in the data file
(it equals 0 for all cases). That is what you want to do, so click OK.

The intervention variable techniq is now 1 for observations where year_ is greater
than 1979 or where year_ equals 1979 and month_ is greater than or equal to 9. That
includes all observations starting with September, 1979, when the ozone measurements
began to be made with the new technique. It’s a good idea to activate the Data Editor at
this point and verify that the intervention variable was created correctly. It should be 0
for all the cases at the beginning of the data file, and change to 1 starting in September,
1979. If there is a problem, reopen the Compute Variable dialog box—your specifica-
tions will still be there—and set things right.

We will include techniq in the model not because we are interested in the effect
of the intervention (as we were in Chapter 10), but because we want to evaluate the
trend apart from the effect of the intervention. The dummy variable techniq will cap-
ture the effect of changing instruments, and the trend variable trend will capture any
trend excluding the effect of changing instruments. 

Removing Seasonality 
In order to uncover any real trend in the ozone levels, we first need to account for the
variation in the readings that is due to seasonal effects. For example, if ozone levels are
always higher in the winter than in the summer, this would confound our estimate of the
trend. 

The Seasonal Decomposition procedure decomposes a seasonal series into a seasonal
component, a combined trend and cycle component, and an “error” component
(Makridakis, Wheelwright, & McGee, 1983). It creates four new series containing these
components or combinations of them. The prefixes used in creating series names are
shown in Table 11.1. 

The Seasonal Decomposition procedure normally treats the series as the product of the
seasonal, trend, and cycle components. This multiplicative model is appropriate when
seasonal variation is greater at higher levels of the series. For series such as this one,
where seasonality does not increase with the level of the series, an alternative additive
model is available. 

Table 11.1 Series names created by Seasonal Decomposition

Prefix Contents Components

saf Seasonal Adjustment Factor Seasonal 
sas Seasonally Adjusted Series Original minus seasonal 
stc deSeasoned Trend and Cycle Trend plus cycle 
err Error Error     
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To carry out seasonal decomposition, Trends needs to know the periodicity (how
many observations there are in a season) of the series. It takes this periodicity, 12, from
the date variables defined above for the series. 

To apply seasonal decomposition to ozone_1, the ozone series with missing data
interpolated, from the menus choose:

Analyze
Time Series �

Seasonal Decomposition...

This opens the Seasonal Decomposition dialog box, as shown in Figure 11.5.

Move ozone_1 into the Variable(s) list. Select the Additive model, and click OK. This
produces the output shown in Figure 11.6.

Figure 11.5 Seasonal Decomposition dialog box
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The seasonal index shown in the figure is the average deviation of each month’s ozone
level from the level that was due to the other components that month. Period 1 (which
is October, since this series began in October, 1973) averaged about 7.5 units below the
deseasonalized ozone level. As you can see, periods 5 and 6 (February and March) had
the highest ozone levels, while periods 11 and 12 (August and September) had the low-
est levels. 

If you used the multiplicative model with the Seasonal Adjustment procedure, the
seasonal index would be expressed as a percentage. Indexes for high-ozone months such
as February and March would be above 100, while indexes for low-ozone months such
as August and September would be below 100. You cannot convert directly between the
additive and multiplicative seasonal indexes, since the type of model used determines
how the observations for each month are averaged. 

One of the new series created by Seasonal Decomposition, saf_1, contains these
seasonal adjustment factors. Another, sas_1, contains the deseasonalized or season-
ally adjusted series (the original levels minus the seasonal adjustment factor). We can
use sas_1 to try to determine whether there is a significant trend in ozone level. 

Predicting Deseasonalized Ozone 

Our next step is to estimate a regression model predicting the deseasonalized ozone
level. First, change the name of the seasonally adjusted series (sas_1) to something
that is easier to remember:

1. Activate the Data Editor window.

Figure 11.6 Output from Seasonal Decomposition
Results of SEASON procedure for variable OZONE_1
Additive Model.  Equal weighted MA method.  Period = 12.

                 Seasonal
      Period        index
         1         -7.522
         2         -3.253
         3           .395
         4          4.898
         5         12.652
         6         13.914
         7          7.120
         8         -1.215
         9         -3.299
        10         -6.456
        11         -8.607
        12         -8.627

The following new variables are being created:

  Name        Label

  ERR_1       Error for OZONE_1 from SEASON, MOD_2  ADD EQU 12
  SAS_1       Seas adj ser for OZONE_1 from SEASON, MOD_2  ADD EQU 12
  SAF_1       Seas factors for OZONE_1 from SEASON, MOD_2  ADD EQU 12
  STC_1       Trend-cycle for OZONE_1 from SEASON, MOD_2  ADD EQU 12
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2. Double-click the variable name, sas_1, in the Data View or click the Variable
View tab.

3. Enter the new name, deseas, in the name cell.

Now for the regression analysis. From the menus choose:

Analyze
Regression �

Linear...

This opens the Linear Regression dialog box, as shown in Figure 11.7.

Move deseas into the Dependent box, and move trend and techniq into the Indepen-
dent(s) list. The results of the regression analysis are shown in Figure 11.8.

Figure 11.7 Linear Regression dialog box
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From Figure 11.8 you can see that: 

• The coefficient of trend, about −0.88, represents the annual trend. Deseasonalized
ozone readings declined slowly over this 10-year period. This effect is statistically
significant at the 0.037 level. 

• The coefficient of techniq, representing the effect of changing the measurement
instrument, is about 6.5. Ozone readings taken with the new instrument averaged
over 6 units higher than those taken with the old instrument. If you had not included
an intervention variable to capture the effect of changing instruments, the decline in
ozone level would have been completely masked by this artificial “increase.” 

• The model does not explain much of the variation. The R2, adjusted for the number
of cases and variables, is only about 0.04. 

Evaluating Trend and Seasonality Simultaneously 
Seasonally adjusting a series prior to evaluating the model, as done above, was once
almost the only practical way of analyzing seasonal data. Modern software such as
SPSS Trends enables you to build seasonal effects into a larger model so that you can
evaluate simultaneously the seasonal effects, the trend, and the change in measuring
instrument. 

Figure 11.8 Regression on deseasonalized ozone levels 
Listwise Deletion of Missing Data

Equation Number 1    Dependent Variable..   DESEAS   Seas adj ser for OZONE_1 fr

Block Number  1.  Method:  Enter      TREND    TECHNIQ

Variable(s) Entered on Step Number
   1..    TECHNIQ
   2..    TREND

Multiple R           .23819
R Square             .05673
Adjusted R Square    .04061
Standard Error      6.95559

Analysis of Variance
                    DF      Sum of Squares      Mean Square
Regression           2           340.45174        170.22587
Residual           117          5660.48633         48.38023

F =       3.51850       Signif F =  .0328

------------------ Variables in the Equation ------------------

Variable              B        SE B       Beta         T  Sig T

TREND          -.882926     .419332   -.360412    -2.106  .0374
TECHNIQ        6.499065    2.462670    .451729     2.639  .0094
(Constant)    33.943468    1.504648               22.559  .0000
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Dummy-Variable Regression 

One way to include seasonal effects in a regression model without seasonally adjusting
the data is to use dummy variables for the seasons. In our example, we use 11 dummy
variables for 11 of the 12 months. The 12th month is reserved as a baseline for compar-
ison. If you used all 12 months, the 12th one would add no information that you couldn’t
figure out from the first 11. 

You can calculate the 11 dummy variables in several ways. The most direct way is
probably to use logical expressions. Since there are so many transformations, first ask
SPSS to hold all of the transformations and execute them when they’re needed. From
the menus choose:

Edit
Options...

On the Data tab in the Options dialog box, select Calculate values before used in the
Transformation and Merge Options group and click OK. Now SPSS will collect all of
your transformations and process them together, rather than reading through the data file
after you enter each one. (These settings are remembered across sessions. If you usually
prefer to see the results of your transformations immediately in the Data Editor, remem-
ber to go back to the Options dialog box later and restore that setting.)

Now create the 11 dummy variables for the effect of each month (except one). From
the menus choose:

Transform
Compute...

In the Compute Variable dialog box, the expression you used to calculate techniq is prob-
ably still displayed in the box beside the If button. To clear it, click If and select Include
all cases. Click Continue to return to the Compute Variable dialog box, and type jan
into the Target Variable text box. Select the variable month_ and copy it into the Numeric
Expression text box; then click the equals sign (=) and 1 on the keypad. When you click
OK, SPSS closes the dialog box.

Now it is easy to create the rest of the dummy variables. For each of them:

• Open the Compute Variable dialog box again.

• Type a variable name that corresponds to the next month in sequence—for example,
february, march, april, and so on. Stop after november—you always have to omit one
possibility from a set of dummy variables.

• Edit the numeric expression to indicate the correct month number for each variable:
2 for february, 3 for march, 4 for april, and so on.

• Click OK for each variable in turn.
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After completing the specifications for november, tell SPSS to go ahead and create the
variables. From the menus choose:

Transform
Run Pending Transforms

This group of transformations creates a set of 11 dummy variables that equal 1 for obser-
vations in a particular month and 0 for observations in other months.

Using the 11 dummy variables, you can analyze ozone_1, the original ozone series
with missing values interpolated, and evaluate seasonality, trend, and instrument change
simultaneously. From the menus choose:

Analyze
Regression �

Linear...

In the Linear Regression dialog box (Figure 11.7), move deseas out of the Dependent
box (if it is still there), replacing it with ozone_1. Leave trend and techniq in the Inde-
pendent(s) list, and add all 11 of the dummy month variables created above into the list
as well.

Next, click Plots to open the Linear Regression Plots dialog box. In the Standardized
Residual Plots group, select Histogram and Normal probability plot and click Continue.
Click Statistics to open the Linear Regression Statistics dialog box. In the Residuals
group, select Casewise diagnostics. In the Outliers outside n standard deviations op-
tion, change the 3 to 2 and click Continue.

Finally, click Save to open the Linear Regression Save dialog box. In the Residuals
group, select Standardized.

Figure 11.9 shows the goodness-of-fit statistics and parameter estimates from this
regression analysis.



162 Chapter 11

Figure 11.9 Regression with dummy month variables 
Listwise Deletion of Missing Data

Equation Number 1    Dependent Variable..   OZONE_1   LINT(OZONE__2) on 08 Jun 9

Block Number  1.  Method:  Enter
   TREND    TECHNIQ  JAN      FEB      MAR      APR      MAY      JUN
   JUL      AUG      SEP      OCT      NOV

Variable(s) Entered on Step Number
   1..    NOV
   2..    TECHNIQ
   3..    OCT
   4..    AUG
   5..    JUL
   6..    JUN
   7..    MAY
   8..    APR
   9..    MAR
  10..    FEB
  11..    JAN
  12..    SEP
  13..    TREND

Multiple R           .75989
R Square             .57744
Adjusted R Square    .52561
Standard Error      7.27977

Analysis of Variance
                    DF      Sum of Squares      Mean Square
Regression          13          7676.32697        590.48669
Residual           106          5617.47395         52.99504

F =      11.14230       Signif F =  .0000

           * * * *   M U L T I P L E   R E G R E S S I O N   * * * *

Equation Number 1    Dependent Variable..   OZONE_1   LINT(OZONE__2) on 08 Jun 9

------------------ Variables in the Equation ------------------

Variable              B        SE B       Beta         T  Sig T

TREND          -.908037     .445098   -.249037    -2.040  .0438
TECHNIQ        6.628768    2.605100    .309560     2.545  .0124
JAN            5.084670    3.255823    .133519     1.562  .1213
FEB           12.094340    3.256457    .317587     3.714  .0003
MAR           15.405009    3.257513    .404523     4.729  .0000
APR            7.075679    3.258991    .185802     2.171  .0322
MAY            -.743651    3.260890   -.019528     -.228  .8200
JUN           -3.902981    3.263209   -.102489    -1.196  .2343
JUL           -6.067312    3.265949   -.159323    -1.858  .0660
AUG           -8.151642    3.269107   -.214055    -2.494  .0142
SEP           -8.718849    3.260326   -.228950    -2.674  .0087
OCT           -7.694340    3.256457   -.202047    -2.363  .0200
NOV           -4.039670    3.255823   -.106078    -1.241  .2174
(Constant)    33.988670    2.662917               12.764  .0000

End Block Number   1   All requested variables entered.
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The output shows that: 

• The R2 is much higher than in Figure 11.8. Over 52% of the variation in ozone readings
is predicted by this model, even after adjusting for the number of variables and cases.
This improvement is largely due to the fact that the seasonal variation is included in the
model and “explained” by the dummy variables, rather than being removed prior to the
analysis. 

• The standard error of the estimate in Figure 11.9 (7.28) is slightly higher than that
in Figure 11.8 (6.96). It was easier to fit a model for the deseasonalized ozone lev-
els. (The dummy-variable regression actually did much the same thing as Seasonal
Decomposition but gave up degrees of freedom in doing so, which led to larger
standard errors.) 

• The coefficient of the intervention variable techniq has increased slightly to 6.6. 

• The coefficient of the trend variable has increased in magnitude to about −0.91, and
its t statistic of −2.04 has a significance level of 0.0438. 

• Each of the dummy month variables shows the seasonal effect of that month com-
pared to December, the omitted month. Since the December seasonal effect (period
3) was quite small in Figure 11.6, the coefficients of these dummy variables are pretty
close to the effects estimated by Seasonal Decomposition. 

• The constant term of 33.99 is the predicted ozone level at the beginning of the time
period, after removing the seasonal factors. 



164 Chapter 11

Residuals Analysis 

Figure 11.10 shows the residuals analysis for the above regression. It includes a list of
the outliers, giving their case numbers, ozone levels, predicted values, and residuals.
Three of the residuals (cases 17, 77, and 101) are fairly large, greater than 3 times 7.28,
which is the standard error of the estimate in Figure 11.9. That is more than you would
expect from only 120 observations. Consequently, the histogram of standardized resid-
uals in Figure 11.11 shows noticeable departures from normality. (Specifically, it shows
positive kurtosis—too many observations in the extreme tails, which therefore inflate
the standard deviation and create the impression of too many observations close to the
mean.) 

 

Figure 11.10 Residuals analysis 

           * * * *   M U L T I P L E   R E G R E S S I O N   * * * *

Equation Number 1    Dependent Variable..   OZONE_1   LINT(OZONE__2) on 08 Jun 9

Casewise Plot of Standardized Residual

Outliers = 2.    *: Selected   M: Missing

          -5.     -2.  2.     5.
  Case #   O:.......:  :.......:O   OZONE_1       *PRED      *RESID
       6   .         ..*        .     64.00     48.9397     15.0603
      17   .     *   ..         .     22.70     44.7966    -22.0966
      76   .         ..*        .     54.55     39.9512     14.5988
      77   .         ..     *   .     75.20     46.8852     28.3148
     101   .         ..     *   .     72.50     45.0691     27.4309
     112   .       * ..         .     18.80     37.2271    -18.4271

       6 Outliers found.

           * * * *   M U L T I P L E   R E G R E S S I O N   * * * *

Equation Number 1    Dependent Variable..   OZONE_1   LINT(OZONE__2) on 08 Jun 9

Residuals Statistics:

              Min      Max     Mean  Std Dev    N

*PRED     20.4645  50.1202  32.1458   8.0316  120
*RESID   -22.0966  28.3148    .0000   6.8706  120
*ZPRED    -1.4544   2.2380    .0000   1.0000  120
*ZRESID   -3.0353   3.8895    .0000    .9438  120

Total Cases =      120
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The normal probability plot in Figure 11.12 also shows that observed values of the resid-
uals at the top end of the distribution are greater than those expected if the residuals were
normally distributed. 

Outliers can have a disproportionate influence on trend estimates. Significance tests
on regression coefficients depend on the assumption of normally distributed residuals
and hence are also sensitive to outliers. Since we are primarily interested in estimating

Figure 11.11 Histogram of standardized residuals

Figure 11.12 Normal probability plot
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the trend and testing its significance, we will smooth out the outliers and reestimate the
regression equation. 

Regression with Smoothed Outliers 

The residuals from this last regression model were saved in the working data file as a
new series named zre_1, so it is easy to identify the observations that are outliers. We
first substitute the system-missing value for the outliers and then use the Replace
Missing Values procedure to fill in values using linear interpolation, as before. Then
we repeat the regression, requesting some additional plots of the residuals. 

You could use the procedures on the Transform menu to delete the problematic cases.
Instead, we’ll do so directly in the Data Editor. (Tampering with data like this is not
something that should be done without good cause. You might, for example, take a look
at the original data and discover that there had been problems recording data for the out-
lying cases. In order to proceed with the demonstration of time series analysis with
Trends, we will assume that a good reason has been discovered for deleting the outlying
data values.)

Activate the Data Editor window. Click the horizontal scroll bar at the bottom of the
window until the column containing the residuals, zre_1, is visible. Now scroll down
through the cases by clicking on the vertical scroll bar. If you want to replicate the anal-
ysis in the rest of this chapter, look for cases where the value of zre_1 is greater than 2.5
or less than –2.5. (These are cases 17, 77, 101, and 112, as reported in Figure 11.10.)
Each time you find such a case, click its case number at the left side of the Data Editor
window. This highlights the entire case and scrolls the window back to the far left. Click
the highlighted case’s cell for ozone_1, and press d and r to delete the offending
value.

Once you have deleted the bad data values, you can interpolate more reasonable val-
ues in their place. From the menus choose:

Transform
Replace Missing Values...

Scroll to the bottom of the source variable list, highlight ozone_1, and click W to move
it into the New Variable(s) list. The expression that appears there is not what you want,
so you must fix things up in the Name and Method group. First, the name:

• To simplify the next round of regression analysis (and to avoid unattractive variable
names), delete one of the two underscores in the Name text box, leaving only the
original variable name, ozone_1. (Choose a different name entirely if you like.)

• Select Linear interpolation from the Method drop-down list.

• Click Change. The resulting dialog box is shown in Figure 11.13.
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When you click OK to execute this transformation, Trends asks you to confirm that it is
OK to change the existing variable (ozone_1). When you confirm, it reports the number
of missing values that it has replaced.

Now repeat the regression analysis. From the menus choose:

Analyze
Regression �

Linear...

Your previous specifications are still in the Linear Regression dialog box. The Depen-
dent variable is still ozone_1, so if you used ozone_1 as the new variable name in the
Replace Missing Values procedure, as suggested, you can leave it alone. (If you chose a
new variable name, move it into the Dependent list in place of ozone_1.)

Before running the Linear Regression procedure, click Plots to open the Linear
Regression Plots dialog box. Select *zresid in the source variable list and move it
into the Y box, and then select *adjpred and move it into the X box. This will pro-
duce a scatterplot of the standardized residuals with the adjusted predicted values.

Figure 11.14 shows the basic output from the regression analysis after smoothing
the outliers. It is similar to that from the previous regression analysis (Figure 11.9), but
notice that:

• The R2 for the equation has improved markedly, as you should expect when you
remove the cases that are farthest from the regression line. 

• The coefficient of the intervention variable techniq is slightly smaller, but its stan-
dard error is much smaller. The effect of changing measurement technique is now
statistically significant at the 0.01 level. 

• The coefficient of trend is slightly smaller, but its standard error is much smaller. It
is now statistically significant at the 0.01 level. 

Figure 11.13 Replace Missing Values dialog box
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Figure 11.14 Regression with smoothed outliers 
Listwise Deletion of Missing Data

Equation Number 1    Dependent Variable..   OZONE_1   LINT(OZONE_1) on 09 Jun 93

Block Number  1.  Method:  Enter
   TREND    TECHNIQ  JAN      FEB      MAR      APR      MAY      JUN
   JUL      AUG      SEP      OCT      NOV

Variable(s) Entered on Step Number
   1..    NOV
   2..    TECHNIQ
   3..    OCT
   4..    AUG
   5..    JUL
   6..    JUN
   7..    MAY
   8..    APR
   9..    MAR
  10..    FEB
  11..    JAN
  12..    SEP
  13..    TREND

Multiple R           .83152
R Square             .69143
Adjusted R Square    .65359
Standard Error      5.50728

Analysis of Variance
                    DF      Sum of Squares      Mean Square
Regression          13          7204.14374        554.16490
Residual           106          3214.99449         30.33014

F =      18.27110       Signif F =  .0000

           * * * *   M U L T I P L E   R E G R E S S I O N   * * * *

Equation Number 1    Dependent Variable..   OZONE_1   LINT(OZONE_1) on 09 Jun 93

------------------ Variables in the Equation ------------------

Variable              B        SE B       Beta         T  Sig T

TREND          -.884673     .336725   -.274064    -2.627  .0099
TECHNIQ        5.567655    1.970806    .293693     2.825  .0056
JAN            6.825223    2.463090    .202445     2.771  .0066
FEB            9.382945    2.463570    .278310     3.809  .0002
MAR           15.399168    2.464369    .456759     6.249  .0000
APR            7.067891    2.465487    .209643     2.867  .0050
MAY            -.753386    2.466924   -.022346     -.305  .7607
JUN           -3.914664    2.468678   -.116114    -1.586  .1158
JUL           -6.080941    2.470751   -.180368    -2.461  .0155
AUG           -8.167218    2.473140   -.242250    -3.302  .0013
SEP           -8.630261    2.466497   -.255985    -3.499  .0007
OCT           -7.690445    2.463570   -.228108    -3.122  .0023
NOV           -4.037723    2.463090   -.119764    -1.639  .1041
(Constant)    34.302134    2.014546               17.027  .0000

End Block Number   1   All requested variables entered.
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Residuals Analysis 

Figure 11.15 through Figure 11.18 show the residuals analysis for the regression after
the outliers were smoothed. The histogram in Figure 11.16 and the normal probability
plot in Figure 11.17, although not perfect, look much better than in the previous analysis,
prior to smoothing of the outliers. 

  

Figure 11.15 Residuals analysis with smoothed outliers 
           * * * *   M U L T I P L E   R E G R E S S I O N   * * * *

Equation Number 1    Dependent Variable..   OZONE_1   LINT(OZONE_1) on 09 Jun 93

Casewise Plot of Standardized Residual

Outliers = 2.    *: Selected   M: Missing

          -5.     -2.  2.     5.
  Case #   O:.......:  :.......:O   OZONE_1       *PRED      *RESID
       6   .         ..  *      .     64.00     49.2590     14.7410
      42   .         ..*        .     58.30     46.6049     11.6951
      66   .       * ..         .     31.10     44.8356    -13.7356
      76   .         .. *       .     54.55     41.0921     13.4579
      77   .         .. *       .     56.88     43.5761     13.2989
      87   .         ..*        .     45.10     33.4559     11.6441
      89   .        *..         .     31.50     42.6914    -11.1914

       7 Outliers found.

           * * * *   M U L T I P L E   R E G R E S S I O N   * * * *

Equation Number 1    Dependent Variable..   OZONE_1   LINT(OZONE_1) on 09 Jun 93

Residuals Statistics:

              Min      Max     Mean  Std Dev    N

*PRED     20.9006  49.5186  32.0654   7.7807  120
*ZPRED    -1.4349   2.2431    .0000   1.0000  120
*SEPRED    1.7970   1.9773   1.8801    .0605  120
*ADJPRED  20.7335  49.2138  32.0624   7.8054  120
*RESID   -13.7356  14.7410    .0000   5.1978  120
*ZRESID   -2.4941   2.6766    .0000    .9438  120
*SRESID   -2.6722   2.8679    .0003   1.0047  120
*DRESID  -15.7681  16.9223    .0030   5.8907  120
*SDRESID  -2.7540   2.9719    .0011   1.0183  120
*MAHAL    11.6784  14.3475  12.8917    .8970  120
*COOK D     .0000    .0869    .0095    .0163  120
*LEVER      .0981    .1206    .1083    .0075  120

Total Cases =      120
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The scatterplot in Figure 11.18 compares the residuals (on the vertical axis) with the pre-
dicted values (on the horizontal axis). The plot shows a funnel shape—the variance of
the points at the right is more than the variance of the points at the left. 

The shape of the plot of the residuals with the predicted values indicates that the residu-
als for observations with high predicted ozone levels have more variance than the residuals
for observations with low predicted ozone levels. Ordinary regression analysis assumes that

Figure 11.16 Histogram of standardized residuals after smoothing of outliers

Figure 11.17 Normal probability plot of standardized residuals after smoothing of outliers
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the residuals have constant variance. This regression model evidently violates that assump-
tion—in technical language, the model shows heteroscedasticity. 

Heteroscedasticity 
The variance of the regression errors increases with the predicted value. The components
of the predicted value are trend, the intervention variable techniq, and the 11 dummy
month variables. We have already seen that ozone levels vary with the seasons, averaging
roughly 20 points higher in February and March than in August and September. (This is
from the coefficients in Figure 11.14.) We know from experience that weather patterns
are more variable in winter—when ozone levels are high—than in summer. Perhaps the
pattern in the scatterplot is due to greater variance in ozone levels during the winter
months. This is easy to check. 

Plotting Residuals by Month 

The residuals from this last regression were saved in the series zre_2. Figure 11.19
shows these residuals plotted against the month of the observation. This is not a time
series plot; all the Januaries are plotted together, all the Februaries, and so on, so that
you can evaluate the variance of the residuals in each month. To obtain such a plot,
from the menus choose:

Graphs
Scatter...

Figure 11.18 Scatterplots of residuals with predicted values
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In the Scatterplot dialog box, select Simple and click Define to open the Simple Scatter-
plot dialog box. Move zre_2 into the Y Axis box, move month_ into the X Axis box,
and click OK.

This plot shows a dramatic sideways hourglass pattern. The residuals are spread out ver-
tically in the early months, squeezed together during the summer months 7–9, and
spread out again at the end of the year. Ozone levels at Churchill fluctuated more in the
winter—when they were generally high—than in the summer. 

The heteroscedasticity of the residuals violates one of the assumptions of ordinary
least-squares regression, so some of the statistical results of the analysis above may not
be reliable. To obtain reliable results, you must use weighted least squares. 

Weighted Least Squares 
Weighted least squares, a procedure in the SPSS Regression Models option, performs re-
gression analysis for observations (not necessarily time series) that are measured with
varying precision. In the current example, you assume that ozone levels really are a linear
function of trend, techniq, and the dummy month variables, and that the residuals have a
different variance in each month due to transient conditions or measurement problems.
Observations from August, a month with small residual variance, will count more heavily
in determining the regression equation than observations from March, a month with large
residual variance. This is reasonable, since the observations from March are likely to be

Figure 11.19 Residual variance by month 
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farther from the typical March value than observations from August are from the typical
August value. 

Calculating Residual Variance by Month 

The plot in Figure 11.19 shows that the error variance differs according to the month of
the observation. Weighted least squares (WLS) is a technique that uses this informa-
tion, giving more weight to the precise observations and less weight to the highly vari-
able observations. To use WLS, you must form a series that shows how much error you
expect in each observation. The first step is to calculate how widely the ozone levels are
spread within each month. From the menus choose:

Data
Aggregate...

This opens the Aggregate Data dialog box, as shown in Figure 11.20.

• Select month_ and move it into the Break Variable(s) list.

• Select the residual variable from the last regression, zre_2, and move it into the Aggre-
gate Variable(s) list. It appears within an expression involving the MEAN function,
which is not what you want; but first take care of the new variable name.

• Click Name & Label. In the Name and Label dialog box, type sdozone into the Name
text box. If you want, type Standard Deviation of Ozone Residuals into
the Label text box. Click Continue.

Figure 11.20 Aggregate Data dialog box
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• Click Function, and in the Aggregate Function dialog box, select Standard deviation.
Click Continue.

• The expression in the Aggregate Variable(s) list now reads sdozone=sd(zre_2).

• Be sure that the Create new data file option is selected in the Aggregate Data dialog
box. Notice the default filename beside the File button. It should say aggr.sav, pos-
sibly with a path preceding the name. Click OK.

SPSS quickly calculates the standard deviation of the residuals within each month and
saves them in a data file named aggr.sav. To use them, you need to combine them with
the ozone series in the Data Editor. First, sort the data in the Data Editor. From the menus
choose:

Data
Sort Cases...

In the Sort Cases dialog box, select month_ and move it into the Sort By list. Click OK
to sort the data file. Next, from the menus choose:

Data
Merge Files �

Add Variables...

This opens the Add Variables Read File dialog box, from which you select the data file
(aggr.sav) containing the variable or variables that you want to add to the Data Editor.
Locate and select it, and then click Open. This opens the Add Variables From dialog
box. 

• Select Match cases on key variables in sorted files.

• Below that option, select External file is keyed table.

• Select month_ in the Excluded Variables list, and click the lower W button to move
it into the Key Variable(s) list.

If you like, you can scroll through the variables that appear in the New Working Data File
list. Except for sdozone, all of the variables are marked with an asterisk (*) to indicate that
they come from the working data file—that is, the file in the Data Editor. The variable
sdozone is marked with a plus sign (+) to indicate that it comes from aggr.sav, the file
named in the Aggregate Data dialog box.

When you click OK, SPSS displays a warning that it will fail to add the variables if
the data files are not sorted. Since they are sorted, click OK. SPSS then asks if it should
save your working data file before merging in the new variable. There is no need to do
so; click No.

If you changed your options above, as suggested, to Calculate values before used,
all the cells in the Data Editor will be cleared at this point. Now, from the menus choose:

Transform
Run Pending Transforms
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to merge in the new variable. (If you usually prefer to see the results of your transforma-
tions immediately, remember to restore that setting.)

Once SPSS has added the new variable sdozone to your data file, it is a good idea to
sort the observations back into their natural order. From the menus choose:

Data
Sort Cases...

Scroll down the source variable list, select year_, and move it into the Sort By list. Then
select month_ and move it into the Sort By list below year_. Both variable names should
be followed by (A) on that list. Click OK to sort the cases back into chronological order.
It is always wise to keep time series observations in order by date, since many Trends
procedures assume that the file is in order. 

These file-manipulation procedures are explained fully and examples are given in the
SPSS Base system documentation. 

The Weight Estimation Procedure 

The Weight Estimation procedure in the SPSS Regression Models option helps you
estimate the power to which a source variable should be raised in order to measure the
precision of each observation. Specifically, it seeks to measure the variance of the
measurement of the dependent variable for each observation. 

Since the series sdres contains the estimated standard deviation of each month’s re-
siduals, the best power should be about 2.0 (the variance of the residuals is the second
power of our estimates of their standard deviation). To be safe, we specify a search range
from 1.0 to 2.6, increasing delta by 0.2 each time. From the menus choose:

Analyze
Regression �

Weight Estimation...

This opens the Weight Estimation dialog box, as shown in Figure 11.21.
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Move ozone_1 into the Dependent box. Move trend, techniq, and the 11 dummy month
variables into the Independent(s) list. Move sdozone into the Weight Variable box, since
we suspect that the variance of the ozone measurements is some power of this variable.
In the Power range text boxes, specify 1 through 2.6 by 0.2. This specification causes
Trends to estimate the regression equation nine times, using exponents of 1.0, 1.2, ...,
2.4, 2.6.

 With all the calculations, this procedure will take a while to run. Before running it,
click Options, and in the Weight Estimation Options dialog box, select Save best
weight as new variable and click Continue. Make sure that Include constant in equation
is checked in the Weight Estimation dialog box, and click OK. Some of the results are
shown in Figure 11.22.

Figure 11.21 Weight Estimation dialog box
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Figure 11.22 Weighted least-squares estimation 

Source variable.. SDOZONE            Dependent variable.. OZONE_1

Log-likelihood Function = -354.636609     POWER value =  1.000
Log-likelihood Function = -352.851120     POWER value =  1.200
Log-likelihood Function = -351.381577     POWER value =  1.400
Log-likelihood Function = -350.236678     POWER value =  1.600
Log-likelihood Function = -349.424992     POWER value =  1.800
Log-likelihood Function = -348.954770     POWER value =  2.000
Log-likelihood Function = -348.833703     POWER value =  2.200
Log-likelihood Function = -349.068632     POWER value =  2.400
Log-likelihood Function = -349.665231     POWER value =  2.600

The Value of POWER Maximizing Log-likelihood Function =  2.200

Source variable..    SDOZONE               POWER value =  2.200

Dependent variable.. OZONE_1

Listwise Deletion of Missing Data

Multiple R           .83007
R Square             .68901
Adjusted R Square    .65087
Standard Error      5.56823

            Analysis of Variance:

                DF   Sum of Squares      Mean Square

Regression      13        7281.5659        560.12045
Residuals      106        3286.5541         31.00523

F =      18.06536       Signif F =  .0000

------------------ Variables in the Equation ------------------

Variable              B        SE B       Beta         T  Sig T

TREND          -.546957     .239348   -.240705    -2.285  .0243
TECHNIQ        3.045785    1.398132    .228900     2.178  .0316
JAN            6.797080    2.465532    .193685     2.757  .0069
FEB            9.326660    2.709015    .228904     3.443  .0008
MAR           15.314739    3.717634    .246239     4.119  .0001
APR            6.955319    2.526084    .190546     2.753  .0069
MAY            -.894101    2.198795   -.031509     -.407  .6851
JUN           -4.083521    2.190418   -.145173    -1.864  .0651
JUL           -6.277942    1.840909   -.353733    -3.410  .0009
AUG           -8.392362    1.757325   -.568371    -4.776  .0000
SEP           -8.631361    1.820996   -.502824    -4.740  .0000
OCT           -7.634160    2.023948   -.323250    -3.772  .0003
NOV           -4.009580    2.540083   -.108782    -1.579  .1174
(Constant)    33.706733    1.764436               19.103  .0000

Log-likelihood Function = -348.833703

The following new variables are being created:

  Name        Label

  WGT_2       Weight for OZONE_1 from WLS, MOD_4  SDOZONE** -2.200
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The output shows that: 

• The best-fitting equation used a power of 2.2, about what we expected. 

• The adjusted R2 is still about 0.65. 

• The estimated effect of changing measurement technique is now only 3.04, some-
what smaller than with ordinary least squares. 

• The trend estimate is now only about −0.55 points per year, which has a statistical
significance of 0.0243. 

• The constant—the estimated value at the beginning of the time period, with seasonal
effect removed—is 33.71. 

The estimates have changed again, this time showing a smaller trend and a smaller in-
crease due to the new measurement technique. Evidently, less reliable observations made
in the highly variable winter months had contributed to the trend and intervention esti-
mates from ordinary least squares (Figure 11.14). We should expect the weighted least-
squares estimates to be the better ones. 

Our conclusion, then, is that over this decade the ozone level at 15 kilometers over
Churchill was decreasing by about 0.55 points (about 1 1/2%) each year. 

Residuals Analysis with Weighted Least Squares 

You can take the regression weights from the Weight Estimation procedure and use them
with the powerful facilities for residual analysis in the Linear Regression procedure. The
steps are: 

1. Run Weight Estimation, as above, specifying a power range to find the best value.
Note the name of the series created by Weight Estimation (wgt_2 in Figure 11.22). 

2. Open the Linear Regression dialog box and specify the dependent variable ozone_1
and the independent variables trend, techniq, and january through november.

3. Click WLS>> and move the newly created weighting variable (wgt_2) into the WLS
Weight list.

4. Click Save, and in the Linear Regression Save dialog box, select Unstandardized in
both the Predicted Values group and the Residuals group.

5. Run the procedure.

The output from the Linear Regression procedure is not shown. The regression statistics
are identical to those reported by the Weight Estimation procedure.



Trends in the Ozone: Seasonal Regression and Weighted Least Squares 179

For residual analysis, you must transform the residuals (saved in variable res_1) and
the predicted values (saved in variable pre_1) before generating diagnostic plots (Drap-
er & Smith, 1981; Montgomery & Peck, 1982). From the menus choose:

Transform
Compute...

In the Compute Variable dialog box, type pred in the Target Variable text box. To build
the expression for the necessary transformation:

1. Select pre_1 from the source variable list and move it into the Numeric Expression
text box.

2. Click the asterisk (*) on the keypad.

3. Scroll down the Functions list to SQRT(numexpr). Select it and then click Y to
move it into the Numeric Expression text box.

4. With the question mark in parentheses highlighted, select wgt_2 from the source vari-
able list and click W so that it replaces the question mark.

The numeric expression for pred now reads pre_1 * SQRT(wgt_2). Click OK to calcu-
late the weighted predicted values.

Now it is easy to calculate the weighted residuals. Open the Compute Variable dialog
box again and type resid in the Target Variable text box. Select the variable name pre_1
in the Numeric Expression text box; then select res_1 from the source variable list and
click W so that it replaces pre_1. The numeric expression for resid now reads res_1 *
SQRT(wgt_2). Click OK. If necessary, from the menus choose:

Transform
Run Pending Transforms

to calculate the weighted residuals.
To check the normality of the transformed residuals, from the menus choose:

Graphs
P-P...

In the P-P Plots dialog box, move resid into the Variables list. The resulting plot is
shown in Figure 11.23. It is noticeably better than the plot of residuals from the ordinary
least-squares analysis shown in Figure 11.17. 
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Finally, to check that weighted least squares has solved the problem of heteroscedasticity
observed in Figure 11.18, from the menus choose:

Graphs
Scatter...

In the Scatterplot dialog box, select Simple. Put resid on the Y axis and pred on the X
axis. The resulting chart (Figure 11.24) does not show the heteroscedasticity observed
earlier, despite the irregular distribution of pred.

Figure 11.23 Normal probability plot of transformed residuals
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It is also a good idea to plot residuals against important independent variables. Figure
11.25 shows a plot of resid against trend, the independent variable whose effect we are
primarily interested in. Once again, there is no apparent pattern in this plot.

Figure 11.24 Scatterplot of residuals against predicted values

Figure 11.25 Scatterplot of residuals against trend
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How to Obtain Seasonal Decomposition
The Seasonal Decomposition procedure splits the variation in a periodic time series into
a seasonal component, a combined trend and cycle component, and a residual. It nor-
mally creates new variables containing these components, plus a variable containing the
seasonally adjusted series (the original series minus the seasonal component).

The minimum specification is one or more numeric variables for which a seasonal peri-
odicity has been defined. You must define the periodicity (with the Define Dates procedure
on the Data menu, or by using the command syntax for DATE) before you can use this pro-
cedure.

• The series cannot contain any missing values. You must substitute nonmissing for
missing data to use this procedure, perhaps with the Replace Missing Values proce-
dure on the Transform menu.

To apply Seasonal Decomposition to your data, from the menus choose:

Analyze
Time Series �

Seasonal Decomposition...

If the periodicity of the working data file is defined, this menu selection opens the Sea-
sonal Decomposition dialog box, as shown in Figure 11.26. The current periodicity is
displayed in the dialog box.

The numeric variables in your data file appear in the source variable list. Select one or
more variables and move them into the Variable(s) list. To analyze the seasonal variation
in the selected variables with the default multiplicative model, treating all points equal-
ly, click OK. This creates four new series for each selected variable, adding them to your
working data file.

Figure 11.26 Seasonal Decomposition dialog box
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To see the decomposition for each observation, select Display casewise listing. This
produces a one-line summary listing the four new series along with some intermediate
steps in calculating them.

To specify the model by which seasonal and nonseasonal components are combined,
select one of the Model alternatives:

� Multiplicative. The seasonal component is a factor by which the seasonally adjusted se-
ries is multiplied to yield the original series. In effect, Trends estimates seasonal
components that are proportional to the overall level of the series. Observations with-
out seasonal variation have a seasonal component of 1. This is the default.

� Additive. The seasonal component is a term that is added to the seasonally adjusted
series to yield the original series. In effect, Trends estimates seasonal components
that do not depend on the overall level of the series. Observations without seasonal
variation have a seasonal component of 0.

The Moving Average Weight group controls the calculation of moving averages for
series with odd periodicity:

� All points equal. Moving averages are calculated with a span equal to the periodicity
and with all points weighted equally. This method is always used if the periodicity is
odd.

� Endpoints weighted by .5. Moving averages for series with even periodicity are calcu-
lated with a span equal to the periodicity plus 1, and with the endpoints of the span
weighted by 0.5.

Saving Seasonal Components and Residuals

By default, the Seasonal Decomposition procedure creates four new series for each
selected variable, adding them to your working data file as new variables. The new
series have names beginning with the following prefixes:

saf Seasonal adjustment factors, representing seasonal variation. For the multipli-
cative model, the value 1 represents the absence of seasonal variation; for the
additive model, the value 0 represents the absence of seasonal variation.

sas Seasonally adjusted series, representing the original series with seasonal vari-
ation removed.

stc Smoothed trend-cycle component, a smoothed version of the seasonally adjust-
ed series which shows both trend and cyclic components.

err The residual component of the series for a particular observation.
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To suppress the creation of these new series, or to add them to the working data file as
temporary variables only, click Save in the Seasonal Decomposition dialog box. This
opens the Season Save dialog box, as shown in Figure 11.27.

Create Variables. To control the creation of new variables, you can choose one of the fol-
lowing alternatives:

� Add to file. The new series created by Seasonal Decomposition are saved as regular
variables in your working data file. Variable names are formed from a three-letter
prefix, an underscore, and a number. This is the default.

� Replace existing. The new series created by Seasonal Decomposition are saved as
temporary variables in your working data file. At the same time, any existing tempo-
rary variables created by Trends procedures are dropped. Variable names are formed
from a three-letter prefix, a pound sign (#), and a number.

� Do not create. The new variables are not added to the working data file.

Additional Features Available with Command Syntax

You can customize your seasonal decomposition if you paste your selections to a syntax
window and edit the resulting SEASON command syntax. As an additional feature, you
can specify any periodicity within the SEASON command, rather than select one of the
alternatives offered by the Define Dates procedure. See the SPSS Syntax Reference
Guide for command syntax rules and for complete WLS command syntax.

Figure 11.27 Season Save dialog box
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Telephone Connections in 
Wisconsin: Seasonal ARIMA

In Chapter 11, we used dummy variables to estimate a regression model that included
seasonal variation. Here we will extend our earlier work with ARIMA models to in-
clude seasonal variation. 

Seasonal ARIMA models, particularly those involving seasonal moving averages,
require significantly more computation than nonseasonal models. Calculation of the
partial autocorrelation function (PACF) is also slow at the large lags that are needed to
identify seasonal ARIMA models. Commands in the example session for this chapter
take somewhat more time than those in the sessions for other chapters. 

The Wisconsin Telephone Series 
The customer base of the Wisconsin Telephone Company varies from month to month
as new customers are connected and old customers are disconnected. The numbers of
connections and disconnections are a matter of public record and have been analyzed
by Thompson and Tiao (1971). Connections always exceed disconnections; our goal is
to predict the growth in the customer base. 

We will develop a model based on the 190 observations from January, 1951, through
October, 1966, reserving an additional 25 observations through November, 1968, as a
validation period for the model. First, we define the dates and periodicity of the data.
From the menus choose:

Data
Define Dates...

In the Define Dates dialog box, scroll to the top of the Cases Are list and select Years,
months. In the First Case Is group, specify 1951 as the year, leaving the month set to
1. Click OK.

Next, define the estimation period for the analysis. From the menus choose:

Data
Select Cases...

In the Select Cases dialog box, select Based on time or case range, and click Range
to open the Select Cases Range dialog box, as shown in Figure 12.1.

12
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Leave the text boxes for First Case blank; click in the Year text box for Last Case, or
simply press t twice. Type 1966, and then click in (or tab to) the Month text box and
type 10. This establishes the estimation period.

Plotting the Series 

The two series are named connect and dsconect. Figure 12.2 shows a plot of both series. 

Figure 12.1 Select Cases Range dialog box

Figure 12.2 Connections and disconnections 
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Several things are evident from the plot: 

• Both series have distinct seasonal patterns, with peaks around September and valleys
around January or February. 

• The series follow one another; they are not independent. 

• The series show a long-term upward trend. 

• Variability of the series increases as the level of the series rises. 

Stationary Variance and the Log Transformation 

The techniques of ARIMA modeling assume stationarity—that is, over the course of the
series, both the short-term mean and the short-term variance are constant. When the mean
is not constant, you can usually stabilize it by taking differences in the series, but differ-
encing will not stabilize the variance. For series such as this one, in which the variance is
larger when the mean is larger, a log transformation often makes the variance constant.
Most SPSS Trends procedures can perform log transformations “on the fly,” leaving the
original series unchanged, so you do not have to transform the data permanently.

Calculating the Growth Ratio 

To analyze growth, we will compute a single series representing the ratio of connections
to disconnections. From the menus choose:

Transform
Compute...

In the Compute Variable dialog box, type ratio in the Target Variable text box. Select
connect from the source variable list and click W. Then type a slash (/), or click on the
slash (/) on the keypad. Finally, select disconnect and click W. Click OK to compute the
new variable ratio as the ratio of telephone connections to disconnections.

Figure 12.3 shows a plot of the ratio series. 
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Like the connect and dsconect series, ratio is seasonal—although not as dramatically as
the two separate series—and it also shows increasing variability in those years when the
ratio of connections to disconnections is higher. The trend is less pronounced, but it ap-
pears likely that some form of differencing will be required to achieve a stationary mean. 

You might think, incidentally, that the net difference between connections and dis-
connections would be easier to interpret than the ratio. We analyze the ratio primarily
because Thompson and Tiao did so. 

Seasonal ARIMA Models 
Seasonal ARIMA is more complex than nonseasonal ARIMA, but it has the same com-
ponents as regular ARIMA: 

• A seasonal autoregressive model expresses the current observation as a linear func-
tion of the current disturbance and one or more previous observations. 

• Seasonal differencing transforms the data by subtracting the observation lagged by
the seasonal period. For monthly data, you subtract the observation from the same
month of the previous year. Just as regular differencing reduces the length of a series
by 1, seasonal differencing reduces the series by one period. 

• A seasonal moving average model expresses the current observation as a linear func-
tion of the current disturbance and one or more previous disturbances. 

Figure 12.3 Ratio of connections to disconnections 
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For a seasonal ARIMA model, you must specify the period. A monthly series such as
ratio usually has a seasonal period of 12, although other periods are possible. Since the
Define Dates procedure specified year and month, Trends assumes a periodicity of 12
for ratio. 

The traditional notation for seasonal ARIMA models places the length of the season-
al period after the set of parentheses containing p, d, and q. Thus, a model with a period
of 12 that is a first-order seasonal moving average after it has been seasonally differ-
enced once is termed seasonal ARIMA(0,1,1) 12. 

The precise form of a seasonal ARIMA model is best expressed in equations with the
“backshift” operator B we used in Chapter 10. The form of the equations is virtually
identical to that for nonseasonal models. Recall that B simply means to look at the series
shifted back to the previous time point. Thus, for a series ratio,  means

. To get seasonal backshifts, simply “multiply” the operator as many times as
necessary.  is a backshift of , so it is the value of ratio two observa-
tions earlier. For monthly data, then,  is the value of ratio 12 observations
earlier—the seasonal backshift. 

To express a seasonal ARIMA(0, 0, 1) 12 (seasonal moving average model with pe-
riod 12), you simply use  in place of B in the equation for a regular moving average
model: 

Equation 12.1

Here θ is the seasonal moving average coefficient and is exactly analogous to θ for non-
seasonal moving averages. Similarly, for seasonal ARIMA(0,1,1) 12, the equation is 

Equation 12.2

Interpreting an equation like this is easier than it may look. The series minus its seasonal
backshift—the change over the seasonal period, in other words—equals a combination of
the current disturbance and some fraction (θ) of the disturbance one seasonal period ago. 

Seasonal ARIMA effects are (unfortunately) usually mixed with nonseasonal effects.
The mixed form is normally taken to be multiplicative—the seasonal and nonseasonal ef-
fects are multiplied in the equation. A multiplicative first-order moving average with a
first-order seasonal moving average, written ARIMA(0,0,1) (0,0,1) 12, is represented by 

Equation 12.3

If you work out the algebra, you find that the usual multiplicative model predicts some
nonzero autocorrelations (for example, at lag 13) that would be 0 in an additive model.
This makes sense; if the current observation is affected by the observations 1 and 12
months ago, logically it should be affected by the one 13 months ago. If you know
enough to be sure that you want an additive model, you can constrain the unwanted co-

B ratiot( )
ratiot 1–

B2 ratio( ) B ratio( )
B12 ratio( )

B12

series t 1 θ B
12

–( )disturbance t=

1 B
12

–( )series t 1 θ B
12

–( )disturbance t=

series t 1 θ B–( ) 1 θ B
12

–( )disturbance t=
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efficients to 0 by using SPSS command syntax. Consult ARIMA in the Syntax Reference
section for information on specifying a constrained model. 

Problems in Identifying Seasonal Models 

Although seasonal ARIMA models are conceptually similar to nonseasonal models,
they can be more difficult to identify. 

Length of the Series 

You need a longer series to develop a seasonal model. With a period of 12, as in the
present example, you identify the form of the model on the basis of the ACF and PACF
at lags 12, 24, 36, and so on. You must calculate these functions to an unusually large
number of lags, as specified in the Autocorrelations Options dialog box. Note that the
calculation of the PACF to so many lags requires a great deal of processing time. Do not
specify so many lags unless you are estimating a seasonal model. 

To estimate the coefficients for a seasonal ARIMA model, you should have at least
enough data for seven or eight seasonal periods. Models based on shorter series are like-
ly to be unreliable. 

Confounding of Seasonal and Nonseasonal Effects 

The characteristic ACF and PACF patterns produced by seasonal processes are the same
as those shown in Appendix B for nonseasonal processes, except that the patterns occur
in the first few seasonal lags rather than the first few lags. It is easy to determine that a
seasonal process is present—if the ACF, PACF, or both show significant values at lags
that are multiples of the seasonal period, you know that there is a seasonal process. It is
less easy to identify the processes involved. 

The principal problem in identifying seasonal ARIMA models is the complexity of
the ACF and PACF plots. These plots arise from the combination of the seasonal and
nonseasonal ARIMA processes with random noise and are rarely as clean as textbook
illustrations. In practice, you often have to identify some of the model, estimate the co-
efficients, obtain a residual series, and then inspect the ACF and PACF of the residuals
for clues about components you need to add to your tentative model. The ARIMA cycle
of identification, estimation, and diagnosis takes longer when seasonal processes are
present. 

A Seasonal Model for the Telephone Series 
We begin analysis of the ratios of connections to disconnections by generating an ACF
plot. As explained in “Stationary Variance and the Log Transformation” on p. 187, we
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use a log transformation to make the variance of the series constant. To obtain this plot,
from the menus choose:

Graphs
Time Series �

Autocorrelations...

This opens the Autocorrelations dialog box, as shown in Figure 12.4.

Move ratio into the Variables list. To save processing time, deselect Partial autocorrelations
in the Display group. This takes a long time to calculate and we have not yet even determined
whether the series is stationary. The Transform group should show the current periodicity as
12. In that group, select Natural log transform. Click Options to open the Autocorrelations
Options dialog box, as shown in Figure 12.5.

Figure 12.4 Autocorrelations dialog box

Figure 12.5 Autocorrelations Options dialog box
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In the text box for Maximum Number of Lags, type 36. This will provide three seasonal
lags (at 12, 24, and 36) for identification of the seasonal model. Click OK to see the
autocorrelation function for the ratio series. 

We do not request the PACF plot at this point, since it takes a long time to calculate
and we have not yet even determined whether the series is stationary. 

Identifying the Seasonal Model 

The ACF plot in Figure 12.6 above shows large values at lags 12, 24, and 36. The slow-
ness with which values at these seasonal lags decline confirms our suspicion that sea-
sonal differencing is required to achieve a stationary mean. To do so, reopen the
Autocorrelations dialog box. Select Seasonally difference in the Transform group, and
select Partial autocorrelations in the Display group. You will notice that the calculation
of the PACF requires a long time at high lags. Figure 12.7 shows plots after seasonal
differencing.

Figure 12.6 ACF plot with log transformation 



Telephone Connections in Wisconsin: Seasonal ARIMA 193

Seasonal differencing has smoothed out the rapid seasonal fluctuations. The ACF still
shows a lot of nonseasonal action, with a single seasonal spike emerging at lag 12. The
PACF shows a large spike at 12, a smaller one at 24, and possibly a hint of one at 36. 

Checking Appendix B, you find that the pattern “one spike in ACF, rapidly declining
PACF” indicates an MA(1) process, in this instance a seasonal MA(1) process, since the
pattern appears at the seasonal lags. 

These plots were from a seasonally differenced series, so the tentative seasonal mod-
el is (0,1,1). The next step is to estimate the MA(1) coefficient in the seasonal model, so

Figure 12.7 Seasonally differenced plots 
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we can plot the ACF of the residuals and get a cleaner look at the type of nonseasonal
model involved. 

Estimating the Seasonal Coefficient 

To estimate the seasonal model, from the menus choose:

Analyze
Time Series �

ARIMA...

This opens the ARIMA dialog box, as shown in Figure 12.8. 

• Move ratio into the Dependent box.

• Select Natural log on the Transform drop-down list. The log transformation is included
in the model to stabilize the variance, as discussed above.

• In the Model group, deselect Include constant in model. The mean seasonal differ-
ence should be about 0.

• Specify the parameters of the seasonal model: set sd to 1 and sq to 1. Leave the other
four parameters at 0.

• Click Options and, in the ARIMA Options dialog box, select Final parameters only.
We are not interested in the details of this model, but in the residuals.

This is only a preliminary estimation of the seasonal model. We know from the plots
above that nonseasonal processes are also involved. By estimating the seasonal model,

Figure 12.8 ARIMA dialog box
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we hope to obtain a residual series free of seasonal effects. The results of the preliminary
analysis are shown in Figure 12.9.

Identifying the Nonseasonal Model from Residuals 

The series err_1 contains residuals of the log-transformed ratio series from the seasonal
model estimated above. If our identification of the seasonal model was correct, these re-
siduals show the nonseasonal portion of the model. (If it was incorrect, they will still
show autocorrelations at the seasonal lags.) To identify the nonseasonal components of
the model, from the menus choose:

Graphs
Time Series �

Autocorrelations...

In the Autocorrelations dialog box, move ratio out of the Variables list and err_1 in.
Make sure that both Display options are selected. Deselect Natural log transform and
Seasonally difference in the Transform group. Figure 12.10 and Figure 12.11 show the
ACF and PACF plots of the residuals from the seasonal ARIMA model.

Figure 12.9 Estimation of seasonal (0,1,1) model 

Split group number: 1  Series length: 190
No missing data.
Melard’s algorithm will be used for estimation.

Conclusion of estimation phase.
Estimation terminated at iteration number 6 because:
   Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS:

Number of residuals  178
Standard error       .07520585
Log likelihood       205.85675
AIC                  -409.7135
SBC                  -406.53172

            Analysis of Variance:

               DF  Adj. Sum of Squares    Residual Variance

Residuals     177            1.0310954            .00565592

           Variables in the Model:

                B         SEB     T-RATIO   APPROX. PROB.

SMA1    .59551885   .06601872   9.0204542        .0000000

The following new variables are being created:

  Name        Label

  FIT_1       Fit for RATIO from ARIMA, MOD_6 LN NOCON
  ERR_1       Error for RATIO from ARIMA, MOD_6 LN NOCON
  LCL_1       95% LCL for RATIO from ARIMA, MOD_6 LN NOCON
  UCL_1       95% UCL for RATIO from ARIMA, MOD_6 LN NOCON
  SEP_1       SE of fit for RATIO from ARIMA, MOD_6 LN NOCON
Note: The error variable is in the log metric.
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Since the option specified earlier for maximum lags is still in effect, Trends displays au-
tocorrelations to 36 lags. (We still want to see high-order lags in case there is any sea-
sonal variation remaining in the residuals.) Calculating the higher-order lags of the
PACF takes a while. In the figure, we observe the following:

• The ACF starts large and then dies out. 

Figure 12.10  ACF plot of residuals from seasonal model 

Figure 12.11 PACF plot of residuals from seasonal model
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• The PACF also dies out, somewhat more quickly. 

Comparing this pattern to those in Appendix B, we decide that the nonseasonal model
may be ARIMA(1,0,1). The relatively slow attenuation of the ACF indicates that the au-
toregressive coefficient will be large. (Remember from Chapter 7 that a slowly declining
ACF can mean an integrated series—which is equivalent to an AR(1) model with a co-
efficient of 1.0.) 

Before estimating coefficients for the combined model, let us pause to emphasize an
important feature of the way Trends ARIMA handles log-transformed data. 

Residuals in Log-Transformed ARIMA 

The log-transformation options of the ARIMA procedure allow you to analyze a log-
transformed series while retaining the untransformed data in your file. To evaluate such
a model, you need the residuals of the series that was analyzed—the transformed data,
in other words. Thus, if you select either of the two log transforms in the ARIMA dialog
box, the residual series (with the prefix err) is created in the log-transformed metric. 

However, other series generated by ARIMA (with prefixes fit, lcl, ucl, and sep) are
transformed back so that they will be comparable to the series analyzed. Therefore,
when you use a log transformation in ARIMA, it is not true—as it otherwise would be—
that the fit series plus the err series equals the original series. The fit series is not trans-
formed and is suitable for comparison with the original series; the err series is trans-
formed for diagnostic purposes. 

Note that we did not specify a log transformation for the ACF plot in Figure 12.10,
as we did earlier. The series err_1 (unlike the series ratio in Figure 12.7) is in the logged
metric. 

Estimating the Complete Model 

The tentative model, incorporating both seasonal and nonseasonal effects, is
(1,0,1)(0,1,1)12. To estimate this model, from the menus choose:

Analyze
Time Series �

ARIMA...

In the ARIMA dialog box, make sure that ratio is specified as the dependent variable,
and that Natural log is selected for Transform. Specify 1 for p and 1 for q. Leave d equal
to 0, and leave the three seasonal parameters equal to 0, 1, and 1, respectively. Make sure
Include constant in model is not selected.

Click Save to check the options for creating new variables. The default options, Add
to file and Predict from estimation period through last case, should be selected. Click
Continue and then Options in the ARIMA dialog box. In the ARIMA Options dialog
box, select the first Display option, Initial and final parameters with iteration summary.
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Figure 12.12 shows the estimation of this model. All coefficients are statistically sig-
nificant and, as expected, the AR(1) coefficient is nearly 1. 

Diagnosis 

The residuals from the above analysis are in the series err_2, as reported in Figure 12.12.
As before, this error series remains in the logged metric and is suitable for diagnostic
analysis. Figure 12.13 shows the ACF plot of err_2, including the values of the Box-
Ljung statistic and its significance levels.

Figure 12.12 The complete model 

Split group number: 1  Series length: 190
No missing data.
Melard’s algorithm will be used for estimation.

Conclusion of estimation phase.
Estimation terminated at iteration number 5 because:
   Sum of squares decreased by less than .001 percent.

FINAL PARAMETERS:

Number of residuals  178
Standard error       .05363987
Log likelihood       266.10097
AIC                  -526.20195
SBC                  -516.6566

            Analysis of Variance:

               DF  Adj. Sum of Squares    Residual Variance
Residuals     175            .52400402            .00287724

           Variables in the Model:

                B         SEB     T-RATIO   APPROX. PROB.
AR1     .91658654   .03955866   23.170311        .0000000
MA1     .52165306   .08352885    6.245184        .0000000
SMA1    .65676324   .06741673    9.741844        .0000000

The following new variables are being created:

  Name        Label

  FIT_2       Fit for RATIO from ARIMA, MOD_8 LN NOCON
  ERR_2       Error for RATIO from ARIMA, MOD_8 LN NOCON
  LCL_2       95% LCL for RATIO from ARIMA, MOD_8 LN NOCON
  UCL_2       95% UCL for RATIO from ARIMA, MOD_8 LN NOCON
  SEP_2       SE of fit for RATIO from ARIMA, MOD_8 LN NOCON
Note: The error variable is in the log metric.
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The ACF shows a significant spike at lag 11. We have no reason to expect a lag-11 au-
tocorrelation, and we have plotted enough values so that one or two should be significant
by chance alone, so we can safely ignore this spike. The Box-Ljung statistics do not in-
dicate significant departures from white noise in the residual autocorrelations. 

Checking the Validation Period 

To check the performance of the model during the validation period (the 25 observations
not used to estimate the coefficients), we plot the observations along with the new fit_2
series for the entire data file. From the menus choose: 

Data
Select Cases...

Figure 12.13 ACF of residuals from complete model 
Autocorrelations:   ERR_2   Error for RATIO from ARIMA, MOD_2 LN NOC

     Auto- Stand.
Lag  Corr.   Err. -1  -.75  -.5 -.25   0   .25  .5   .75   1   Box-Ljung  Prob.
                   |————|————|————|————|————|————|————|————|
  1   .077   .069                   .  |**.                        1.255   .263
  2  -.032   .069                   . *|  .                        1.464   .481
  3   .093   .069                   .  |**.                        3.284   .350
  4  -.085   .069                   .**|  .                        4.821   .306
  5  -.009   .068                   .  *  .                        4.837   .436
  6   .050   .068                   .  |* .                        5.380   .496
  7   .005   .068                   .  *  .                        5.384   .613
  8   .102   .068                   .  |**.                        7.617   .472
  9   .067   .068                   .  |* .                        8.580   .477
 10  -.025   .068                   . *|  .                        8.721   .559
 11   .221   .067                   .  |**.*                      19.488   .053
 12   .003   .067                   .  *  .                       19.491   .077
 13  -.058   .067                   . *|  .                       20.248   .089
 14   .063   .067                   .  |* .                       21.131   .098
 15   .016   .067                   .  *  .                       21.189   .131
 16  -.053   .067                   . *|  .                       21.830   .149
 17  -.012   .066                   .  *  .                       21.864   .190
 18  -.018   .066                   .  *  .                       21.940   .235
 19  -.018   .066                   .  *  .                       22.015   .284
 20  -.029   .066                   . *|  .                       22.209   .329
 21  -.100   .066                   .**|  .                       24.505   .269
 22   .000   .066                   .  *  .                       24.505   .321
 23   .029   .065                   .  |* .                       24.698   .366
 24   .036   .065                   .  |* .                       25.007   .405
 25   .005   .065                   .  *  .                       25.012   .462
 26  -.037   .065                   . *|  .                       25.343   .500
 27  -.063   .065                   . *|  .                       26.284   .503
 28  -.079   .064                   .**|  .                       27.777   .476
 29   .023   .064                   .  *  .                       27.902   .523
 30   .042   .064                   .  |* .                       28.332   .553
 31   .021   .064                   .  *  .                       28.440   .598
 32  -.004   .064                   .  *  .                       28.443   .647
 33  -.044   .064                   . *|  .                       28.930   .670
 34   .032   .063                   .  |* .                       29.185   .703
 35   .034   .063                   .  |* .                       29.476   .732
 36   .044   .063                   .  |* .                       29.972   .750

Plot Symbols:      Autocorrelations *     Two Standard Error Limits .

Total cases:  218     Computable first lags:  205
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In the Select Cases dialog box, click Range and set the First Case text box for Year to
1959 and for Month to 1. Clear the values in the text boxes for Last Case. This provides
a short enough range to see the detail in a sequence plot.

Now, from the menus choose:

Graphs
Sequence...

Move ratio and fit_2 into the Variables list, and move date_ into the Time Axis Labels
box. Click Time Lines to open the Time Axis Reference Lines dialog box, as shown in
Figure 12.14.

Select the option Line at date, and enter the date marking the end of the estimation pe-
riod: Year 1966, Month 10. This will make it easier to see where the validation period
begins in the plot. The results are shown in Figure 12.15.

Figure 12.14 Time Axis Reference Lines dialog box
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With a couple of exceptions, the fit series from the ARIMA model with both seasonal
and nonseasonal components does a good job of tracking the ratio of connections to
disconnections. 

Figure 12.15 Sequence plot of ratio and predicted ratio 





203

  

Cycles of Housing Construction: 
Introduction to Spectral Analysis

The rate at which new houses are constructed is an important barometer of the state of
the economy. Housing starts are thought to respond to changes in interest rates, to ex-
pectations about the strength of the economy, to changes in family income and birth
and marriage rates, as well as to seasonal factors. Much longer cycles, based on the rate
at which housing wears out, may also exist. 

The Housing Starts Data 
Series hstarts records the number of permits issued per month for new, single-unit res-
idential dwelling construction in thousands in the United States from January, 1965,
through December, 1975. 

A sequence plot of hstarts is shown in Figure 13.1. The plot shows a strong seasonal
effect dominating all other variation, but there appears to be a slower cycle in the data
as well. 

Figure 13.1 Housing starts 1965–1975 

13
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Seasonally differencing this series helps to reveal the nonseasonal cyclical variation.
Because these are monthly data with a defined periodicity of 12, we can use the Create
Time Series procedure (on the Transform menu) to calculate the differences of observa-
tions 12 months apart. From the menus choose:

Transform
Create Time Series...

In the Create Times Series dialog box:

1. Select hstarts and click W. The expression hstart_1=DIFF(hstarts 1) appears in the
New Variable(s) list.

2. Press t to highlight the Name text box in the Name and Function group. Type
sdhstart to make it easier to remember that this variable represents the seasonal
differences in housing starts.

3. Select Seasonal difference from the Function drop-down list.

4. Click Change. The expression in the New Variable(s) list should now read
sdhstart=SDIFF(hstarts 1).

When you click OK, Trends creates the seasonally differenced series sdhstart, contain-
ing 12 fewer nonmissing observations than the original series. Figure 13.2 shows the
seasonally differenced housing starts series as well as the original. 

 

After a brief introduction to the methods of spectral analysis, we will study the compo-
nents of this series further. 

Figure 13.2 Housing starts, raw and seasonally differenced 
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Spectral Analysis: An Overview 
Spectral analysis is about rhythms. It is used to find various kinds of periodic behavior
in series, although it can be used for nonperiodic data. A spectral analysis of a series
yields a description of that series in terms of the cycles of different period (length) or
frequency that generate the series. This is portrayed in a graph called the periodogram,
which shows an estimate of the amount of variance of the series accounted for by cycles
of each frequency. You can also apply spectral analysis to pairs of series to examine their
covariation at each frequency. 

 Although spectral descriptions are given in terms of frequencies or periods of the
component cycles, there is an exact (but complicated) relationship between the frequen-
cy representation and the autocorrelations of the series. The same information is por-
trayed in different ways by the periodogram and the ACF plot. 

Often you will have expectations about what periodicities are present in the data; at
other times your analysis will be purely exploratory. Determining the relative magnitude
and phase (how far one cycle leads or lags another) of various periodic variations is of-
ten of interest. Sometimes the periodicities in the data are immediately obvious and a
spectral description will only confirm what is visually apparent. When several different
frequencies occur together, however, or when there is a considerable amount of random
noise or static in the data, spectral analysis is more fruitful. 

Model-Free Analysis 

Spectral analysis is almost entirely model free. It analyzes a series into sine and cosine
waves, but this analysis is purely mathematical and is not based on any theory about a
process underlying the series. In contrast to other time series techniques, you don’t de-
termine a parametric model of your data and then estimate it, not even implicitly. In-
stead, you estimate the spectrum without any a priori constraints—although you may
tune the estimators according to the properties of your series and what you want to learn
about the data. Consequently, spectral methods are not worth doing if you have only a
small amount of data. A short series has so little information in it that you cannot analyze
it without a model. Spectral analysis is usually done with hundreds of observations. 

The Periodogram 

To produce a periodogram of the housing-starts series hstarts, from the menus choose:

Graphs
Time Series �

Spectral...

This opens the Spectral Plots dialog box, as shown in Figure 13.3.
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Move hstarts onto the Variable(s) list. Make sure that the Center variables option is se-
lected. (Centering adjusts the series to have a mean of 0 before calculating the spectrum.
It usually improves the periodogram display by removing the relatively large term asso-
ciated with the mean, so you can focus your attention on variation in the series.) Click
OK to generate the default periodogram, which is shown in Figure 13.4.

Figure 13.3 Spectral Plots dialog box

Figure 13.4 Periodogram of housing starts 
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The horizontal axis shows the frequencies into which Spectral Plots has decomposed the
series, and the vertical axis shows the relative weight, or importance, of each frequency.
(The periodogram weight is plotted on a logarithmic scale, which allows you to see more
detail. If the periodogram were plotted on a linear scale, the large differences between
periodogram values would obscure detail.) We observe two high spikes and a great
many other small jagged spikes. 

All of the plots in this chapter are displayed by frequency. If you prefer, you can
select By period in the Spectral Plots dialog box to display the periodogram by period
instead. Frequency and period are reciprocals of one another, so both forms of the plot
contain the same information. Choose whichever you find easier to understand. For
monthly data with a cycle lasting exactly one year, the period is 12 months and the fre-
quency is 1/12 cycle per month. The frequencies plotted in a periodogram are equally
spaced, but the periods corresponding to them are not, since the periods are the recipro-
cals of the frequencies. When you select the By period option, Trends uses the loga-
rithms of the periods so that the plotted points do not bunch up at the left end of the plot. 

The Frequency Domain 
Most time series techniques are carried out “in the time domain.” That is, they describe
the relationship of observations in a series at different points in time. Spectral analysis
is carried out “in the frequency domain.” It describes the variations in a series in terms
of cycles of sines and cosines at different frequencies. For example, in a time-domain
description, you might say that the series x at time t is approximately equal to its value
at time  plus 0.2 times its value at time . In the frequency domain, you might
report that x is approximately composed of a sine wave of frequency of 1/12 cycles per
month plus 0.3 times a sine wave of frequency of 1/20 cycles per month. Descriptions
of real series, of course, are likely to be more complicated than this. 

Fourier Frequencies 

To model cycles of different length, you express the series in terms of sine and cosine
functions having different frequencies. The actual frequencies are chosen so that the
length of the series contains a whole number of cycles at each frequency. These are called
the Fourier frequencies, after the mathematician who discovered their properties.

The lowest Fourier frequency has zero cycles. This represents a “cycle” that does not
vary; that is, a constant. The next lowest completes one cycle during the whole observed
length of the series. The highest, or most rapid, frequency that you can observe has half
as many cycles as the number of observations. For example, if you have 100 observa-
tions, you cannot possibly observe more than 50 complete cycles because it takes two
observations (a high and a low) to complete the smallest recognizable cycle. Aside from
the constant, the Fourier frequencies consist of a fundamental frequency (one long cy-

t 12– t 1–
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cle in the entire observed series) and its overtones (two cycles in the series, three cycles
in the series, and so on). 

Frequencies are measured in terms of cycles per time period. In SPSS Trends, the fre-
quencies are expressed as cycles per observation, since each observation represents a
point in time. Such frequencies are always fractional, since a single observation makes
up only a portion of a cycle. The highest Fourier frequency is 1/2, because its cycles are
half as frequent as the observations themselves. In general, the jth Fourier frequency is
expressed as 

Equation 13.1

where j is the number of times the cycle repeats in the sample and N is the number of
observations. (In the equations in the Syntax Reference section, you will see these fre-
quencies multiplied by 2π, since that makes the periods of the sine and cosine functions
equal to those of the corresponding cycles.) 

 Notice that the Fourier frequencies depend entirely upon the length of the series. If
you know of a periodicity in your series and you want to make sure it shows up cleanly
as a single term in spectral analysis, make sure that the length of the series is an exact
multiple of the length of the period. 

For example, the housing-starts data have 132 monthly observations. In Figure 13.1,
there was a strong annual cycle. This annual cycle repeats exactly 11 times in the ob-
served series of 132 observations, so it corresponds to  in Equation 13.1, and its
frequency is 11/132, or 1/12. (The annual cycle is 1/12 as frequent as the observations
themselves, in other words.) The periodogram in Figure 13.4 does, in fact, show its larg-
est spike at a frequency of 1/12, or about 0.08. If the sample size had been 126 or some
other number that is not a multiple of 12, there would have been no single Fourier fre-
quency that corresponded exactly to an annual cycle. The annual cycle would be
“smeared” over several of the Fourier frequencies. 

Figure 13.5 shows the periodogram of a sine wave with period 0.085, which is not
a Fourier frequency in a sample of 128 cases. Instead of producing a single point at
frequency 0.085, the effect is spread out over all the frequencies, even though it is
highly concentrated at the frequencies nearest to 0.085 (0.078 and 0.086). The appear-
ance of nonzero weights in the periodogram for cycles with frequencies different from
the exact series frequency is called leakage. It can make reading the periodogram
more difficult, but its effect is attenuated by the use of spectral windows, as discussed
on pp. 214–217. 

Frequencyj
j
N
----=

j 11=
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The Fourier frequencies for a series can be adjusted by padding the end of the series with
either zeros or the series mean, thus changing the length of the series. While these extra
points are not valid data, their addition will have little effect on the interesting parts of
the periodogram. 

Interpreting the Periodogram 
The smoothest possible series is one that varies only at frequency 0—a constant. Its peri-
odogram just has a single spike at frequency 0. Such a series is white noise, as described
in Chapter 7. A white noise series with a mean of 0 will have no spikes at all. The roughest
series, in contrast, is one with a spike only at frequency 1/2. Its cycle occurs half as often
as the observations themselves—high, low, high, low, and so on. Every two observations
make a cycle. Generally speaking, 

• The smoother the series, the more variation is accounted for by low-frequency variation.   

• The rougher the series, the more variation is accounted for by high-frequency variation. 

In time-domain analysis, such as we have discussed in earlier chapters, smoothness is
measured by autocorrelation. The Durbin-Watson statistic is one measure used in the
time domain for autocorrelation or smoothness. The Durbin-Watson statistic has a value
near 0 for a very smooth series, or one with positive autocorrelation. In the frequency
domain, such a series shows most of its variation at low frequencies. A series with a
Durbin-Watson statistic of about 2, indicating no autocorrelation (such as a white noise

Figure 13.5 Leakage in a periodogram 



210 Chapter 13

series), normally divides its variation among all the Fourier frequencies and has no in-
teresting shape. 

A Way to Think about Spectral Decomposition 

The periodogram of a series shows its energy or variance at each of the Fourier frequen-
cies. In order to determine this value, the cyclic pattern in the series is expressed at each
frequency as a weighted sum of a sine term and a cosine term having that frequency.
Mathematically, it turns out that the sine and cosine functions at the Fourier frequencies
can be combined to reproduce the observed series exactly, provided that each of the sine
and cosine functions is given the correct weight. 

The value plotted in the periodogram, for any given frequency, is the sum of the
squares of the two weights (sine and cosine) at that frequency. There are half as many
Fourier frequencies as there are observations on the series, and each frequency has two
parameters: the weights of the sine and cosine terms. Let us see how this works. 

For a series with 100 observations, there are actually 51 Fourier frequencies—the
constant (with frequency 0) and the frequencies that repeat 1, 2, 3, ..., 50 times during
the course of the 100 observations. This seems to give 51 sines and 51 cosines, which
require a total of 102 coefficients. There are really only 100, however. 

• At frequency 0, the sine term is always 0 because the sine of 0 is 0. The cosine of 0
is 1, so the “constant cycle” of frequency 0 can be created by simply giving the cosine
weight equal to the constant, or mean, value of the series. 

• At frequency 50, the sine function cycles up and down between observations but al-
ways equals 0 at the moment of observation. The cosine function, on the other hand, is
in sync with the observations. It reaches its highest and lowest values at exactly the mo-
ments of observation. It is thus ideally suited to describing the fastest observable cycle. 

Thus, a spectral analysis of a series of 100 observations yields 51 cosine terms and 49 sine
terms—for a total of exactly 100 terms. The details are slightly different for a series with
an odd number of terms, but the idea is the same. You can express n values of a series as
exactly n coefficients that apply to sine and cosine functions at the Fourier frequencies. 

When you know these coefficients, you can re-create the original series exactly. For
example, to get the value at observation 17, you could: 

• Take one of the Fourier frequencies and figure out where it was in its cycle at exactly
the moment of observation 17. 

• Look up the values of the sine and cosine functions at that point in the cycle. 

• Multiply these values by the coefficients that you have for the sine and cosine func-
tions at the frequency you are working with. 

• Repeat all of this for each of the Fourier frequencies, adding up the results as you go. 
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If you worked your way through all 51 Fourier frequencies and all 100 coefficients like
this, you would end up with the value of the original series at observation 17. Note, how-
ever, that you don’t actually do this when you carry out a spectral analysis. You get the
coefficients and analyze them. The fact that you could re-create the original series from
the spectral coefficients means that you have not lost any information in switching to a
spectral point of view. You are looking at the same information that was in the series of
values, but you are looking at it as a combination of wavelike oscillations rather than a
series of values. 

The mathematical theory of Fourier analysis reveals that the correlations among the
sine and cosine functions used are all 0. This means that the Fourier coefficients are
unique—there is only one set of them that captures all of the information in the original
series. 

Spectral decomposition is a re-expression of the original series as coefficients of
these sines and cosines at the Fourier frequencies. But how should we choose the coef-
ficients? We could use a technique from the time domain—regression. Imagine regress-
ing the series being analyzed on 99 “explanatory” variables consisting of the sine and
cosine terms discussed above. (The zero-frequency cosine term is just the constant term
in the regression.) In fact, this is equivalent to what spectral decomposition does. The
weights for each frequency are just the regression coefficients for the sine and cosine
terms at that frequency. Fortunately, there are computational shortcuts so that we don’t
actually have to compute the decomposition this way. 

All of the weights or coefficients are computed on the basis of the entire observed
series, so that you cannot perform spectral analysis if any data are missing, even at the
ends of the series. Use the Replace Missing Values procedure to substitute values for
missing data, or use Select Cases with a range of cases that excludes missing data at the
beginning or end. 

Some Examples of Decompositions 

The periodogram for a series consisting of a single sine wave is shown in Figure 13.5.
Figure 13.6 and Figure 13.7 show a plot and a periodogram for a series that is the sum
of two sine curves at different frequencies. The periodogram has a spike for each com-
ponent curve. 
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A series consisting simply of a linear trend produces the periodogram in Figure 13.8. 

Figure 13.6 Sum of two periodic oscillations 

Figure 13.7 Sum of two periodic oscillations (periodogram)
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Finally, Figure 13.9 shows a periodogram of a second-order moving average of a series
containing nothing but white noise. The appearance of this type of a periodogram de-
pends upon the size and sign of the MA coefficients. This moving average is dominated
by high-frequency variation—the general tendency across the plot is one of increasing
amplitude with increasing frequency.

 

Figure 13.8 Linear trend 

Figure 13.9 Second-order moving average 
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You may find it useful to generate your own series with known statistical properties and
display their spectra (periodograms) in order to become more familiar with the shape of
typical spectral curves. 

Smoothing the HSTARTS Periodogram 
In regression analysis, you would be justifiably suspicious of an analysis where the

number of cases equaled the number of explanatory variables. You would expect the in-
dividual coefficients to be highly unreliable. In fact, the t statistics would have zero de-
grees of freedom! But you would get a perfect fit to the data. The Fourier analysis
method produces as many coefficients as there are terms in the series analyzed, and each
element in the periodogram is based on the squares of only two coefficients. Individual
periodogram terms have large variance and are statistically independent of each other.
Therefore, we don’t just look at the individual coefficients because they are very noisy. 

Examining the hstarts periodogram in Figure 13.4, we see a great deal of irregular
variation. It would be unwise, to say the least, to attribute significance to each individual
peak. However, we can apply various smoothing transformations to the periodogram
terms to reduce their variance. The smoothing process can also reduce leakage. 

 Smoothing transformations for a periodogram are called windows. You define a
window by choosing the shape and the number of terms (or span) of the group of neigh-
boring points that are to be averaged together. Each of the values in the periodogram is
averaged with one or more values on either side of it. To obtain a smoothed peri-
odogram, from the menus select:

Graphs
Time Series �

Spectral...

The Spectral Plots dialog box still shows your previous specifications. Notice that the
Spectral Window group (which did not affect the periodogram in Figure 13.4) shows a
Tukey-Hamming window with a span of five. That is, each point in the periodogram will
be averaged with two neighbors on each side. In the Plot group, deselect Periodogram
and select Spectral density. The smoothed periodogram is called the spectral density
estimate. The spectral density estimate for hstarts appears in Figure 13.10.
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Much of the jaggedness has been removed, revealing two clear peaks at 12 and 6 months
(corresponding to plotted frequencies of about 1/12, or about 0.08, and 1/6, or 0.17). These
peaks have been smoothed, so they are broader than those shown in the periodogram. The
spectral density estimate also shows three possible peaks at higher frequencies. 

You can choose from several windows and vary the span using the Spectral Window
group (see “Specifying Windows for the Spectral Density” on p. 216). Figure 13.11
shows the hstarts spectral density estimated using the Parzen window with a span of 11.
The general shape is clearly the same as in Figure 13.10, but the broader window has
begun to obscure the shape of the plot. 

Figure 13.10 Smoothed periodogram (spectral density) 
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Specifying Windows for the Spectral Density 

The windows that Spectral Plots uses to produce spectral density estimates have two
characteristics, both of which are under your control: the type (or shape) of the window
and its span. These are specified in the Spectral Window control group in the Spectral
Plots dialog box. They affect the spectral density estimate but not the periodogram. 

The window shape is specified by choosing an alternative from the drop-down list.
Window shape refers to the pattern of the weights applied in constructing the moving
average. These weights are usually symmetric around the middle point; the span of the
window is odd to reflect this. The largest weight is given to the middle point, and the
weights fall off smoothly for points further away, except for the Daniell (Unit) window,
where they are constant. Smoother windows generally lead to less leakage. 

The span parameter indicates the number of points included in the moving average.
(For the Tukey and Bartlett windows, the end points in the average turn out to have
weights of 0, so the effective span is two less than the number you specify.) A wide data
window reduces the effect of random variation in the periodogram. It makes the spectral
density plot easier to read, but also blurs it, introducing some bias. If you smooth the
periodogram too much, you may miss spikes corresponding to important periodic vari-
ation at certain narrow frequency ranges. This is particularly likely to happen if two
spikes occur close together. In general, longer spans reduce the variance of the spectral
density estimates more than shorter ones, but they also increase the bias in areas where
the density function is steep. One rule of thumb is to make the data window span 10%

Figure 13.11 Spectral density with Parzen (11) window 
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to 20% of your data. In practice, you will often find it useful to try several different win-
dow spans in constructing the spectral density estimate. 

An alternative to selecting one of the common window shapes and a span is to con-
struct your own window by giving the weights for the averaging process. See SPECTRA
in the Syntax Reference section for information on specifying your own weights. 

A window of span 1, that is, no windowing at all, can be specified by selecting None.
This makes the spectral density estimate the same as the periodogram. 

While the merits of different windows are much analyzed, in practice the span of the
window is more important than its precise shape. The Tukey window and the Tukey-
Hamming window are perhaps the most popular. The Bartlett window has fallen into
disuse. 

Transformations in Spectral Analysis 
Fourier analysis works best when the periodic behavior of a series has a sinusoidal shape
at each important frequency. But real data don’t necessarily look this way. The level of
a series and the magnitude of its fluctuations may grow over time. In this case, trend re-
moval and power transformations of the data may be helpful. The effects of a trend, be-
ing like very low-frequency variation, will load most heavily on the lowest frequencies
of the periodogram, but it will be reflected to a smaller degree in higher-frequency
terms. The effect of a strong trend on the periodogram can resemble the effect of non-
stationarity in an ACF plot. The large spike at low frequencies can overwhelm variation
elsewhere—just as large ACF values due to nonstationarity overwhelm any patterns due
to AR or MA processes. 

Transformations will take care of many of these problems. When a trend or other
strong low-frequency phenomenon dominates the periodogram, differencing the series
is appropriate. If the short-term variation increases as the level of the series increases, a
log or square-root transformation is commonly used. Generally speaking, you should re-
move the trend from a series before undertaking spectral analysis. You should also
deseasonalize the series unless the seasonality itself is the focus of your investigation.
Strong seasonality overwhelms the other variation in a periodogram. 

• To detrend a series, you can take differences (or seasonal differences). You can also
use the Curve Estimation procedure, usually with a linear model. The err series it cre-
ates is a detrended series. 

• To remove seasonality, you can use the Seasonal Decomposition procedure, which
creates a seasonally adjusted series with the prefix sas. 

A series may be stationary but still fail to look sinusoidal. The shape of the periodic vari-
ation may be pinched, or the peaks and troughs may have different shapes. You may be
able to solve such problems by raising the series to some power. Exponents greater than
1 stretch out some portions of the series, while exponents between 0 and 1 stretch out
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others. Use the Compute Variable facility (on the Transform menu) to carry out power
transformations. 

Leakage 

The phenomenon of leakage occurs when variation at one frequency “leaks” into peri-
odogram terms at frequencies different from the true frequency of the variation. Spectral
analysis uses only the Fourier frequencies, those that complete a whole number of com-
plete cycles from the first observation to the last observation. The particular frequencies
used depend, therefore, on the length of the series, and it is entirely possible that an im-
portant cycle in the data will not be one of the Fourier frequencies. When a cycle that is
not at one of the Fourier frequencies accounts for a considerable part of the variation in
the series, it shows up at the frequencies closest to its true frequency. This phenomenon,
known as leakage, can obscure other important frequencies in the data. 

Windowing can reduce leakage by smoothing the periodogram in a controlled way.
Another useful technique is called prewhitening. This simply means reducing the im-
portance of variation at a strong frequency by differencing or filtering the data. Since a
very smooth series will have large weights on small frequencies, “roughing it up” by re-
placing it by its first differences (or seasonal differences) reduces the relative impor-
tance of the low (or seasonal) frequencies and leads to a clearer picture of the other
variation. To see the effect this can have on the spectral density, compare Figure 13.12,
the spectral density of the seasonally differenced housing-starts series created at the be-
ginning of this chapter, to the density of the undifferenced series in Figure 13.10.

 

Figure 13.12 Prewhitened housing starts 
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• The annual cycle, at a frequency of 1/12 cycle per observation, is completely gone.
You expect this after seasonal differencing. 

• The six-month cycle has turned into a dip. After seasonal differencing, almost no
variation remains at this frequency. 

• The remainder of the spectral density presents a much more regular pattern than in
Figure 13.10. 

It is important to remember that taking differences in a series can produce peaks or dips
in the spectral density as well as remove them (just as differencing too many times causes
problems in ARIMA analysis). 

Spectral Analysis of Time Series 
Analysis in the frequency domain—spectral analysis—never conflicts with analysis in
the time domain. It is a different way of formulating the same problems. As you learn
about spectral analysis, you will find that your understanding of autoregressive and
moving-average processes helps you to interpret the frequency decomposition ex-
pressed in a periodogram. It is equally true that the language of frequencies and periodic
wave functions will give new insight into the behavior of the sequential models of more
traditional time series analysis. 

How to Obtain a Spectral Analysis
To perform spectral analysis of time series, from the menus choose:

Graphs
Time Series �

Spectral...

This opens the Spectral Plots dialog box, as shown in Figure 13.13.
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The numeric variables in your data file appear on the source list. To obtain univariate
periodograms (with variables centered and frequency on the horizontal axis), move one
or more variables into the Variable(s) list and click OK.

Variables used in this procedure must not contain any missing data, even at the be-
ginning or end of the series. Use the Replace Missing Values procedure, or Select Cases
with a range, to ensure that all values are nonmissing.

The Spectral Window group lets you specify the manner in which the periodograms
are smoothed to obtain spectral density plots. The formulas used to determine the
weights will depend on the window type. They do not affect the periodograms them-
selves. Available windows are:

� Tukey-Hamming. This is the default.

Tukey.

Parzen.

Bartlett.

Daniell (Unit). With this window, all values within the span are weighted equally.

None. If you select this, the spectral density plots are not smoothed and are identical
to the periodograms.

For detailed information about window types, see SPECTRA in the Syntax Reference
section. 

Figure 13.13 Spectral Plots dialog box
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In the Span text box, you can specify the span, which is the range of consecutive values
across which the smoothing is carried out. Specify a positive integer, normally an odd
integer. Larger spans smooth the spectral density plot more than smaller spans.

� Center variables. This option adjusts the series to have a mean of zero before calculat-
ing the spectrum and to remove the large term that may be associated with the series
mean. To retain the term for the series mean, deselect this option.

By default, each series in the Variable(s) list is analyzed and plotted separately. You can
also obtain bivariate spectral plots.

� Bivariate analysis. The first variable in the Variable(s) list is plotted with each of the
other variables on the list. Univariate plots are still produced for each variable.

The Plot group lets you choose which plots are displayed for each variable (or each pair
of variables in a bivariate analysis) on the Variable(s) list. Select one or more of the fol-
lowing:

� Periodogram. An unsmoothed plot of spectral amplitude (plotted on a logarithmic
scale) against either frequency or period. This is the default.

� Spectral density. This plots the periodogram after it has been smoothed according to
the specifications in the Spectral Window group.

� Squared coherency. Available only for bivariate analysis.

� Cospectral density. Available only for bivariate analysis.

� Quadrature spectrum. Available only for bivariate analysis.

� Phase spectrum. Available only for bivariate analysis.

� Cross amplitude. Available only for bivariate analysis.

� Gain. Available only for bivariate analysis.

Select one of the alternatives for the horizontal axis of the spectral plots:

� By frequency. All plots are produced by frequency, ranging from frequency 0 (the con-
stant or mean term) to frequency 0.5 (the term for a cycle of two observations).

� By period. All plots are produced by period, ranging from 2 (the term for a cycle of
two observations) to a period equal to the number of observations (the constant or
mean term). Period is displayed on a logarithmic scale.
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Additional Features Available with Command Syntax

You can customize your spectral analysis if you paste your selections to a syntax win-
dow and edit the resulting SPECTRA command syntax. The additional features are:

• New variables. You can save the Fourier frequencies, periods and, for the given fre-
quency or period, the sine and cosine values and the values that are plotted in any of
the available univariate or bivariate plots. These new series correspond to Fourier fre-
quencies or periods and not to the original observations. Thus, the new variables will
be missing for the last half of the observations.

• Display of the values plotted.

• User-specified weights for the spectral windows.

See the Syntax Reference section of this manual for command syntax rules and for com-
plete SPECTRA command syntax. 



Syntax Reference





225

  

Universals 
Most of the rules described in the Universals section of the SPSS Syntax Reference Guide
apply to Trends. This section explains some areas that are unique to working with Trends.
The topics are divided into five sections:

• Syntax provides a quick review of the conventions used in SPSS syntax charts, which
summarize command syntax in diagrams and provide an easy reference. 

• Operations discusses general operating rules, missing values in Trends, and how to con-
trol the quantity of output using TSET. 

• New Variables describes the types of series generated by Trends procedures and their
naming conventions. 

• Periodicity describes the facilities for specifying the periodicity of your series. 
• APPLY Subcommand discusses the models generated by Trends procedures and how to

use the APPLY subcommand as a shorthand method for developing and modifying models. 

Syntax

Every effort has been made to keep the language of Trends consistent with that of the SPSS
Base system.

Syntax Diagrams 

Each Trends command, just like each Base system command, includes a syntax diagram
that shows all the subcommands, keywords, and specifications allowed for that command.
The rules of the syntax diagram are exactly the same for the Base system and for Trends but
are repeated here for your convenience. 
• Elements in upper case are subcommands or keywords. 

• Elements in lower case describe specifications supplied by the user. 

• Elements in boldface type are defaults. 

• Elements enclosed in square brackets ([ ]) are optional. When brackets would confuse
the format, they are omitted. The command description explains which specifications are
required or optional. 

• Braces ({ }) indicate a choice among the elements they enclose. 

• Special delimiters—such as parentheses, apostrophes, or quotation marks—should be
entered as they appear. 
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Operations

There are a few general operating rules you should be aware of when working with Trends: 

• A pass of the data is caused by every Trends command except the following: MODEL
NAME, READ MODEL, SAVE MODEL, and TDISPLAY. 

• Except when you apply a previous model with the APPLY subcommand, subcommands
are in effect only for the current procedure. 

• Whenever a subcommand of a procedure performs the same function as a TSET setting,
the procedure subcommand, if specified, overrides TSET. 

Missing Values

Since time series observations occur at equally spaced intervals and are thus sequentially re-
lated in the data file, missing values in a series can present unique problems. There are sev-
eral ways missing values are handled in Trends. 

• In procedures AREG (method ML) and ARIMA, missing values are allowed anywhere in the
series and present no problems in estimating parameters but do require extra processing
time. AREG methods CO and PW can handle series that have missing values at the begin-
ning or end of the series by dropping those observations but cannot handle series with im-
bedded missing values. 

• Procedures EXSMOOTH, SEASON, and SPECTRA cannot handle missing values anywhere
in the series. To use one of these procedures when you have missing data, you must first spec-
ify either TSET MISSING=INCLUDE to include user-missing values, the RMV procedure to re-
place missing values, or the USE command to specify a range of nonmissing observations. 

• The TSET MISSING command allows you to include or exclude user-missing values in
Trends procedures. EXCLUDE is the default. 

• RMV allows you to replace user-missing and system-missing values with estimates com-
puted from existing values in the series using one of several methods. 

Statistical Output

For some Trends procedures, the amount of output displayed can be controlled by the TSET
PRINT setting. TSET PRINT can be set to BRIEF, DEFAULT, or DETAILED. The following are
some general guidelines used by procedures with multiple iterations. 

• For TSET PRINT=BRIEF, no iteration history is shown. Only the final statistics and the
number of iterations required are reported. 

• For TSET PRINT=DEFAULT, a one-line statistical summary at each iteration plus the final
statistics are reported. 

• For TSET PRINT=DETAILED, a complete statistical summary at each iteration plus the fi-
nal statistics are reported.

For details, refer to the individual procedures.
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New Variables

Trends procedures AREG, ARIMA, EXSMOOTH, and SEASON automatically create, name, and
label new variables each time the procedure is executed. These new variables are added to
the working data file and can be used or saved like any other variable. The names of these
variables consist of the following prefixes, followed by an identifying numeric extension:

FIT Predicted values. When the predictions are for existing observations, the values are
called “fitted” values. When the predicted values extend into the forecast period
(see PREDICT in the SPSS Syntax Reference Guide), they are forecasts. Procedures
AREG and ARIMA produce one FIT variable for each series list (equation); procedure
EXSMOOTH produces one FIT variable for each series specified. 

ERR Residual or “error” values. For procedures AREG, ARIMA, and EXSMOOTH, these
values are the observed value minus the predicted value. These procedures produce
one ERR variable for each FIT variable. Since FIT variables are always reported in
the original raw score metric and ERR might be reported in the natural log metric
if such a transformation was part of the model, the reported ERR variable will not
always equal the observed variable minus the FIT variable. (The discussion under
each individual procedure will tell you if this is the case.) The ERR variable is as-
signed the system-missing value for any observations in the forecast period that ex-
tend beyond the original series.

For procedure SEASON, the ERR values are what remain after the seasonal, trend,
and cycle components have been removed from the series. This procedure produces
one ERR variable for each series.

LCL Lower confidence limits. These are the lowerbound values of an estimated confi-
dence interval for the predictions. A 95% confidence interval is estimated unless
another interval is specified on a subcommand or on a previous TSET CIN com-
mand. Procedures AREG and ARIMA produce confidence intervals. 

UCL Upper confidence limits. These are the upperbound values of an estimated confi-
dence interval for the predictions. The interval is 95%, unless it is changed on a
subcommand or on a previous TSET CIN command. 

SEP Standard errors of the predicted values. Procedures AREG and ARIMA produce one
SEP variable for every FIT variable.

SAS Seasonally adjusted series. These are the values obtained after removing the sea-
sonal variation of a series. Procedure SEASON produces one SAS variable for each
series specified.

SAF Seasonal adjustment factors. These values indicate the effect of each period on the
level of the series. Procedure SEASON produces one SAF variable for each series
specified.

STC Smoothed trend-cycle components. These values show the trend and cyclical be-
havior present in the series. Procedure SEASON produces one STC variable for each
series specified.
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• If TSET NEWVAR=CURRENT (the default) is in effect, only variables from the current pro-
cedure are saved in the working data file, and the suffix #n is used to distinguish variables
that are generated by different series on one procedure. For example, if two series are
specified on an ARIMA command, the variables automatically generated are FIT#1, ERR#1,
LCL#1, UCL#1, SEP#1, FIT#2, ERR#2, LCL#2, UCL#2, and SEP#2. If these variables al-
ready exist from a previous procedure, their values are replaced. 

• If TSET NEWVAR=ALL is in effect, all variables generated during the session are saved in
the working data file. Variables are named using the extension _n, where n increments by
1 for each new variable of a given type. For example, if two series are specified on an
EXSMOOTH command, the FIT variables generated would be FIT_1 and FIT_2. If an AREG
command with one series followed, the FIT variable would be FIT_3. 

• A third TSET NEWVAR option, NONE, allows you to display statistical results from a pro-
cedure without creating any new variables. This option can result in faster processing
time.

TO Keyword 

The order in which new variables are added to the working data file dictionary is ERR, SAS,
SAF, and STC for SEASON, and FIT, ERR, LCL, UCL, and SEP for the other procedures. For
this reason, the TO keyword should be used with caution for specifying lists of these gener-
ated variables. For example, the specification ERR#1 TO ERR#3 indicates more than just
ERR#1, ERR#2, and ERR#3. If the residuals are from an ARIMA procedure, ERR#1 TO ERR#3
indicates ERR#1, LCL#1, UCL#1, SEP#1, FIT#2, ERR#2, LCL#2, UCL#2, SEP#2, FIT#3, and
ERR#3.

Maximum Number of New Variables 

TSET MXNEWVAR specifies the maximum number of new variables that can be generated by
a procedure. The default is 60. 
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Periodicity

Trends provides several ways to specify the periodicity of your series. 

• Many Trends commands have a subcommand such as PERIOD that can set the periodicity
for that specific procedure. 

• TSET PERIOD can be used to set the periodicity to be used globally. This specification can
be changed by another TSET PERIOD command. 

• The DATE command assigns date variables to the observations. Most of these variables
have periodicities associated with them.

If more than one of these periodicities are in effect when a procedure that uses periodicity is
executed, the following precedence determines which periodicity is used: 

• First, the procedure uses any periodicity specified within the procedure. 

• Second, if the periodicity has not been specified within the command, the procedure uses
the periodicity established on TSET PERIOD. 

• Third, if periodicity is not defined within the procedure or on TSET PERIOD, the period-
icity established by the DATE variables is used.

If periodicity is required for execution of the procedure (SEASON) or a subcommand of a
procedure (SDIFF) and the periodicity has not been established anywhere, the procedure or
subcommand will not be executed. 
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APPLY Subcommand

On most Trends procedures (and on some Base system and Regression Models procedures)
you can specify the APPLY subcommand. APPLY allows you to use specifications from a pre-
vious execution of the same procedure. This provides a convenient shorthand for developing
and modifying models. Specific rules and examples on how to use APPLY with a given pro-
cedure are described under the individual procedures. The following are some general rules
about using the APPLY subcommand: 
• In general, the only specification on APPLY is the name of the model to be reapplied in

quotes. If no model is specified, the model and series from the previous specification of
that procedure is used. 

• For procedures AREG and ARIMA, three additional keywords, INITIAL, SPECIFICATIONS,
and FIT, can be specified on APPLY. These keywords are discussed under those procedures. 

• To change the series used with the model, enter new series names before or after APPLY.
If series names are specified before APPLY, a slash is required to separate the series names
and the APPLY subcommand. 

• To change one or more specifications of the model, enter the subcommands of only those
portions you want to change before or after the keyword APPLY. 

• Model names are either the default MOD_n names assigned by Trends or the names as-
signed on the MODEL NAME command. 

• Models can be applied only to the same type of procedure that generated them. For ex-
ample, you cannot apply a model generated by ARIMA to the AREG procedure. 

• The following procedures can generate models and apply models: AREG, ARIMA,
EXSMOOTH, SEASON, and SPECTRA in SPSS Trends; ACF, CASEPLOT, CCF, CURVEFIT,
NPPLOT, PACF, and TSPLOT in the SPSS Base system; and WLS and 2SLS in SPSS
Regression Models. 

Models

The models specified on the APPLY subcommand are automatically generated by Trends pro-
cedures. Models created within a Trends session remain active until the end of the session or
until the READ MODEL command is specified.

Each model includes information such as the procedure that created it, the model name
assigned to it, the series names specified, the subcommands and specifications used, param-
eter estimates, and TSET settings.

Four Trends commands are available for use with models: 

• TDISPLAY displays information about the active models, including model name, model la-
bel, the procedure that created each model, and so on. 

• MODEL NAME allows you to specify names for models. 

• SAVE MODEL allows you to save any or all of the models created in a session in a model
file. 

• READ MODEL reads in any or all of the models contained in a previously saved model file.
These models replace currently active models.
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Default Model Names

The default model name is MOD_n, where n increments by 1 each time an unnamed model is
created in the session. 

• MOD_n reinitializes at the start of every session or when the READ MODEL subcommand
is specified. 

• If any MOD_n names already exist (for example, if they are read in using READ MODEL),
those numbers are skipped when new names are assigned. 

• Alternatively, you can assign model names on the MODEL NAME command. 
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AREG

AREG [VARIABLES=] dependent series name WITH independent series names
 
 [/METHOD={PW**}] 
          {CO  }
          {ML  }
 
 [/{CONSTANT† }]
   {NOCONSTANT}

 [/RHO={0**  }] 
       {value}
 
 [/MXITER={10**}] 
          {n   }
 
 [/APPLY [=’model name’] [{SPECIFICATIONS}]] 
                          {INITIAL       }
                          {FIT           }

**Default if the subcommand is omitted.
†Default if the subcommand or keyword is omitted and there is no corresponding specification on the TSET
command.

Method definitions: 

Example: 
AREG VARY WITH VARX
  /METHOD=ML.

Overview 

AREG estimates a regression model with AR(1) (first-order autoregressive) errors. (Models
whose errors follow a general ARIMA process can be estimated using the ARIMA procedure.)
AREG provides a choice among three estimation techniques. 

For the Prais-Winsten and Cochrane-Orcutt estimation methods (keywords PW and CO),
you can obtain the rho values and statistics at each iteration, and regression statistics for the
ordinary least-square and final Prais-Winsten or Cochrane-Orcutt estimates. For the maxi-
mum-likelihood method (keyword ML), you can obtain the adjusted sum of squares and Mar-
quardt constant at each iteration and, for the final parameter estimates, regression statistics,
correlation and covariance matrices, Akaike’s information criterion (AIC) (Akaike, 1974),
and Schwartz’s Bayesian criterion (SBC) (Schwartz, 1978). 

Options 

Estimation Technique. You can select one of three available estimation techniques (Prais-Win-
sten, Cochrane-Orcutt, or exact maximum-likelihood) on the METHOD subcommand. You

PW Prais-Winsten (GLS) estimation
CO Cochrane-Orcutt estimation
ML Exact maximum-likelihood estimation
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can request regression through the origin or inclusion of a constant in the model by specify-
ing NOCONSTANT or CONSTANT to override the setting on the TSET command.

Rho Value. You can specify the value to be used as the initial rho value (estimate of the first
autoregressive parameter) on the RHO subcommand.

Iterations. You can specify the maximum number of iterations the procedure is allowed to cy-
cle through in calculating estimates on the MXITER subcommand. 

Statistical Output. To display estimates and statistics at each iteration in addition to the default
output, specify TSET PRINT=DETAILED before AREG. To display only the final parameter es-
timates, use TSET PRINT=BRIEF (see TSET in the SPSS Syntax Reference Guide).

New Variables. To evaluate the regression summary table without creating new variables,
specify TSET NEWVAR=NONE prior to AREG. This can result in faster processing time. To
add new variables without erasing the values of previous Trends-generated variables, specify
TSET NEWVAR=ALL. This saves all new variables generated during the session in the working
data file and may require extra processing time.

Basic Specification

The basic specification is one dependent series name, the keyword WITH, and one or more
independent series names. 

• By default, procedure AREG estimates a regression model using the Prais-Winsten (GLS)
technique. The number of iterations is determined by the convergence value set on TSET
CNVERGE (default of 0.001), up to the default maximum number of 10 iterations. A 95%
confidence interval is used unless it is changed by a TSET CIN command prior to the AREG
procedure.

• Unless the default on TSET NEWVAR is changed prior to AREG, five variables are auto-
matically created, labeled, and added to the working data file: fitted values (FIT#1), resid-
uals (ERR#1), lower confidence limits (LCL#1), upper confidence limits (UCL#1), and
standard errors of prediction (SEP#1). (For variable naming and labeling conventions, see
“New Variables” on p. 227.) 

Subcommand Order

• VARIABLES must be specified first. 

• The remaining subcommands can be specified in any order. 

Syntax Rules

• VARIABLES can be specified only once. 

• Other subcommands can be specified more than once, but only the last specification of
each one is executed. 
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Operations 

• AREG cannot forecast beyond the end of the regressor (independent) series (see PREDICT
in the SPSS Syntax Reference Guide). 

• Method ML allows missing data anywhere in the series. Missing values at the beginning
and end are skipped and the analysis proceeds with the first nonmissing case using
Melard’s algorithm. If imbedded missing values are found, they are noted and the Kalman
filter is used for estimation. 

• Methods PW and CO allow missing values at the beginning or end of the series but not
within the series. Missing values at the beginning or end of the series are skipped. If im-
bedded missing values are found, a warning is issued suggesting the ML method be used
instead and the analysis terminates. (See RMV in the SPSS Syntax Reference Guide for in-
formation on replacing missing values.) 

• Series with missing cases may require extra processing time.

Limitations 

• Maximum 1 VARIABLES subcommand. 

• Maximum 1 dependent series in the series list. There is no limit on the number of inde-
pendent series.

Example

AREG VARY WITH VARX
  /METHOD=ML.

• This command performs an exact maximum-likelihood (ML) regression using series
VARY as the dependent variable and series VARX as the independent variable.

VARIABLES Subcommand

VARIABLES specifies the series list and is the only required subcommand. The actual key-
word VARIABLES can be omitted.

• The dependent series is specified first, followed by the keyword WITH and one or more
independent series. 

METHOD Subcommand

METHOD specifies the estimation technique. Three different estimation techniques are available. 

• If METHOD is not specified, the Prais-Winsten method is used. 

• Only one method can be specified on the METHOD subcommand.
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The available methods are:

PW Prais-Winsten method. This generalized least-squares approach is the default (see
Johnston, 1984). 

CO Cochrane-Orcutt method. (See Johnston, 1984.) 

ML Exact maximum-likelihood method. This method can be used when one of the in-
dependent variables is the lagged dependent variable. It can also handle missing
data anywhere in the series (see Kohn & Ansley, 1986). 

Example
AREG VARY WITH VARX
  /METHOD=CO.

In this example, the Cochrane-Orcutt method is used to estimate the regression model. 

CONSTANT and NOCONSTANT Subcommands

CONSTANT and NOCONSTANT indicate whether a constant term should be estimated in the re-
gression equation. The specification overrides the corresponding setting on the TSET command.
• CONSTANT indicates that a constant should be estimated. It is the default unless changed

by TSET NOCONSTANT prior to the current procedure. 

• NOCONSTANT eliminates the constant term from the model.

RHO Subcommand

RHO specifies the initial value of rho, an estimate of the first autoregressive parameter. 

• If RHO is not specified, the initial rho value defaults to 0 (equivalent to ordinary least
squares). 

• The value specified on RHO can be any value greater than −1 and less than 1. 
• Only one rho value can be specified per AREG command.

Example
AREG VAR01 WITH VAR02 VAR03
  /METHOD=CO
  /RHO=0.5.

• In this example, the Cochrane-Orcutt (CO) estimation method with an initial rho value of
0.5 is used. 

MXITER Subcommand

MXITER specifies the maximum number of iterations of the estimation process. 

• If MXITER is not specified, the maximum number of iterations defaults to 10. 

• The specification on MXITER can be any positive integer. 
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• Iteration stops either when the convergence criterion is met or when the maximum is
reached, whichever occurs first. The convergence criterion is set on the TSET CNVERGE
command. The default is 0.001.

Example
AREG VARY WITH VARX
  /MXITER=5. 

• In this example, AREG generates Prais-Winsten estimates and associated statistics with a
maximum of 5 iterations. 

APPLY Subcommand

APPLY allows you to use a previously defined AREG model without having to repeat the spec-
ifications. For general rules on APPLY, see the APPLY subcommand on p. 230. 

• The specifications on APPLY can include the name of a previous model in quotes and one
of three keywords. All of these specifications are optional. 

• If a model name is not specified, the model specified on the previous AREG command is
used. 

• To change one or more specifications of the model, specify the subcommands of only
those portions you want to change after the APPLY subcommand. 

• If no series are specified on the AREG command, the series that were originally specified
with the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a series name is specified before APPLY, the slash before the sub-
command is required.

• APPLY with the keyword FIT sets MXITER to 0. If you apply a model that used FIT and
want to obtain estimates, you will need to respecify MXITER. 

The keywords available for APPLY with AREG are:

SPECIFICATIONS Use only the specifications from the original model. AREG should cre-
ate the initial values. This is the default. 

INITIAL Use the original model’s final estimates as initial values for
estimation. 

FIT No estimation. Estimates from the original model should be applied
directly. 
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Example
AREG VARY WITH VARX
  /METHOD=CO
  /RHO=0.25
  /MXITER=15.
AREG VARY WITH VARX
  /METHOD=ML.
AREG VARY WITH VAR01
  /APPLY.
AREG VARY WITH VAR01
  /APPLY=’MOD_1’
  /MXITER=10.
AREG VARY WITH VAR02
  /APPLY FIT.

• The first command estimates a regression model for VARY and VARX using the Cochrane-
Orcutt method, an initial rho value of 0.25, and a maximum of 15 iterations. This model
is assigned the name MOD_1. 

• The second command estimates a regression model for VARY and VARX using the ML
method. This model is assigned the name MOD_2. 

• The third command displays the regression statistics for the series VARY and VAR01 using
the same method, ML, as in the second command. This model is assigned the name
MOD_3. 

• The fourth command applies the same method and rho value as in the first command but
changes the maximum number of iterations to 10. This new model is named MOD_4. 

• The last command applies the last model, MOD_4, using the series VARY and VAR02. The
FIT specification means the final estimates of MOD_4 should be applied directly to the new
series with no new estimation. 

References 

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transaction on Auto-
matic Control AC–19: 716–723. 
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Kohn, R., and C. Ansley. 1986. Estimation, prediction, and interpolation for ARIMA models with

missing data. Journal of the American Statistical Association 81: 751–761. 
Schwartz, G. 1978. Estimating the dimensions of a model. Annals of Statistics 6: 461–464.
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ARIMA

ARIMA [VARIABLES=] dependent series name [WITH independent series names]
 
 [/MODEL =[(p,d,q)[(sp,sd,sq)[period]]] 

          [{CONSTANT† }] [{NOLOG†     }]] 
           {NOCONSTANT}   {LG10 or LOG}
                          {LN         }
 
 [/P={value       }]  [/D=value]  [/Q={value       }]
     {(value list)}                   {(value list)}
 
 [/SP={value       }]  [/SD=value]  [/SQ={value       }]
      {(value list)}                     {(value list)}
 
 [/AR=value list] [/MA=value list]
 
 [/SAR=value list] [/SMA=value list]
 
 [/REG=value list] [/CON=value]
 
 [/MXITER={10** }] [/MXLAMB={1.0E9**}]
          {value}           {value  }
 
 [/SSQPCT={0.001**}] [/PAREPS={0.001†}]
          {value  }           {value } 
 
 [/CINPCT={95†  }]
          {value} 
 
 [/APPLY [='model name'] [{SPECIFICATIONS}]] 
                          {INITIAL       }
                          {FIT           }

**Default if the subcommand is omitted. 
†Default if the subcommand or keyword is omitted and there is no corresponding specification on the TSET
command.

Example: 
ARIMA SALES WITH INTERVEN
  /MODEL=(0,1,1)(0,1,1). 

Overview 

ARIMA estimates nonseasonal and seasonal univariate ARIMA models with or without fixed
regressor variables. The procedure uses a subroutine library written by Craig Ansley that
produces maximum-likelihood estimates and can process time series with missing observa-
tions. 

Options

Model Specification. The traditional ARIMA (p,d,q)(sp,sd,sq) model incorporates nonseason-
al and seasonal parameters multiplicatively and can be specified on the MODEL subcom-
mand. You can also specify ARIMA models and constrained ARIMA models by using the
separate parameter-order subcommands P, D, Q, SP, SD, and SQ.
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Parameter Specification. If you specify the model in the traditional (p,d,q) (sp,sd,sq) format on
the MODEL subcommand, you can additionally specify the period length, whether a constant
should be included in the model (using the keyword CONSTANT or NOCONSTANT), and
whether the series should first be log transformed (using the keyword NOLOG, LG10, or LN).
You can fit single or nonsequential parameters by using the separate parameter-order sub-
commands to specify the exact lags. You can also specify initial values for any of the param-
eters using the AR, MA, SAR, SMA, REG, and CON subcommands.

Iterations. You can specify termination criteria using the MXITER, MXLAMB, SSQPCT, and
PAREPS subcommands.

Confidence Intervals. You can control the size of the confidence interval using the CINPCT sub-
command. 

Statistical Output. To display only the final parameter statistics, specify TSET PRINT=BRIEF
before ARIMA. To include parameter estimates at each iteration in addition to the default out-
put, specify TSET PRINT=DETAILED.

New Variables. To evaluate model statistics without creating new variables, specify TSET
NEWVAR=NONE prior to ARIMA. This could result in faster processing time. To add new vari-
ables without erasing the values of Trends-generated variables, specify TSET NEWVAR=ALL.
This saves all new variables generated during the current session in the working data file and
may require extra processing time.

Forecasting. When used with the PREDICT command, an ARIMA model with no regressor vari-
ables can produce forecasts and confidence limits beyond the end of the series (see PREDICT
in the SPSS Syntax Reference Guide).

Basic Specification

The basic specification is the dependent series name. To estimate an ARIMA model, the
MODEL subcommand and/or separate parameter-order subcommands (or the APPLY subcom-
mand) must also be specified. Otherwise, only the constant will be estimated. 

• ARIMA estimates the parameter values of a model using the parameter specifications on
the MODEL subcommand and/or the separate parameter-order subcommands P, D, Q, SP,
SD, and SQ. 

• A 95% confidence interval is used unless it is changed by a TSET CIN command prior to
the ARIMA procedure.

• Unless the default on TSET NEWVAR is changed prior to ARIMA, five variables are auto-
matically created, labeled, and added to the working data file: fitted values (FIT#1), resid-
uals (ERR#1), lower confidence limits (LCL#1), upper confidence limits (UCL#1), and
standard errors of prediction (SEP#1). (For variable naming and labeling conventions, see
“New Variables” on p. 227.) 

• By default, ARIMA will iterate up to a maximum of 10 unless one of three termination cri-
teria is met: the change in all parameters is less than the TSET CNVERGE value (the default
value is 0.001); the sum-of-squares percentage change is less than 0.001%; or the Mar-
quardt constant exceeds 109 (1.0E9). 
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• At each iteration, the Marquardt constant and adjusted sum of squares are displayed. For
the final estimates, the displayed results include the parameter estimates, standard errors,
t ratios, estimate of residual variance, standard error of the estimate, log likelihood,
Akaike’s information criterion (AIC) (Akaike, 1974), Schwartz’s Bayesian criterion
(SBC) (Schwartz, 1978), and covariance and correlation matrices. 

Subcommand Order

• Subcommands can be specified in any order. 

Syntax Rules

• VARIABLES can be specified only once. 

• Other subcommands can be specified more than once, but only the last specification of
each one is executed. 

• The CONSTANT, NOCONSTANT, NOLOG, LN, and LOG specifications are optional key-
words on the MODEL subcommand and are not independent subcommands.

Operations 

• If differencing is specified in models with regressors, both the dependent series and the
regressors are differenced. To difference only the dependent series, use the DIFF or SDIFF
function on CREATE to create a new series (see CREATE in the SPSS Syntax Reference
Guide). 

• When ARIMA is used with the PREDICT command to forecast values beyond the end of
the series, the original series and residual variable are assigned the system-missing value
after the last case in the original series. 

• The USE and PREDICT ranges cannot be exactly the same; at least one case from the USE
period must precede the PREDICT period. (See USE and PREDICT in the SPSS Syntax Ref-
erence Guide

• If a LOG or LN transformation is specified, the residual (error) series is reported in the
logged metric; it is not transformed back to the original metric. This is so the proper di-
agnostic checks can be done on the residuals. However, the predicted (forecast) values
are transformed back to the original metric. Thus, the observed value minus the predicted
value will not equal the residual value. A new residual variable in the original metric can
be computed by subtracting the predicted value from the observed value. 

• Specifications on the P, D, Q, SP, SD, and SQ subcommands override specifications on
the MODEL subcommand. 

• For ARIMA models with a fixed regressor, the number of forecasts and confidence inter-
vals produced cannot exceed the number of observations for the regressor (independent)
variable. Regressor series cannot be extended. 

• Models of series with imbedded missing observations can take longer to estimate.
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Limitations 

• Maximum 1 VARIABLES subcommand. 

• Maximum 1 dependent series. There is no limit on the number of independent series. 

• Maximum 1 model specification. 

Example

ARIMA SALES WITH INTERVEN
  /MODEL=(0,1,1)(0,1,1).

• This example specifies a multiplicative seasonal ARIMA model with a fixed regressor
variable. 

• The dependent series is SALES, the regressor series is INTERVEN, and an ARIMA
(0,1,1)(0,1,1) model with a constant term is estimated.

VARIABLES Subcommand

VARIABLES specifies the dependent series and regressors, if any, and is the only required sub-
command. The actual keyword VARIABLES can be omitted.
• The dependent series is specified first, followed by the keyword WITH and the regressors

(independent series). 

MODEL Subcommand

MODEL specifies the ARIMA model, period length, whether a constant term should be in-
cluded in the model, and whether the series should be log transformed. 

• The model parameters are listed using the traditional ARIMA (p,d,q) (sp,sd,sq) syntax. 

• Nonseasonal parameters are specified with the appropriate p, d, and q values separated by
commas and enclosed in parentheses. 

• The value p is a positive integer indicating the order of nonseasonal autoregressive pa-
rameters, d is a positive integer indicating the degree of nonseasonal differencing, and q
is a positive integer indicating the nonseasonal moving-average order. 

• Seasonal parameters are specified after the nonseasonal parameters with the appropriate
sp, sd, and sq values. They are also separated by commas and enclosed in parentheses. 

• The value sp is a positive integer indicating the order of seasonal autoregressive parame-
ters, sd is a positive integer indicating the degree of seasonal differencing, and sq is a pos-
itive integer indicating the seasonal moving-average order. 

• After the seasonal model parameters, a positive integer can be specified to indicate the
length of a seasonal period. 

• If the period length is not specified, the periodicity established on TSET PERIOD is in ef-
fect. If TSET PERIOD is not specified, the periodicity established on the DATE command
is used. If periodicity was not established anywhere and a seasonal model is specified, the
ARIMA procedure is not executed.
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The following optional keywords can be specified on MODEL: 

CONSTANT Include a constant in the model. This is the default unless the default setting
on the TSET command is changed prior to the ARIMA procedure.

NOCONSTANT Do not include a constant. 

NOLOG Do not log transform the series. This is the default. 

LG10 Log transform the series before estimation using the base 10 logarithm. The
keyword LOG is an alias for LG10.

LN Log transform the series before estimation using the natural logarithm
(base e). 

• Keywords can be specified anywhere on the MODEL subcommand. 

• CONSTANT and NOCONSTANT are mutually exclusive. If both are specified, only the last
one is executed. 

• LG10 (LOG), LN, and NOLOG are mutually exclusive. If more than one is specified, only
the last one is executed. 

• CONSTANT and NOLOG are generally used as part of an APPLY subcommand to turn off
previous NOCONSTANT, LG10, or LN specifications 

Example
ARIMA SALES WITH INTERVEN
  /MODEL=(1,1,1)(1,1,1) 12 NOCONSTANT LN. 

• This example specifies a model with a first-order nonseasonal autoregressive parameter,
one degree of nonseasonal differencing, a first-order nonseasonal moving average, a first-
order seasonal autoregressive parameter, one degree of seasonal differencing, and a first-
order seasonal moving average. 

• The 12 indicates that the length of the period for SALES is 12. 
• The keywords NOCONSTANT and LN indicate that a constant is not included in the model

and that the series is log transformed using the natural logarithm before estimation. 

Parameter-Order Subcommands

P, D, Q, SP, SD, and SQ can be used as additions or alternatives to the MODEL subcommand
to specify particular lags in the model and degrees of differencing for fitting single or non-
sequential parameters. These subcommands are also useful for specifying a constrained
model. The subcommands represent the following parameters:

P Autoregressive order. 

D Order of differencing. 

Q Moving-average order. 

SP Seasonal autoregressive order. 

SD Order of seasonal differencing. 
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SQ Seasonal moving-average order. 

• The specification on P, Q, SP, or SQ indicates which lags are to be fit and can be a single
positive integer or a list of values in parentheses. 

• A single value n denotes lags 1 through n. 

• A single value in parentheses, for example (n), indicates that only lag n should be fit. 

• A list of values in parentheses (i, j, k) denotes lags i, j, and k only. 

• You can specify as many values in parentheses as you want. 

• D and SD indicate the degrees of differencing and can be specified only as single values,
not value lists. 

• Specifications on P, D, Q, SP, SD, and SQ override specifications for the corresponding
parameters on the MODEL subcommand.

Example 
ARIMA SALES
  /P=2
  /D=1.
ARIMA INCOME
  /MODEL=LOG NOCONSTANT
  /P=(2).
ARIMA VAR01
  /MODEL=(1,1,4)(1,1,4)
  /Q=(2,4)
  /SQ=(2,4).
ARIMA VAR02
  /MODEL=(1,1,0)(1,1,0)
  /Q=(2,4)
  /SQ=(2,4).

• The first command fits a model with autoregressive parameters at lags 1 and 2 (P=2) and
one degree of differencing (D=1) for the series SALES. This command is equivalent to:

ARIMA SALES
  /MODEL=(2,1,0).

• In the second command, the series INCOME is log transformed and no constant term is es-
timated. There is one autoregressive parameter at lag 2, as indicated by P=(2). 

• The third command specifies a model with one autoregressive parameter, one degree of
differencing, moving-average parameters at lags 2 and 4, one seasonal autoregressive pa-
rameter, one degree of seasonal differencing, and seasonal moving-average parameters at
lags 2 and 4. The 4’s in the MODEL subcommand for moving average and seasonal mov-
ing average are ignored because of the Q and SQ subcommands. 

• The last command specifies the same model as the previous command. Even though the
MODEL command specifies no nonseasonal or seasonal moving-average parameters,
these parameters are estimated at lags 2 and 4 because of the Q and SQ specifications. 

Initial Value Subcommands

AR, MA, SAR, SMA, REG, and CON specify initial values for parameters. These subcommands
refer to the following parameters:
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AR Autoregressive parameter values. 

MA Moving-average parameter values. 

SAR Seasonal autoregressive parameter values. 

SMA Seasonal moving-average parameter values. 

REG Fixed regressor parameter values. 

CON Constant value. 

• Each subcommand specifies a value or value list indicating the initial values to be used
in estimating the parameters. 

• CON can be specified only as a single value, not a value list. 

• Values are matched to parameters in sequential order. That is, the first value is used as the
initial value for the first parameter of that type, the second value is used as the initial value
for the second parameter of that type, and so on. 

• Specify only the subcommands for which you can supply a complete list of initial values
(one for every lag to be fit for that parameter type). 

• If you specify an inappropriate initial value for AR, MA, SAR, or SMA, ARIMA will reset
the value and issue a message. 

• If MXITER=0, these subcommands specify final parameter values to use for forecasting.

Example 
ARIMA VARY
  /MODEL (1,0,2)
  /AR=0.5
  /MA=0.8, -0.3.
ARIMA VARY
  /MODEL (1,0,2)
  /AR=0.5. 

• The first command specifies initial estimation values for the autoregressive term and for
the two moving-average terms. 

• The second command specifies the initial estimation value for the autoregressive term
only. The moving-average initial values are estimated by ARIMA. 

Termination Criteria Subcommands

ARIMA will continue to iterate until one of four termination criteria is met. The values of these
criteria can be changed using any of the following subcommands followed by the new value:

MXITER Maximum number of iterations. The value specified can be any integer equal to or
greater than 0. If MXITER equals 0, initial parameter values become final estimates
to be used in forecasting. The default value is 10.

PAREPS Parameter change tolerance. The value specified can be any real number greater
than 0. A change in all of the parameters by less than this amount causes termina-
tion. The default is the value set on TSET CNVERGE. If TSET CNVERGE is not spec-
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ified, the default is 0.001. A value specified on PAREPS overrides the value set on
TSET CNVERGE.

SSQPCT Sum of squares percentage. The value specified can be a real number greater than
0 and less than or equal to 100. A relative change in the adjusted sum of squares by
less than this amount causes termination. The default value is 0.001%.

MXLAMB Maximum lambda. The value specified can be any integer. If the Marquardt con-
stant exceeds this value, estimation is terminated. The default value is
1,000,000,000 (109). 

CINPCT Subcommand

CINPCT controls the size of the confidence interval. 
• The specification on CINPCT can be any real number greater than 0 and less than 100. 

• The default is the value specified on TSET CIN. If TSET CIN is not specified, the default is 95. 

• CINPCT overrides the value set on the TSET CIN command. 

APPLY Subcommand

APPLY allows you to use a previously defined ARIMA model without having to repeat the
specifications. For general rules on APPLY, see the APPLY subcommand on p. 230. 

• The specifications on APPLY can include the name of a previous model in quotes and one
of three keywords. All of these specifications are optional. 

• If a model name is not specified, the model specified on the previous ARIMA command is
used. 

• To change one or more of the specifications of the model, specify the subcommands of
only those portions you want to change after the subcommand APPLY. 

• If no series are specified on the ARIMA command, the series that were originally specified
with the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a series name is specified before APPLY, the slash before the sub-
command is required.

• APPLY with the keyword FIT sets MXITER to 0. If you apply a model that used FIT and want
to obtain estimates, you will need to respecify MXITER. 

The keywords available for APPLY with ARIMA are:

SPECIFICATIONS Use only the specifications from the original model. ARIMA should
create the initial values. This is the default.

INITIAL Use the original model’s final estimates as initial values for
estimation. 

FIT No estimation. Estimates from the original model should be applied
directly. 
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Example
ARIMA VAR1
  /MODEL=(0,1,1)(0,1,1) 12 LOG NOCONSTANT.
ARIMA APPLY
  /MODEL=CONSTANT.
ARIMA VAR2
  /APPLY INITIAL.
ARIMA VAR2
  /APPLY FIT.

• The first command specifies a model with one degree of differencing, one moving-aver-
age term, one degree of seasonal differencing, and one seasonal moving-average term.
The length of the period is 12. A base 10 log of the series is taken before estimation and
no constant is estimated. This model is assigned the name MOD_1. 

• The second command applies the same model to the same series, but this time estimates
a constant term. Everything else stays the same. This model is assigned the name MOD_2. 

• The third command uses the same model as the previous command (MOD_2) but applies
it to series VAR2. Keyword INITIAL specifies that the final estimates of MOD_2 are to be
used as the initial values for estimation. 

• The last command uses the same model but this time specifies no estimation. Instead, the
values from the previous model are applied directly. 
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EXSMOOTH

EXSMOOTH  [VARIABLES=] series names 
 
 [/MODEL={NN** or SINGLE }] 
         {NA             } 
         {NM             } 
 
         {LN or HOLT     } 
         {LA             } 
         {LM or WINTERS  } 
 
         {EN             }
         {EA             }
         {EM             }
 
         {DN             }
         {DA             }
         {DM             }
 
 [/PERIOD=n]
 
 [/SEASFACT={(value list)}]
            {varname     }
 
 [/ALPHA={0.1**                         }] 
         {value                         }
         {GRID ({0,1,0.1              })} 
                {start, end, increment} 
 
 [/GAMMA={0.1**                         }] 
         {value                         } 
         {GRID ({0,1,0.2              })} 
                {start, end, increment} 
 
 [/DELTA={0.1**                         }] 
         {value                         } 
         {GRID ({0,1,0.2              })} 
                {start, end, increment} 
 
 [/PHI={0.1**                         }] 
       {value                         } 
       {GRID ({0.1,0.9,0.2          })} 
              {start, end, increment} 
 
 [/INITIAL={CALCULATE**               }] 
           {(start value, trend value)} 
 
 [/APPLY[=’model name’]]

**Default if the subcommand is omitted.

Example: 
EXSMOOTH VAR2
  /MODEL=LN
  /ALPHA=0.2.

Overview 

EXSMOOTH produces fit/forecast values and residuals for one or more time series. A variety
of models differing in trend (none, linear, or exponential) and seasonality (none, additive, or
multiplicative) are available (see Gardner, 1985). 
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Options

Model Specification. You can specify a model with any combination of trend and seasonality
components using the MODEL subcommand. For seasonal models, you can specify the peri-
odicity using the PERIOD subcommand.

Parameter Specification. You can specify values for the smoothing parameters using the
ALPHA, GAMMA, DELTA, and PHI subcommands. You can also specify initial values using the
subcommand INITIAL and seasonal factor estimates using the subcommand SEASFACT.

Statistical Output. To get a list of all the SSE’s and parameters instead of just the 10 smallest,
specify TSET PRINT=DETAILED prior to EXSMOOTH.

New Variables. Because of the number of parameter and value combinations available,
EXSMOOTH can create many new variables (up to the maximum specified on the TSET
MXNEWVARS command). To evaluate the sum of squared errors without creating and saving
new variables in the working data file, use TSET NEWVAR=NONE prior to EXSMOOTH. To
add new variables without erasing the values of previous Trends-generated variables, specify
TSET NEWVAR=ALL. This saves all new variables generated during the current session in the
working data file.

Forecasting. When used with the PREDICT command, EXSMOOTH can produce forecasts be-
yond the end of the series (see PREDICT in the SPSS Syntax Reference Guide).

Basic Specification

The basic specification is one or more series names. 

• If a model is not specified, the NN (no trend and nonseasonal) model is used. The default
value for each of the smoothing parameters is 0.1.

• Unless the default on the TSET NEWVAR is changed prior to the EXSMOOTH procedure,
for each combination of smoothing parameters and series specified, EXSMOOTH creates
two variables: FIT#n to contain the predicted values and ERR#n to contain residuals.
These variables are automatically labeled and added to the working data file. (For vari-
able naming and labeling conventions, see “New Variables” on p. 227.) 

• The output displays the initial values used in the analysis (see Ledolter & Abraham,
1984), the error degrees of freedom (DFE), and an ascending list of the smallest sum of
squared errors (SSE) next to the associated set of smoothing parameters, up to a maxi-
mum of 10. For seasonal series, initial seasonal factor estimates are also displayed. 

Subcommand Order

• Subcommands can be specified in any order. 

Syntax Rules

• VARIABLES can be specified only once. 
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• Other subcommands can be specified more than once, but only the last specification of
each one is executed. 

• The value list for subcommand SEASFACT and the grid values for the smoothing param-
eters must be enclosed within parentheses.

Operations 

• If a smoothing parameter is specified for an inappropriate model, it is ignored (see
“Smoothing Parameter Subcommands” on p. 252). 

• EXSMOOTH cannot process series with missing observations. (You can use the RMV com-
mand to replace missing values, and USE to ignore missing observations at the beginning
or end of a series. See RMV and USE in the SPSS Syntax Reference Guide for more infor-
mation.) 

• When EXSMOOTH is used with PREDICT, error series are assigned the system-missing
value in the entire PREDICT range. The original series is system-missing beyond the last
original case if the series is extended. (See the SPSS Syntax Reference Guide for more in-
formation on PREDICT.) 

Limitations 

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list. 

• Maximum 1 model keyword on the MODEL subcommand. 

Example

EXSMOOTH VAR2
  /MODEL=LN
  /ALPHA=0.2. 

• This example specifies a linear trend, nonseasonal model for the series VAR2. 

• The ALPHA subcommand specifies a value of 0.2 for the general smoothing parameter. 

• The default value of 0.1 is used for gamma.

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted. 

• For seasonal models, the series must contain at least four full seasons of data.

MODEL Subcommand

MODEL specifies the type of model to be used. 
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• The only specification on MODEL is a model keyword. 

• Only one model keyword can be specified. If more than one is specified, only the first is
used.

The following models are available. Table 1 summarizes the models by trend and seasonal
component.

No trend models: 

NN No trend and no seasonality. This is the default model. The keyword SINGLE is an
alias for NN.

NA No trend and an additive seasonal component. 

NM No trend and a multiplicative seasonal component. 

Linear trend models: 

LN Linear trend component and no seasonality. The keyword HOLT is an alias for LN. 

LA Linear trend component and an additive seasonal component. 

LM Linear trend component and a multiplicative seasonal component. The keyword
WINTERS is an alias for LM. 

Exponential trend models: 

EN Exponential trend component and no seasonality. 

EA Exponential trend component and an additive seasonal component. 

EM Exponential trend component and a multiplicative seasonal component. 

Damped trend models: 

DN Damped trend component and no seasonality. 

DA Damped trend component and an additive seasonal component. 

DM Damped trend component and a multiplicative seasonal component. 

Table 1 Models for different types of Trends and seasons

Seasonal component

None Additive Multiplicative 

Trend 
component 

 None NN NA NM 

 Linear LN LA LM 

 Exponential EN EA EM 

 Damped DN DA DM 
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Example
EXSMOOTH VAR1.

• This example uses the default model NN for series VAR1.

Example
EXSMOOTH VAR2
  /MODEL=LN.

• This example uses model LN (linear trend with no seasonality) for series VAR2. 

PERIOD Subcommand

PERIOD indicates the periodicity of the seasonal component for seasonal models. 

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer. 

• PERIOD is ignored if it is specified with a nonseasonal model. 
• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If

TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere and a seasonal model is specified,
EXSMOOTH will terminate.

Example
EXSMOOTH VAR1
  /MODEL=LA
  /PERIOD=12. 

• This example specifies a periodicity of 12 for the seasonal VAR1 series. 

SEASFACT Subcommand

SEASFACT specifies initial seasonal factor estimates for seasonal models. 

• The specification on SEASFACT is either a value list enclosed in parentheses or a variable
name. 

• If a value list is specified, the number of values in the list must equal the periodicity. For
example, if the periodicity is 12, then 12 initial values must be specified. 

• For multiplicative models, the sum of the values in the list should equal the periodicity.
For additive models, the sum of the values should equal 0. 

• A variable specification on SEASFACT indicates the name of a variable in the working
data file containing the seasonal factor estimates (see SEASON). 

• If the model is seasonal and SEASFACT is not specified, EXSMOOTH calculates the initial
seasonal factors. 

• The seasonal factor estimates of a SEASFACT subcommand are not used when the model
is respecified using the APPLY subcommand (see the APPLY subcommand on p. 255).
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Example
EXSMOOTH VAR2
  /MODEL=LA
  /PERIOD=8
  /SEASFACT=(-25.30 -3 -14.70 17 4 3 13 6). 

• This command uses the list of values specified on the SEASFACT subcommand as the ini-
tial seasonal factor estimates. 

• Eight values are specified, since the periodicity is 8. 

• The eight values sum to 0, since this is an additive seasonal model.

Example
EXSMOOTH VAR3
  /MODEL=LA
  /SEASFACT=SAF#1. 

• This command uses the initial seasonal factors contained in variable SAF#1, which was
saved in the working data file by a previous SEASON command. 

Smoothing Parameter Subcommands

ALPHA, GAMMA, DELTA, and PHI specify the values that are used for the smoothing parameters. 

• The specification on each subcommand is either a value within the valid range, or the key-
word GRID followed by optional range values. 

• If GAMMA, DELTA, or PHI are not specified but are required for the model, the default val-
ues are used. 

• ALPHA is applied to all models. If it is not specified, the default value is used.

ALPHA General smoothing parameter. This parameter is applied to all models. Alpha can
be any value between and including 0 and 1. (For EM models, alpha must be greater
than 0 and less than or equal to 1.) The default value is 0.1.

GAMMA Trend smoothing parameter. Gamma is used only with models that have a trend
component, excluding damped seasonal (DA, DM) models. It is ignored if it is spec-
ified with a damped seasonal or no-trend model. Gamma can be any value between
and including 0 and 1. The default value is 0.1.

DELTA Seasonal smoothing parameter. Delta is used only with models that have a seasonal
component. It is ignored if it is specified with any of the nonseasonal models. Delta
can be any value between and including 0 and 1. The default value is 0.1.

PHI Trend modification parameter. Phi is used only with models that have a damped
trend component. It is ignored if it is specified with models that do not have a
damped trend. Phi can be any value greater than 0 and less than 1. The default value
is 0.1. 

Table 2 summarizes the parameters that are used with each EXSMOOTH model. An X indi-
cates that the parameter is used for the model. 
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Keyword GRID

The keyword GRID specifies a range of values to use for the associated smoothing parameter.
When GRID is specified, new variables are saved only for the optimal set of parameters on
the grid.

• The first value on GRID specifies the start value, the second value is the end value, and
the last value is the increment. 

• The start, end, and increment values on GRID are separated by commas or spaces and en-
closed in parentheses. 

• If you specify any grid values, you must specify all three. 

• If no values are specified on GRID, the default values are used. 

• Grid start and end values for alpha, gamma, and delta can range from 0 to 1. The defaults
are 0 for the start value and 1 for the end value. 

• Grid start and end values for phi can range from 0 to 1, exclusive. The defaults are 0.1 for
the start value and 0.9 for the end value. 

• Grid increment values must be within the range specified by start and end values. The de-
fault is 0.1 for alpha, and 0.2 for gamma, delta, and phi.

Example
EXSMOOTH VAR1
  /MODEL=LA
  /PERIOD=12
  /GAMMA=0.20
  /DELTA=0.20.

• This example uses a model with a linear trend and additive seasonality. 

Table 2 Parameters that can be specified with EXSMOOTH models

 
Smoothing parameter

ALPHA DELTA GAMMA PHI

Model

NN x

NA x x

NM x x

LN x x

LA x x x

LM x x x

EN x x

EA x x x

EM x x x

DN x x x

DA x x x

DM x x x
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• The parameters and values are alpha = 0.10, gamma = 0.20, and delta = 0.20. Alpha is not
specified but is always used by default. 

• This command generates one FIT variable and one ERR variable to contain the forecasts
and residuals generated by this one set of parameters.

Example
EXSMOOTH VAR2
  /MODEL=EA
  /ALPHA=GRID
  /DELTA=GRID(0.2,0.6,0.2). 

• This example specifies a model with an exponential trend component and an additive sea-
sonal component. 

• The default start, end, and increment values (0, 1, and 0.1) are used for the grid search of
alpha. Thus, the values used for alpha are 0, 0.1, 0.2, 0.3, ..., 0.9, and 1. 

• The grid specification for delta indicates a start value of 0.2, an end value of 0.6, and an
increment of 0.2. Thus, the values used for delta are 0.2, 0.4, and 0.6. 

• Since this is an exponential trend model, the parameter gamma will be supplied by
EXSMOOTH with the default value of 0.1, even though it is not specified on the command. 

• Two variables (FIT and ERR) will be generated for the parameters resulting in the best-
fitting model. 

INITIAL Subcommand

INITIAL specifies the initial start and trend values used in the models. 

• The specification on INITIAL is the start and trend values enclosed in parentheses. You
must specify both values. 

• The values specified on INITIAL are saved as part of the model and can be reapplied with
the APPLY subcommand (see the APPLY subcommand on p. 255). 

• If INITIAL is not specified, the initial start and trend values are calculated by EXSMOOTH.
These calculated initial values are not saved as part of the model. 

• To turn off the values specified on INITIAL when the model is used on an APPLY subcom-
mand, specify INITIAL=CALCULATE. New initial values will then be calculated by
EXSMOOTH (see the APPLY subcommand on p. 255). 

Example
EXSMOOTH VAR2
  /MODEL=LA
  /PERIOD=4
  /SEASFACT=(23 -14.4 7 -15.6)
  /ALPHA=0.20
  /GAMMA=0.20
  /DELTA=0.30
  /INITIAL=(112,17). 

• In this example, an initial start value of 112 and trend value of 17 is specified for series
VAR2. 
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APPLY Subcommand

APPLY allows you to use a previously defined EXSMOOTH model without having to repeat
the specifications. For general rules on APPLY, see the APPLY subcommand on p. 230. 

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous EXSMOOTH command is used. 

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand. 

• If no series are specified on the command, the series that were originally specified with
the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a series name is specified before APPLY, the slash before the sub-
command is required.

• Initial values from the previous model’s INITIAL subcommand are applied unless you
specify INITIAL = CALCULATE or a new set of initial values. Initial values from the original
model are not applied if they were calculated by EXSMOOTH. 

• Seasonal factor estimates from the original model’s SEASFACT subcommand are not ap-
plied. To use seasonal factor estimates, you must respecify SEASFACT. 

Example
EXSMOOTH VAR1
  /MODEL=NA
  /PERIOD=12
  /ALPHA=0.2
  /DELTA=0.2.
EXSMOOTH APPLY
  /DELTA=0.3.
EXSMOOTH VAR2
  /APPLY. 

• The first command uses a model with no trend but additive seasonality for series VAR1.
The length of the season (PERIOD) is 12. A general smoothing parameter (ALPHA) and a
seasonal smoothing parameter (DELTA) are used, both with values set equal to 0.2. 

• The second command applies the same model to the same series but changes the delta
value to 0.3. Everything else stays the same. 

• The last command applies the model and parameter values used in the second EXSMOOTH
command to series VAR2.

Example
EXSMOOTH VAR3
  /MOD=NA
  /ALPHA=0.20
  /DELTA=0.4
  /INITIAL=(114,20).
EXSMOOTH VAR4
  /APPLY
  /INITIAL=CALCULATE. 
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• The first command uses a model with no trend and additive seasonality model with alpha
set to 0.2 and delta set to 0.4. Initial start and trend values of 114 and 20 are specified. 

• The second command applies the previous model and parameter values to a new variable,
VAR4, but without the initial starting values. The initial starting values will be calculated
by EXSMOOTH. 

References 

Abraham, B., and J. Ledolter. 1983. Statistical methods of forecasting. New York: John Wiley &
Sons. 

Gardner, E. S. 1985. Exponential smoothing: The state of the art. Journal of Forecasting 4: 1–28. 
Ledolter, J., and B. Abraham. 1984. Some comments on the initialization of exponential smooth-

ing. Journal of Forecasting 3: 79–84. 
Makridakis, S., S. C. Wheelwright, and V. E. McGee. 1983. Forecasting: Methods and applica-

tions. New York: John Wiley & Sons.
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MODEL NAME

MODEL NAME [model name] [’model label’] 

Example: 
MODEL NAME PLOTA1 ’PLOT OF THE OBSERVED SERIES’. 

Overview 

MODEL NAME specifies a model name and label for the next procedure in the session. 

Basic Specification

The specification on MODEL NAME is either a name, a label, or both. 

• The default model name is MOD_n, where n increments by 1 each time an unnamed model
is created. This default is in effect if it is not changed on the MODEL NAME command, or
if the command is not specified. There is no default label.

Syntax Rules

• If both a name and label are specified, the name must be specified first. 

• Only one model name and label can be specified on the command. 

• The model name must be unique. It can contain up to 8 characters and must begin with a
letter (A–Z). 

• The model label can contain up to 60 characters and must be specified in apostrophes.

Operations 

• MODEL NAME is executed at the next model-generating procedure. 

• If the MODEL NAME command is used more than once before a procedure, the last one is
in effect. 

• If a duplicate model name is specified, the default MOD_n name will be used instead.

• MOD_n reinitializes at the start of every session and when the READ MODEL command is
specified (see READ MODEL). If any models in the working data file are already named
MOD_n, those numbers are skipped when new MOD_n names are assigned.
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Examples

MODEL NAME ARIMA1 ’First ARIMA model’.
ARIMA VARX
  /MODEL=(0,1,1).
ARIMA VARY
  /MODEL=(1,1,1).
ARIMA VARZ 
   /APPLY ’ARIMA1’.

• In this example, the model name ARIMA1 and the label First ARIMA model are assigned
to the first ARIMA command. 

• The second ARIMA command has no MODEL NAME command before it, so it is assigned
the name MOD_1. 

• The third ARIMA command applies the model named ARIMA1 to the series VARZ. This
model is named MOD_2.
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READ MODEL

READ MODEL FILE=’filename’

 [/KEEP={ALL**      }] 
        {model names}
        {procedures } 

 [/DROP={model names}]
        {procedures }

 [/TYPE={MODEL**}] 
        {COMMAND}

 [/TSET={CURRENT**}] 
        {RESTORE  }

**Default if the subcommand is omitted.

Example: 
READ MODEL FILE=’ACFMOD.DAT’
  /DROP=MOD_1.

Overview 

READ MODEL reads a model file that has been previously saved on the SAVE MODEL com-
mand (see SAVE MODEL). A model file contains the models generated by Trends procedures
for use with the APPLY subcommand. 

Options

You can restore a subset of models from the model file using the DROP and KEEP subcom-
mands. You can control whether models are specified by model name or by the name of the
procedure that generated them using the TYPE subcommand. With the TSET subcommand,
you can restore the TSET settings that were in effect when the model file was created. 

Basic Specification

The basic specification is the FILE subcommand specifying the name of a previously saved
model file. 

• By default, all models contained in the specified file are restored, replacing all models that
are currently active. The restored models have their original MOD_n default names or
names assigned by the MODEL NAME command. 

Subcommand Order

• Subcommands can be specified in any order. 
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Syntax Rules

• If a subcommand is specified more than once, only the last one is executed. 

Operations 

• READ MODEL is executed immediately. 

• Models that are currently active are erased when READ MODEL is executed. To save these
models for later use, specify the SAVE MODEL command before READ MODEL. 

• Model files are designed to be read by Trends only and should not be edited. 

• DATE specifications are not saved in model files. Therefore, the DATE specifications from
the current session are applied to the restored models.

• The following procedures can generate models: AREG, ARIMA, EXSMOOTH, SEASON,
and SPECTRA in SPSS Trends; ACF, CASEPLOT, CCF, CURVEFIT, NPPLOT, PACF, and
TSPLOT in the SPSS Base system; and WLS and 2SLS in SPSS Regression Models. 

Limitations 

• Maximum 1 filename can be specified. 

Example

READ MODEL FILE=’ACFMOD.DAT’ 
  /DROP=MOD_1. 

• In this example, all models except MOD_1 in the model file ACFMOD.DAT are restored.

FILE Subcommand

FILE names the model file to be read and is the only required subcommand. 

• The only specification on FILE is the name of the model file. 

• The filename must be enclosed in apostrophes. 

• Only one filename can be specified. 

• Only files saved with the SAVE MODEL command can be read.
• You can specify files residing in other directories by supplying a fully qualified filename. 

KEEP and DROP Subcommands

DROP and KEEP allow you to restore a subset of models. By default, all models in the model
file are restored.

• KEEP specifies the models to be restored. 

• DROP specifies the models to be excluded. 
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• Models can be specified using either individual model names or the names of the proce-
dures that created them. To use procedure names, you must specify COMMAND on the
TYPE subcommand. 

• Model names are either the default MOD_n names or the names assigned with MODEL
NAME. 

• If a procedure name is specified on KEEP, all models created by that procedure are re-
stored; on DROP, all models created by the procedure are dropped. 

• Model names and procedure names cannot be mixed on a single READ MODEL command. 
• If more than one KEEP or DROP subcommand is specified, only the last one is executed. 

• You can specify the keyword ALL on KEEP to restore all models in the model file. This is
the default. 

• The stored model file is not affected by the KEEP or DROP specification on READ MODEL.

Example
READ MODEL FILE=’ACFCCF.DAT’
  /KEEP=ACF1 ACF2.

• In this example, only models ACF1 and ACF2 are restored from model file ACFCCF.DAT. 

TYPE Subcommand

TYPE indicates whether models are specified by model name or procedure name on DROP
and KEEP. 

• One keyword, MODEL or COMMAND, can be specified after TYPE. 

• MODEL is the default and indicates that models are specified as model names. 

• COMMAND indicates that models are specified by procedure name. 
• TYPE has no effect if KEEP or DROP is not specified. 

• The TYPE specification applies only to the current READ MODEL command. 

Example
READ MODEL FILE=’ARIMA1.DAT’
  /KEEP=ARIMA
  /TYPE=COMMAND.

• In this example, all models created by ARIMA are restored from model file ARIMA1.DAT. 

TSET Subcommand

TSET allows you to restore the TSET settings that were in effect when the model was created.

• The specification on TSET is either CURRENT or RESTORE. 

• CURRENT (the default) indicates you want to continue to use the current TSET settings.

• RESTORE indicates you want to restore the TSET settings that were in effect when the
model file was saved. The current TSET settings are replaced with the model file settings
when the file is restored. 
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SAVE MODEL

SAVE MODEL OUTFILE=’filename’

 [/KEEP={ALL**      }] 
        {model names}
        {procedures } 

 [/DROP={model names}] 
        {procedures } 

 [/TYPE={MODEL**}] 
        {COMMAND} 

**Default if the subcommand is omitted.

Example: 
SAVE MODEL OUTFILE=’ACFMOD.DAT’
  /DROP=MOD_1.

Overview 

SAVE MODEL saves the models created by Trends procedures into a model file. The saved
model file can be read later on in the session or in another session with the READ MODEL
command. 

Options

You can save a subset of models into the file using the DROP and KEEP subcommands. You
can control whether models are specified by model name or by the name of the procedure
that generated them using the TYPE subcommand.

Basic Specification

The basic specification is the OUTFILE subcommand followed by a filename. 

• By default, SAVE MODEL saves all currently active models in the specified file. Each
model saved in the file includes information such as the procedure that created it, the
model name, the variable names specified, subcommands and specifications used, and pa-
rameter estimates. The names of the models are either the default MOD_n names or the
names assigned on the MODEL NAME command. In addition to the model specifications,
the TSET settings currently in effect are saved. 

Subcommand Order

• Subcommands can be specified in any order. 
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Syntax Rules

• If a subcommand is specified more than once, only the last one is executed. 

Operations 

• SAVE MODEL is executed immediately. 

• Model files are designed to be read and written by Trends only and should not be edited. 

• The active models are not affected by the SAVE MODEL command. 
• DATE specifications are not saved in the model file. 

• Models are not saved in SPSS data files. 

• The following procedures can generate models: AREG, ARIMA, EXSMOOTH, SEASON,
and SPECTRA in SPSS Trends; ACF, CASEPLOT, CCF, CURVEFIT, NPPLOT, PACF, and
TSPLOT in the SPSS Base system; and WLS and 2SLS in SPSS Regression Models. 

Limitations 

• Maximum 1 filename can be specified.

Example

SAVE MODEL OUTFILE=’ACFMOD.DAT’
  /DROP=MOD_1.

• In this example, all models except MOD_1 that are currently active are saved in the file
ACFMOD.DAT.

OUTFILE Subcommand

OUTFILE names the file where models will be stored and is the only required subcommand. 

• The only specification on OUTFILE is the name of the model file. 

• The filename must be enclosed in apostrophes. 

• Only one filename can be specified. 

• You can store models in other directories by specifying a fully qualified filename. 

KEEP and DROP Subcommands

DROP and KEEP allow you to save a subset of models. By default, all currently active models
are saved. 
• KEEP specifies models to be saved in the model file. 

• DROP specifies models that are not saved in the model file. 
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• Models can be specified using either individual model names or the names of the proce-
dures that created them. To use procedure names, you must specify COMMAND on the
TYPE subcommand. 

• Model names are either the default MOD_n names or the names assigned with MODEL
NAME. 

• If you specify a procedure name on KEEP, all models created by that procedure are saved;
on DROP, any models created by that procedure are not included in the model file. 

• Model names and procedure names cannot be mixed on a single SAVE MODEL command. 
• If more than one KEEP or DROP subcommand is specified, only the last one is executed. 

• You can specify the keyword ALL on KEEP to save all models that are currently active.
This is the default.

Example
SAVE MODEL OUTFILE=’ACFCCF.DAT’
  /KEEP=ACF1 ACF2

• In this example, only models ACF1 and ACF2 are saved in model file ACFCCF.DAT. 

TYPE Subcommand

TYPE indicates whether models are specified by model name or procedure name on DROP
and KEEP. 

• One keyword, MODEL or COMMAND, can be specified after TYPE. 

• MODEL is the default and indicates that models are specified as model names. 
• COMMAND indicates that the models are specified by procedure name. 

• TYPE has no effect if KEEP or DROP is not specified. 

• The TYPE specification applies only to the current SAVE MODEL command.

Example
SAVE MODEL OUTFILE=’ARIMA1.DAT’
  /KEEP=ARIMA
  /TYPE=COMMAND.

• This command saves all models that were created by the ARIMA procedure into the model
file ARIMA1.DAT.
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SEASON

SEASON [VARIABLES=] series names
 
 [/MODEL={MULTIPLICATIVE**}] 
         {ADDITIVE        }
 
 [/MA={EQUAL   }]
      {CENTERED}
 
 [/PERIOD=n]
 
 [/APPLY [=’model name’]] 

**Default if the subcommand is omitted.

Example: 
SEASON VARX
  /MODEL=ADDITIVE
  /MA=EQUAL. 

Overview 

SEASON estimates multiplicative or additive seasonal factors for time series using any spec-
ified periodicity. SEASON is an implementation of the Census Method I, otherwise known as
the ratio-to-moving-average method (see Makridakis et al., 1983, and McLaughlin, 1984). 

Options

Model Specification. You can specify either a multiplicative or additive model on the MODEL
subcommand. You can specify the periodicity of the series on the PERIOD subcommand.

Computation Method. Two methods of computing moving averages are available on the MA
subcommand for handling series with even periodicities.

Statistical Output. Specify TSET PRINT=BRIEF to display only the initial seasonal factor esti-
mates. TSET PRINT=DETAILED produces the same output as the default.

New Variables. To evaluate the displayed averages, ratios, factors, adjusted series, trend-cycle,
and error components without creating new variables, specify TSET NEWVAR=NONE prior to
SEASON. This can result in faster processing time. To add new variables without erasing the
values of previous Trends-generated variables, specify TSET NEWVAR=ALL. This saves all
new variables generated during the current session in the working data file and may require
extra processing time.

Basic Specification

The basic specification is one or more series names. 

• By default, SEASON uses a multiplicative model to compute and display moving averages,
ratios, seasonal factors, the seasonally adjusted series, the smoothed trend-cycle compo-
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nents, and the irregular (error) component for each series (variable) specified. The default
periodicity is the periodicity established on TSET or DATE.

• Unless the default on TSET NEWVAR is changed prior to the procedure, SEASON creates
four new variables for each series specified: SAF#n to contain the seasonal adjustment
factors, SAS#n to contain the seasonally adjusted series, STC#n to contain the smoothed
trend-cycle components, and ERR#n to contain the irregular (error) component. These
variables are automatically named, labeled, and added to the working data file. (For vari-
able naming and labeling conventions, see “New Variables” on p. 227.) 

Subcommand Order

• Subcommands can be specified in any order. 

Syntax Rules

• VARIABLES can be specified only once. 
• Other subcommands can be specified more than once, but only the last specification of

each one is executed. 

Operations 

• The endpoints of the moving averages and ratios are displayed as system-missing in the
output. 

• Missing values are not allowed anywhere in the series. (You can use the RMV command
to replace missing values, and USE to ignore missing observations at the beginning or end
of a series. See RMV and USE in the SPSS Syntax Reference Guide for more information.) 

Limitations 

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list. 

Example

SEASON VARX
  /MODEL=ADDITIVE
  /MA=EQUAL.

• In this example, an additive model is specified for the decomposition of VARX. 

• The moving average will be computed using the EQUAL method. 



SEASON 267

VARIABLES Subcommand 

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted. 

• Each series specified must contain at least four full seasons of data.

MODEL Subcommand

MODEL specifies whether the seasonal decomposition model is multiplicative or additive. 
• The specification on MODEL is the keyword MULTIPLICATIVE or ADDITIVE. 

• If more than one keyword is specified, only the first is used. 

• MULTIPLICATIVE is the default if the MODEL subcommand is not specified or if MODEL is
specified without any keywords.

Example
SEASON VARX
  /MODEL=ADDITIVE.

• This example uses an additive model for the seasonal decomposition of VARX. 

MA Subcommand

MA specifies how to treat an even-periodicity series when computing moving averages. 

• MA should be specified only when the periodicity is even. When periodicity is odd, the
EQUAL method is always used. 

• For even-periodicity series, the keyword EQUAL or CENTERED can be specified.
CENTERED is the default. 

• EQUAL calculates moving averages with a span (number of terms) equal to the periodicity
and all points weighted equally. 

• CENTERED calculates moving averages with a span (number of terms) equal to the peri-
odicity plus 1 and endpoints weighted by 0.5. 

• The periodicity is specified on the PERIOD subcommand (see the PERIOD subcommand
on p. 268).

Example
SEASON VARY
  /MA=CENTERED
  /PERIOD=12. 

• In this example, moving averages are computed with spans of 13 terms and endpoints
weighted by 0.5. 
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PERIOD Subcommand

PERIOD indicates the size of the period. 

• The specification on PERIOD indicates how many observations are in one period or sea-
son and can be any positive integer. 

• If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If
TSET PERIOD is not specified, the periodicity established on the DATE command is used.
If periodicity was not established anywhere, the SEASON command will not be executed.

Example
SEASON SALES
  /PERIOD=12. 

• In this example, a periodicity of 12 is specified for SALES. 

APPLY Subcommand 

APPLY allows you to use a previously defined SEASON model without having to repeat the
specifications. For general rules on APPLY, see the APPLY subcommand on p. 230. 

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous SEASON command is used. 

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand. 

• If no series are specified on the command, the series that were originally specified with
the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a series name is specified before APPLY, the slash before the sub-
command is required.

Example
SEASON X1
  /MODEL=ADDITIVE.
SEASON Z1
  /APPLY. 

• The first command specifies an additive model for the seasonal decomposition of X1. 

• The second command applies the same type of model to series Z1.

Example

SEASON X1 Y1 Z1
  /MODEL=MULTIPLICATIVE.
SEASON APPLY
  /MODEL=ADDITIVE. 

• The first command specifies a multiplicative model for the seasonal decomposition of X1,
Y1, and Z1. 
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• The second command applies an additive model to the same three variables. 

References 

Makridakis, S., S. C. Wheelwright, and V. E. McGee. 1983. Forecasting: Methods and applica-
tions. New York: John Wiley & Sons. 

McLaughlin, R. L. 1984. Forecasting techniques for decision making. Rockville, Md.: Control
Data Management Institute.
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SPECTRA

SPECTRA [VARIABLES=] series names

 [/{CENTER NO**}]   
   {CENTER     }     

 [/{CROSS NO**}]
   {CROSS     } 

 [/WINDOW={HAMMING** [({5   })]    }]
          {            {span}      }
          {BARTLETT [(span)]       } 
          {PARZEN [(span)]         } 
          {TUKEY [(span)]          } 
          {UNIT or DANIELL [(span)]} 
          {NONE                    } 
          {w-p, ..., w0, ..., wp   } 

 [/PLOT= [P] [S] [CS] [QS] [PH] [A]     
         [G] [K] [ALL] [NONE]       
         [BY {FREQ  }]]  
             {PERIOD}    

 [/SAVE = [FREQ (name)] [PER (name)] [SIN (name)] 
          [COS (name)]  [P (name)]   [S (name)]      
          [RC (name)]   [IC (name)]  [CS (name)]     
          [QS (name)]   [PH (name)]  [A (name)]      
          [G (name)]    [K (name)]]                  

 [/APPLY [=’model name’]]

**Default if the subcommand is omitted. 

Example: 
SPECTRA HSTARTS
  /CENTER
  /PLOT P S BY FREQ.

Overview 

SPECTRA plots the periodogram and spectral density function estimates for one or more se-
ries. You can also request bivariate spectral analysis. Moving averages, termed windows, can
be used for smoothing the periodogram values to produce spectral densities. 

Options

Output. In addition to the periodogram, you can produce a plot of the estimated spectral den-
sity with the PLOT subcommand. You can suppress the display of the plot by frequency or
the plot by period using the keyword BY on PLOT. To display intermediate values and the plot
legend, specify TSET PRINT=DETAILED before SPECTRA. To reduce the range of values dis-
played in the plots, you can center the data using the CENTER subcommand.

Cross-Spectral Analysis. You can specify cross-spectral (bivariate) analysis with the CROSS
subcommand and select which bivariate plots are produced using PLOT.
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New Variables. Variables computed by SPECTRA can be saved in the working data file for use
in subsequent analyses with the SAVE subcommand.

Spectral Windows. You can specify a spectral window and its span for calculation of the spec-
tral density estimates.

Basic Specification

The basic specification is one or more series names. 

• By default, SPECTRA plots the periodogram for each series specified. The periodogram
is shown first by frequency and then by period. No new variables are saved by default.

 Figure 1 and Figure 2 show the default plots produced by the basic specification.

Subcommand Order

• Subcommands can be specified in any order. 

Figure 1 SPECTRA=PRICE (by frequency)

Figure 2 SPECTRA=PRICE (by period)
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Syntax Rules

• VARIABLES can be specified only once. 

• Other subcommands can be specified more than once, but only the last specification of
each one is executed. 

Operations 

• SPECTRA cannot process series with missing observations. (You can use the RMV com-
mand to replace missing values, and USE to ignore missing observations at the beginning
or end of a series. See RMV and USE in the SPSS Syntax Reference Guide for more infor-
mation.)

• If the number of observations in the series is odd, the first case is ignored. 

• If the SAVE subcommand is specified, new variables are created for each series specified.
For bivariate analyses, new variables are created for each series pair. 

• SPECTRA requires memory both to compute variables and to build plots. Requesting few-
er plots may enable you to analyze larger series.

Limitations 

• Maximum 1 VARIABLES subcommand. There is no limit on the number of series named
on the list. 

Example

SPECTRA HSTARTS
  /CENTER
  /PLOT P S BY FREQ.

• This example produces a plot of the periodogram and spectral density estimate for series
HSTARTS. 

• CENTER adjusts the series to have a mean of 0. 

• PLOT specifies that the periodogram (P) and the spectral density estimate (S) should be
plotted against frequency (BY FREQ).

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand. The actual key-
word VARIABLES can be omitted. 

• VARIABLES must be specified before the other subcommands. 

• Each series specified is analyzed separately unless the CROSS subcommand is specified.
• The series must contain at least six cases.
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Example
SPECTRA VARX VARY.

• This command produces the default display for two series, VARX and VARY.

CENTER Subcommand

CENTER adjusts the series to have a mean of 0. This reduces the range of values displayed in
the plots.

• If CENTER is not specified, the ordinate of the first periodogram value is 2n times the
square of the mean of the series, where n is the number of cases. 

• You can specify CENTER NO to suppress centering when applying a previous model with
APPLY.

Example
SPECTRA VARX VARY
  /CENTER.

• This example produces the default display for VARX and VARY. The plots are based on the
series after their means have been adjusted to 0. 

WINDOW Subcommand

WINDOW specifies a spectral window to use when the periodogram is smoothed to obtain the
spectral density estimate. If WINDOW is not specified, the Tukey-Hamming window with a
span of 5 is used. 

• The specification on WINDOW is a window name and a span in parentheses, or a sequence
of user-specified weights. 

• The window name can be any one of the keywords listed below. 

• Only one window keyword is accepted. If more than one is specified, the first is used. 

• The span is the number of periodogram values in the moving average and can be any in-
teger. If an even number is specified, it is decreased by 1. 

• Smoothing near the end of series is accomplished via reflection. For example, if the span
is 5, the second periodogram value is smoothed by averaging the first, third, and fourth
values and twice the second value.

The following data windows can be specified. Each formula defines the upper half of the
window. The lower half is symmetric with the upper half. In all formulas, p is the integer part
of the number of spans divided by 2, Dp is the Dirichlet kernel of order p, and Fp is the Fejer
kernel of order p (Priestley, 1981).

HAMMING Tukey-Hamming window. The weights are

where k=0, ... p. This is the default.

Wk 0.54Dp 2πfk( ) 0.23Dp 2πfk
π
p---+ 

  0.23Dp 2πfk
π
p---+ 

 + +=
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TUKEY Tukey-Hanning window. The weights are

where k=0, ... p. 

PARZEN Parzen window. The weights are 

where k=0, ... p.

BARTLETT Bartlett window. The weights are  where k=0, ... p. 

UNIT Equal-weight window. The weights are wk = 1 where k=0, ... p. DANIELL is

an alias for UNIT. 

NONE No smoothing. If NONE is specified, the spectral density estimate is the same
as the periodogram.

w-p,...w0,...,wp User-specified weights. W0 is applied to the periodogram value being
smoothed, and the weights on either side are applied to preceding and fol-
lowing values. If the number of weights is even, it is assumed that wp is not
supplied. The weight after the middle one is applied to the periodogram
value being smoothed. W0 must be positive.

Example
SPECTRA VAR01
  /WINDOW=TUKEY(3)
  /PLOT=P S.

• In this example, the Tukey window weights with a span of three are used. 
• The PLOT subcommand plots both the periodogram and the spectral density estimate,

both by frequency and period. 

PLOT Subcommand

PLOT specifies which plots are displayed. 

• If PLOT is not specified, only the periodogram is plotted for each series specified. Each
periodogram is shown both by frequency and by period. 

• You can specify more than one plot keyword. 

• Keywords can be specified in any order. 
• The plot keywords K, CS, QS, PH, A, and G apply only to bivariate analyses. If the sub-

command CROSS is not specified, these keywords are ignored. 

• The period (horizontal) axis on a plot BY PERIOD is scaled in natural logarithms from 0.69
to ln(n), where n is the number of cases. 

Wk 0.5Dp 2πfk( ) 0.25Dp 2πfk
π
p---+ 

  0.25Dp 2πfk
π
p---– 

 + +=

Wk
1
p--- 2 2πfk( )cos+( ) Fp 2⁄ 2πfk( )( )2

=

Wk Fp 2πfk( )=



SPECTRA 275

• The frequency (horizontal) axis on a plot BY FREQ is scaled from 0 to 0.5, expressing the
frequency as a fraction of the length of the series. 

• The periodogram and estimated spectrum (vertical axis) are scaled in natural logs.

The following plot keywords are available:

P Periodogram. This is the default. 

S Spectral density estimate. 

K Squared coherency. Applies only to bivariate analyses.

CS Cospectral density estimate. Applies only to bivariate analyses.

QS Quadrature spectrum estimate. Applies only to bivariate analyses.

PH Phase spectrum. Applies only to bivariate analyses.

A Cross amplitude. Applies only to bivariate analyses.

G Gain. Applies only to bivariate analyses.

ALL All plots. For bivariate analyses, this includes all plots listed above. For univariate
analyses, this includes the periodogram and the spectral density estimate. 

BY Keyword

By default, SPECTRA displays both frequency and period plots. You can use BY to produce
only frequency plots or only period plots. 

• BY FREQ indicates that all plots are plotted by frequency only. Plots by period are not pro-
duced. 

• BY PERIOD indicates that all plots are plotted by period only. Plots by frequency are not
produced.

Example
SPECTRA SER01
  /PLOT=P S BY FREQ.

• This command plots both the periodogram and the spectral density estimate for SER01.
The plots are shown by frequency only. 

CROSS Subcommand

CROSS is used to specify bivariate spectral analysis. 

• When CROSS is specified, the first series named on the VARIABLES subcommand is the
independent variable. All remaining variables are dependent. 

• Each series after the first is analyzed with the first series independently of other series
named. 

• Univariate analysis of each series specified is still performed. 
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• You can specify CROSS NO to turn off bivariate analysis when applying a previous model
with APPLY.

Example
SPECTRA VARX VARY VARZ
  /CROSS.

• In this example, bivariate spectral analyses of series VARX with VARY and VARX with
VARZ are requested in addition to the usual univariate analyses of VARX, VARY, and
VARZ. 

SAVE Subcommand

SAVE saves computed SPECTRA variables in the working data file for later use. SPECTRA dis-
plays a list of the new variables and their labels, showing the type and source of those variables. 

• You can specify any or all of the output keywords listed below. 

• A name to be used for generating variable names must follow each output keyword. The
name must be enclosed in parentheses. 

• For each output keyword, one variable is created for each series named on SPECTRA and
for each bivariate pair. 

• The keywords RC, IC, CS, QS, PH, A, G, and K apply only to bivariate analyses. If CROSS
is not specified, these keywords are ignored. 

• SAVE specifications are not used when models are reapplied using APPLY. They must be
specified each time variables are to be saved. 

• The output variables correspond to the Fourier frequencies. They do not correspond to the
original series. 

• Since each output variable has only (n/2 + 1) cases (where n is the number of cases), the
values for the second half of the series are set to system-missing. 

• Variable names are generated by adding _n to the specified name, where n ranges from 1
to the number of series specified. 

• For bivariate variables, the suffix is _n_n, where the n’s indicate the two variables used in
the analysis. 

• The frequency (FREQ) and period (PER) variable names are constant across all series and
do not have a numeric suffix. 

• If the generated variable name is longer than eight characters, or if the specified name al-
ready exists, the variable is not saved.

The following output keywords are available:

FREQ Fourier frequencies. 

PER Fourier periods. 

SIN Value of a sine function at the Fourier frequencies. 

COS Value of a cosine function at the Fourier frequencies. 



SPECTRA 277

P Periodogram values. 

S Spectral density estimate values. 

RC Real part values of the cross-periodogram. Applies only to bivariate analyses.

IC Imaginary part values of the cross-periodogram. Applies only to bivariate analyses. 

CS Cospectral density estimate values. Applies only to bivariate analyses.

QS Quadrature spectrum estimate values. Applies only to bivariate analyses.

PH Phase spectrum estimate values. Applies only to bivariate analyses.

A Cross-amplitude values. Applies only to bivariate analyses.

G Gain values. Applies only to bivariate analyses.

K Squared coherency values. Applies only to bivariate analyses. 

Example
SPECTRA VARIABLES=STRIKES RUNS
   /SAVE= FREQ (FREQ) P (PGRAM) S (SPEC).

• This example creates five variables: FREQ, PGRAM_1, PGRAM_2, SPEC_1, and SPEC_2. 

APPLY Subcommand

APPLY allows you to use a previously defined SPECTRA model without having to repeat the
specifications. For general rules on APPLY, see the APPLY subcommand on p. 230. 

• The only specification on APPLY is the name of a previous model in quotes. If a model
name is not specified, the model specified on the previous SPECTRA command is used. 

• To change one or more model specifications, specify the subcommands of only those por-
tions you want to change after the APPLY subcommand. 

• If no series are specified on the command, the series that were originally specified with
the model being reapplied are used.

• To change the series used with the model, enter new series names before or after the
APPLY subcommand. If a variable name is specified before APPLY, the slash before the
subcommand is required.

• The SAVE specifications from the previous model are not reused by APPLY. They must be
specified each time variables are to be saved. 

Examples
SPECTRA VAR01
  /WINDOW=DANIELL (3)
  /CENTER
  /PLOT P S BY FREQ.
SPECTRA APPLY
  /PLOT P S.



278 Syntax Reference

• The first command plots both the periodogram and the spectral density estimate for
VAR01. The plots are shown by frequency only. 

• Since the PLOT subcommand is respecified, the second command produces plots by both
frequency and period. All other specifications remain the same as in the first command. 

References 

Bloomfield, P. 1976. Fourier analysis of time series. New York: John Wiley & Sons. 
Fuller, W. A. 1976. Introduction to statistical time series. New York: John Wiley & Sons. 
Gottman, J. M. 1981. Time-series analysis: A comprehensive introduction for social scientists.

Cambridge: Cambridge University Press.
Priestley, M. B. 1981. Spectral Analysis and Time Series. Volumes 1 & 2. London: Academic

Press.
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TDISPLAY

TDISPLAY  [{ALL          }]
           {model names  } 
           {command names}

[/TYPE={MODEL**}]
       {COMMAND} 

**Default if the subcommand is omitted.

Example: 
TDISPLAY MOD_2 MOD_3
  /TYPE=MODEL.

Overview 

TDISPLAY displays information about currently active Trends models. These models are au-
tomatically generated by many Trends procedures for use with the APPLY subcommand (see
the APPLY subcommand on p. 230). 

Options

If models are specified on TDISPLAY, information about just those models is displayed. You
can control whether models are specified by model name or by the name of the procedure
that generated them using the TYPE subcommand. 

Basic Specification

The basic specification is simply the command keyword TDISPLAY. 

• By default, TDISPLAY produces a list of all currently active models. The list includes the
model names, the commands that created each model, model labels if specified, and cre-
ation dates and times. 

Syntax Rules

• To display information on a subset of active models, specify those models after
TDISPLAY. 

• Models can be specified using either individual model names or the names of the proce-
dures that created them. To use procedure names, you must specify the TYPE subcom-
mand with the keyword COMMAND. 

• Model names are either the default MOD_n names or the names assigned with MODEL
NAME. 

• If procedure names are specified, all models created by those procedures are displayed. 

• Model names and procedure names cannot be mixed on the same TDISPLAY command. 
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• You can specify the keyword ALL after TDISPLAY to display all models that are currently
active. This is the default.

Operations 

• Only models currently active are displayed. 
• The following procedures can generate models: AREG, ARIMA, EXSMOOTH, SEASON,

and SPECTRA in SPSS Trends; ACF, CASEPLOT, CCF, CURVEFIT, NPPLOT, PACF, and
TSPLOT in the SPSS Base system; and WLS and 2SLS in SPSS Regression Models. 

Example

TDISPLAY. 

• The command keyword by itself displays information about all currently active models.

TYPE Subcommand

TYPE indicates whether models are specified by model name or procedure name. 
• One keyword, MODEL or COMMAND, can be specified after TYPE. 

• MODEL is the default and indicates that models are specified as model names. 

• COMMAND specifies that models are specified by procedure name. 

• TYPE has no effect if model names or command names are not listed after TDISPLAY. 

• If more than one TYPE subcommand is specified, only the last one is used. 

• The TYPE specification applies only to the current TDISPLAY command.

Example
TDISPLAY ACF ARIMA
  /TYPE=COMMAND.

• This command displays all currently active models that were created by procedures ACF
and ARIMA. 
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Appendix A
Durbin-Watson Significance Tables

The Durbin-Watson test statistic tests the null hypothesis that the residuals from an or-
dinary least-squares regression are not autocorrelated against the alternative that the re-
siduals follow an AR1 process. The Durbin-Watson statistic ranges in value from 0 to
4. A value near 2 indicates non-autocorrelation; a value toward 0 indicates positive
autocorrelation; a value toward 4 indicates negative autocorrelation.

Because of the dependence of any computed Durbin-Watson value on the associated
data matrix, exact critical values of the Durbin-Watson statistic are not tabulated for all
possible cases. Instead, Durbin and Watson established upper and lower bounds for the
critical values. Typically, tabulated bounds are used to test the hypothesis of zero auto-
correlation against the alternative of positive first-order autocorrelation, since positive
autocorrelation is seen much more frequently in practice than negative autocorrelation.
To use the table, you must cross-reference the sample size against the number of regres-
sors, excluding the constant from the count of the number of regressors.

The conventional Durbin-Watson tables are not applicable when you do not have a
constant term in the regression. Instead, you must refer to an appropriate set of Durbin-
Watson tables. The conventional Durbin-Watson tables are also not applicable when a
lagged dependent variable appears among the regressors. Durbin has proposed alterna-
tive test procedures for this case.

Statisticians have compiled Durbin-Watson tables from some special cases, including: 

• Regressions with a full set of quarterly seasonal dummies. 

• Regressions with an intercept and a linear trend variable (CURVEFIT
MODEL=LINEAR). 

• Regressions with a full set of quarterly seasonal dummies and a linear trend variable.

In addition to obtaining the Durbin-Watson statistic for residuals from REGRESSION,
you should also plot the ACF and PACF of the residuals series. The plots might suggest
either that the residuals are random, or that they follow some ARMA process. If the
residuals resemble an AR1 process, you can estimate an appropriate regression using
the AREG procedure. If the residuals follow any ARMA process, you can estimate an
appropriate regression using the ARIMA procedure.

In this appendix, we have reproduced two sets of tables. Savin and White (1977)
present tables for sample sizes ranging from 6 to 200 and for 1 to 20 regressors for mod-
els in which an intercept is included. Farebrother (1980) presents tables for sample sizes
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ranging from 2 to 200 and for 0 to 21 regressors for models in which an intercept is not
included.

Let’s consider an example of how to use the tables. In Chapter 9, we look at the clas-
sic Durbin and Watson data set concerning consumption of spirits. The sample size is
69, there are 2 regressors, and there is an intercept term in the model. The Durbin-Wat-
son test statistic value is 0.24878. We want to test the null hypothesis of zero autocor-
relation in the residuals against the alternative that the residuals are positively
autocorrelated at the 1% level of significance. If you examine the Savin and White ta-
bles (Table A.2 and Table A.3), you will not find a row for sample size 69, so go to the
next lowest sample size with a tabulated row, namely N=65. Since there are two regres-
sors, find the column labeled k=2. Cross-referencing the indicated row and column, you
will find that the printed bounds are dL = 1.377 and dU = 1.500. If the observed value
of the test statistic is less than the tabulated lower bound, then you should reject the null
hypothesis of non-autocorrelated errors in favor of the hypothesis of positive first-order
autocorrelation. Since 0.24878 is less than 1.377, we reject the null hypothesis. If the
test statistic value were greater than dU, we would not reject the null hypothesis.

A third outcome is also possible. If the test statistic value lies between dL and dU,
the test is inconclusive. In this context, you might err on the side of conservatism and
not reject the null hypothesis.

For models with an intercept, if the observed test statistic value is greater than 2, then
you want to test the null hypothesis against the alternative hypothesis of negative first-
order autocorrelation. To do this, compute the quantity 4-d and compare this value with
the tabulated values of dL and dU as if you were testing for positive autocorrelation.

When the regression does not contain an intercept term, refer to Farebrother’s tabu-
lated values of the “minimal bound,” denoted dM (Table A.4 and Table A.5), instead of
Savin and White’s lower bound dL. In this instance, the upper bound is the conventional
bound dU found in the Savin and White tables. To test for negative first-order autocor-
relation, use Table A.6 and Table A.7.

To continue with our example, had we run a regression with no intercept term, we
would cross-reference N equals 65 and k equals 2 in Farebrother’s table. The tabulated
1% minimal bound is 1.348. 

We have reprinted the tables exactly as they originally appeared. There have been
subsequent corrections to them, however, as published in Farebrother, Econometrica
48(6): 1554 and Econometrica 49(1): 277. The corrections are as follows:
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Table A.1 Corrections for Table A.2—Table A.7

k′ n Bound Incorrect Correct

 Table A.2 6 75 dU 1.646 1.649 
8 75 dU 1.716 1.714 
9 75 dU 1.746 1.748 

10 40 dL 0.789 0.749 
10 75 dU 1.785 1.783 
18 80 dU 2.057 2.059 

Table A.3 10 40 dL 0.945 0.952 

k n Bound Incorrect Correct

Table A.4 0 7 0.389 0.398 

Table A.5 8 15 9.185 0.185 
19 90 1.617 1.167 

Table A.6 8 70 2.089 2.098 
10 200 1.116 2.116 
14 34 1.295 1.296 

Table A.7 1 39 2.645 2.615 
3 15 2.432 2.423 
8 14 0.984 0.948 
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Table A.2 Models with an intercept (from Savin and White)

Durbin-Watson Significance Tables are only available in the printed documentation.
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Reprinted, with permission, from Econometrica 45(8): 1992-1995. 

Table A.3 Models with an intercept (from Savin and White)

Durbin-Watson Significance Tables are only available in the printed documentation.
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Table A.4 Models with no intercept (from Farebrother): Positive serial correlation

Durbin-Watson Significance Tables are only available in the printed documentation.



Durbin-Watson Significance Tables 287

Reprinted, with permission, from Econometrica 48(6): 1556-1563. 

Table A.5 Models with no intercept (from Farebrother): Positive serial correlation

Durbin-Watson Significance Tables are only available in the printed documentation.
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Table A.6 Models with no intercept (from Farebrother): Negative serial correlation

Durbin-Watson Significance Tables are only available in the printed documentation.
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Table A.7 Models with no intercept (from Farebrother): Negative serial correlation

Durbin-Watson Significance Tables are only available in the printed documentation.





291

  

Appendix B
Guide to ACF/PACF Plots

The plots shown here are those of pure or theoretical ARIMA processes. Here are some
general guidelines for identifying the process: 

• Nonstationary series have an ACF that remains significant for half a dozen or more
lags, rather than quickly declining to zero. You must difference such a series until it
is stationary before you can identify the process. 

• Autoregressive processes have an exponentially declining ACF and spikes in the
first one or more lags of the PACF. The number of spikes indicates the order of the
autoregression. 

• Moving average processes have spikes in the first one or more lags of the ACF and
an exponentially declining PACF. The number of spikes indicates the order of the
moving average. 

• Mixed (ARMA) processes typically show exponential declines in both the ACF and
the PACF.

At the identification stage, you do not need to worry about the sign of the ACF or
PACF, or about the speed with which an exponentially declining ACF or PACF ap-
proaches zero. These depend upon the sign and actual value of the AR and MA coeffi-
cients. In some instances, an exponentially declining ACF alternates between positive
and negative values.

ACF and PACF plots from real data are never as clean as the plots shown here. You
must learn to pick out what is essential in any given plot. Always check the ACF and
PACF of the residuals, in case your identification is wrong. Bear in mind that: 

• Seasonal processes show these patterns at the seasonal lags (the multiples of the sea-
sonal period). 

• You are entitled to treat nonsignificant values as zero. That is, you can ignore values
that lie within the confidence intervals on the plots. You do not have to ignore them,
however, particularly if they continue the pattern of the statistically significant values. 

• An occasional autocorrelation will be statistically significant by chance alone. You
can ignore a statistically significant autocorrelation if it is isolated, preferably at a
high lag, and if it does not occur at a seasonal lag.

Consult any text on ARIMA analysis for a more complete discussion of ACF and
PACF plots.
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ACF and PACF plots are only available in the printed documentation.
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ACF and PACF plots are only available in the printed documentation.
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ACF and PACF plots are only available in the printed documentation.
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Subject Index

additive model
for seasonal decomposition, 155–157
in Seasonal Decomposition procedure, 267

Akaike information criterion, 64, 102
ARIMA modeling, 55–68, 79–86, 91–105, 134–147

autoregression, 56
components of, 55–57
diagnosis, 59, 97–98, 104, 145, 198–199
differencing, 56–57, 146–147
estimation, 59, 94–97, 102, 141–142, 194–198
identification, 57–58, 92–93, 101–102, 135, 

192–197
identification of seasonal models, 190
interpretation of constant, 94
moving averages, 57
notation, 55, 136–137, 189–190
predictor variables (regressors), 141–147
seasonal, 188–201
steps, 57–59
with outliers, 91–105

ARIMA procedure, 62–64, 69–73, 79–82, 94–97, 102, 
141–144, 238–246

and missing values, 8, 16, 99, 104–105, 226
confidence intervals, 71, 245
difference transformation, 241–242, 242–243
display alternatives, 73
efficiency, 15–16
error series and log transformations, 13
forecasting, 71–72, 84–85
including constant, 70
initial parameter values, 73, 243–244
iterations, 72, 244–245
log transformation (base 10), 241–242
model parameters, 70, 241–242, 242–243
natural log transformation, 241–242
saving new variables, 70–71
seasonal difference transformation, 241–242, 

242–243
single or nonsequential parameters, 242–243
specifying periodicity, 241–242
termination criteria, 72–73, 244–245
transforming values, 70
using a previously defined model, 245–246

autocorrelated errors
in regression, 51, 107–128

autocorrelation, 23, 41, 108, 120
in ARIMA diagnosis, 59, 64–66
in ARIMA model identification, 58, 79, 92–93, 

101–102, 135
autocorrelation function, 58
Autocorrelations procedure, 60–61, 83–84, 92, 97, 119

efficiency, 17
autoregression

compared to differencing, 57
compared to exponential smoothing, 56
compared to moving averages, 57
in ARIMA, 56

Autoregression procedure, 51, 121–128, 128–132, 
232–237

and missing values, 8, 16–17, 226
Cochrane-Orcutt method, 129, 235
confidence intervals, 130
display alternatives, 132
efficiency, 16–17
forecasting, 124–128, 130–131
including constant, 129, 235
iterations, 132
maximum iterations, 235–236
maximum-likelihood estimation, 129, 235
Prais-Winsten method, 129, 235
rho value, 235
saving new variables, 129–130
termination criteria, 132
using a previously defined model, 236–237

backshift operator, 136–137
seasonal, 189

Bartlett window
in spectral analysis, 216–217
in Spectral Plots procedure, 274

bivariate spectral analysis
in Spectral Plots procedure, 275–276

Box-Ljung statistic, 59, 66, 97, 104, 119, 199
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centering transformation
in Spectral Plots procedure, 273

Cochrane-Orcutt method
in Autoregression procedure, 129, 235

confidence intervals
in ARIMA procedure, 71, 245
in Autoregression procedure, 130

confidence limits
saving in ARIMA procedure, 70–71
saving in Autoregression procedure, 129–130

cosine function values
saving in Spectral Plots procedure, 276

cospectral density estimate plot
in Spectral Plots procedure, 275

cospectral density estimates
saving in Spectral Plots procedure, 277

creating new series, 9, 48–49
in Curve Estimation procedure, 109
SEASON command, 155–157

cross-amplitude plot
in Spectral Plots procedure, 275

cross-amplitude values
saving in Spectral Plots procedure, 277

cross-correlation function, 45
Cross-Correlations procedure, 45, 46–48
cross-periodogram values

saving in Spectral Plots procedure, 277
curve estimation, 41–45
Curve Estimation procedure, 41–45, 108–112, 

124–126
forecasting, 111–112

custom model
in Exponential Smoothing procedure, 33, 37–38

damped model
in Exponential Smoothing procedure, 37, 250

Daniell window
in spectral analysis, 216

data files
sample, 19

data transformations, 9
date variables, 11–12

creating, 11–12
using, 12

diagnosis
in ARIMA modeling, 59

difference transformation, 9, 46, 82–84, 92–93
in ARIMA procedure, 241–242, 242–243

differencing
compared to autoregression, 57
in ARIMA, 56–57, 146–147

disturbances, random, 55–57
domain

frequency, 207
time, 207

dummy variables, 153–155
in ARIMA, 138–147
in REGRESSION, 160–171

Durbin-Watson statistic, 114, 281–289

efficiency, 15–18
ARIMA procedure, 15–16
Autocorrelations procedure, 17
Autoregression procedure, 16–17
creating new variables, 17–18

equal-weight window
in Spectral Plots procedure, 274

err variable, 13, 227
estimation

in ARIMA modeling, 59
exponential model

in Exponential Smoothing procedure, 37, 250
exponential smoothing, 21–38

components of, 24–25
interpretation of parameters, 25, 55
of random walk, 77–79
parameter estimation, 25–28
underlying strategy, 24
when to use, 32

Exponential Smoothing procedure, 32–38, 54–55, 
77–79, 247–256

and missing values, 8, 226
forecasting, 30–32, 36–37
grid search, 77
initial parameter values, 35, 254
models, 33, 37–38, 249–251
saving new variables, 35–36
seasonal factor estimates, 33, 251–252
smoothing parameters, 33–34, 252–254
specifying periodicity, 251
using a previously defined model, 255–256
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fit variable, 13, 227
forecasting, 10–11

in ARIMA procedure, 71–72, 84–85
in Autoregression procedure, 124–128, 130–131
in Curve Estimation procedure, 111–112
in Exponential Smoothing procedure, 30–32, 36–37
in Linear Regression procedure, 51–52, 121
n-step-ahead, 10–32, 45, 68
one-step-ahead, 10–11, 30–32

forecasts
n-step-ahead, 198–201

Fourier frequencies, 207–209
padding series to adjust, 208–209
saving in Spectral Plots procedure, 276

Fourier periods
saving in Spectral Plots procedure, 276

frequencies
alternate expression for, 208
as cycles per observation, 208–209

frequency domain, 207
frequency versus period

in spectral analysis, 207

gain plot
in Spectral Plots procedure, 275

gain values
saving in Spectral Plots procedure, 277

general smoothing parameter
in Exponential Smoothing procedure, 34, 252

grid search
in Exponential Smoothing procedure, 25–28, 35, 

77, 253–254

heteroscedasticity, 170–171
high frequency variation, 209
historical period, 39

defining, 9–11, 91
hold-out sample, 39
Holt model

in Exponential Smoothing procedure, 33, 38

identification
in ARIMA modeling, 57–58

initial parameter values
in ARIMA procedure, 73, 243–244
in Exponential Smoothing procedure, 35, 254

interpolation
to replace missing data, 151–153
to replace outlier, 99–100

intervention analysis, 133–147
creating dummy variables, 137–141, 146–147

iterations
in ARIMA procedure, 72, 244–245
in Autoregression procedure, 132, 235–236

Kalman filtering, 16, 104–105

lcl variable, 13, 227
leading indicator, 39, 45

creating, 48–49
leakage

in spectral analysis, 208–209, 218–219
linear model

in Exponential Smoothing procedure, 37, 250
Linear Regression procedure, 49–52, 112

forecasting, 51–52, 121
historical and validation periods, 51–52

log transformation (base 10), 9
in ARIMA procedure, 70, 241–242

low frequency variation, 209

maximum-likelihood estimation
in Autoregression procedure, 121–129, 235

missing data, 151–152
in spectral analysis, 211

missing values, 8, 14–15, 16–17, 226
MOD_n model names, 231, 257–258
model file

displaying information, 279–280
reading, 259–261
saving, 262–264

model files, 230–231
model names, 231, 257–258
models

reusing, 14
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moving averages
compared to autoregression, 57
in ARIMA, 57
in Seasonal Decomposition procedure, 267

multiplicative model
for seasonal decomposition, 155–157
in Seasonal Decomposition procedure, 267

natural log transformation, 9
in ARIMA procedure, 70, 241–242

no trend model
in Exponential Smoothing procedure, 37, 250

nonstationarity, 45–46, 135
normal probability plot

from REGRESSION, 165
normal probability plots, 115
n-step-ahead forecasts, 10–11, 30–32, 45, 66–68, 

198–201

one-step-ahead forecasts, 10–11, 30–32
operating rules, 226
ordinary least squares regression, 49–51
outliers, 22, 90–91

in Linear Regression procedure, 166–167
removing, 99–100

output
quantity of, 226

parameter-order subcommands
in ARIMA procedure, 242–243

partial autocorrelation function, 58
Parzen window

in spectral analysis, 215
in Spectral Plots procedure, 274

performance considerations, 15–18
creating new variables, 17–18
in ARIMA procedure, 15–16
in Autocorrelations procedure, 17
in Autoregression procedure, 16–17

period versus frequency
in spectral analysis, 207

periodicity, 229
in ARIMA procedure, 241–242

in Exponential Smoothing procedure, 251
in Seasonal Decomposition procedure, 268

periodogram, 205–207
compared to other measures, 205, 209–210
in Spectral Plots procedure, 274–275
interpreting, 209–211
smoothing, 214–217

periodogram values
saving in Spectral Plots procedure, 277

phase spectrum estimates
saving in Spectral Plots procedure, 277

phase spectrum plot
in Spectral Plots procedure, 275

plots
of residual autocorrelation, 97, 104, 119–120, 145
of residuals, 29–30, 64–66, 78–79, 98, 115–119
of time series, 21–23, 53–54, 76, 107–108, 133

plotting a time series, 186–187
plotting residual autocorrelation, 195–197, 198–199
plotting residuals, 166–172
Prais-Winsten method

in Autoregression procedure, 129, 235
predicted values

saving in ARIMA procedure, 70–71
saving in Autoregression procedure, 129–130
saving in Exponential Smoothing procedure, 35–36

predictor variables
in ARIMA modeling, 141–147

prewhitening
in spectral analysis, 218–219

procedures
used in application chapters, 20

pulse function, 139–141, 146–147

quadratic spectrum estimate plot
in Spectral Plots procedure, 275

quadrature spectrum estimates
saving in Spectral Plots procedure, 277

quality-control charts, 53–68

random walk, 57, 75–87
characteristics of, 86–87
forecasting, 84–86
notation, 137
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regression analysis, 39–52, 107–128, 149–181
with dummy variables, 160–171

regressors
in ARIMA modeling, 141–147

replacing missing values, 8, 15, 99–100, 226
residual analysis, 164–165, 169–172
residuals

in Linear Regression procedure, 114, 164–165
in log-transformed ARIMA, 13, 197
in weighted least squares, 178–181
pattern in, 109–110
plotting, 29–30, 64–66, 78–79, 98, 115–119
saving in ARIMA procedure, 70–71
saving in Autoregression procedure, 129–130
saving in Exponential Smoothing procedure, 35–36

rho value
in Autoregression procedure, 235

saf variable, 13, 227
sas variable, 13, 227
Schwartz Bayesian criterion, 64, 102
Seasonal Decomposition procedure, 265–269

and missing values, 8, 226
computing moving averages, 267
models, 267
specifying periodicity, 268
using a previously defined model, 268–269

seasonal difference transformation, 9
in ARIMA procedure, 241–242, 242–243

seasonal factor estimates, 265–269
in Exponential Smoothing procedure, 33, 251–252

seasonal periodicity
determination of, 156–157

seasonal smoothing parameter
in Exponential Smoothing procedure, 34, 252

seasonality, 21, 149–163, 188–201
and spectral analysis, 217
in Exponential Smoothing procedure, 37–38, 250

sep variable, 13, 227
simple model

in Exponential Smoothing procedure, 33
sine function values

saving in Spectral Plots procedure, 276
smoothing parameters

in Exponential Smoothing procedure, 33–34, 
252–254

spectral analysis, 203–219, 270–278
frequency versus period, 207
interpreting, 209–211
leakage, 208–209, 218–219
model-free, 205
overview, 205–207
prewhitening, 218–219
transformations, 217–219

spectral decomposition, 210–214
examples, 211–214

spectral density estimate plot
in Spectral Plots procedure, 275

spectral density estimates, 217
saving in Spectral Plots procedure, 277

Spectral Plots procedure, 270–278
and missing values, 8, 226
bivariate spectral analysis, 275–276
centering transformation, 273
plots, 274–275
saving spectral variables, 276–277
using a previously defined model, 277–278
windows, 273–274

squared coherency plot
in Spectral Plots procedure, 275

squared coherency values
saving in Spectral Plots procedure, 277

stationarity, 45–46, 56–57, 58, 79–82, 92, 192
in spectral analysis, 217
of variance, 187

stc variable, 13, 227
step function, 139–141, 146–147
syntax charts, 225

termination criteria
in ARIMA procedure, 72–73, 244–245
in Autoregression procedure, 132

time domain, 207
time series

integrated, 56–57
nonstationary, 45–46
stationary, 45–46

time series variables
creating, 7–8

transformations
data, 9
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trend, 21, 150–178
in spectral analysis, 217

trend modification parameter
in Exponential Smoothing procedure, 34, 252

trend smoothing parameter
in Exponential Smoothing procedure, 34, 252

Tukey window
in spectral analysis, 216–217

Tukey-Hamming window
in spectral analysis, 217
in Spectral Plots procedure, 273

Tukey-Hanning window
in Spectral Plots procedure, 274

ucl variable, 13, 227
unit window

in spectral analysis, 216
user-missing values, 226

validation period, 39, 42
defining, 9–11
in Linear Regression procedure, 51–52
with ARIMA command, 199–201

variables
created by Trends, 12–13, 17–18, 227–228

weighted least squares, 172–181
residual analysis, 178–181

weighting cases, 15
white noise, 59
window shape

in spectral analysis, 216–217
window span

in spectral analysis, 216–217
windows

in spectral analysis, 214–217
in Spectral Plots procedure, 273–274

Winters model
in Exponential Smoothing procedure, 33, 38
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A (keyword)
SPECTRA command, 275, 277

ACF (command)
in ARIMA diagnosis, 291–294
LN subcommand, 192
MXAUTO subcommand, 190
SDIFF subcommand, 192–193
seasonal differencing, 192–193

ADDITIVE (keyword)
SEASON command, 267

ALPHA (subcommand)
EXSMOOTH command, 252

APPLY (subcommand), 230
AREG command, 236–237
ARIMA command, 245–246
EXSMOOTH command, 255–256
FIT keyword, 236, 245
INITIAL keyword, 236, 245
SEASON command, 268–269
SPECIFICATIONS keyword, 236, 245
SPECTRA command, 277–278

AR (subcommand)
ARIMA command, 243–244

AREG (command), 232–237
APPLY subcommand, 236–237
CONSTANT subcommand, 235
METHOD subcommand, 234–235
MXITER subcommand, 235–236
NOCONSTANT subcommand, 235
RHO subcommand, 235
VARIABLES subcommand, 234

ARIMA (command), 79–85, 238–246
APPLY subcommand, 245–246
AR subcommand, 243–244
CINPCT subcommand, 245
CON subcommand, 243–244
D subcommand, 242–243
MA subcommand, 243–244
MODEL subcommand, 241–242
MXITER subcommand, 244
MXLAMB subcommand, 245
P subcommand, 242–243
parameter-order subcommands, 242–243
PAREPS subcommand, 244–245

Q subcommand, 242–243
REG subcommand, 243–244
SAR subcommand, 243–244
SD subcommand, 242–243
SMA subcommand, 243–244
SP subcommand, 242–243
SQ subcommand, 242–243
SSQPCT subcommand, 245
VARIABLES subcommand, 241

BARTLETT (keyword)
SPECTRA command, 274

BY (keyword)
SPECTRA command, 275

CALCULATE (keyword)
EXSMOOTH command, 254

CENTER (subcommand)
SPECTRA command, 273

CENTERED (keyword)
SEASON command, 267

CINPCT (subcommand)
ARIMA command, 245

CO (keyword)
AREG command, 235

COMMAND (keyword)
READ MODEL command, 261
SAVE MODEL command, 264
TDISPLAY command, 280

CON (subcommand)
ARIMA command, 243–244

CONSTANT (keyword)
ARIMA command, 242

CONSTANT (subcommand)
AREG command, 235

COS (keyword)
SPECTRA command, 276

CREATE (command)
SDIFF function, 204
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CROSS (subcommand)
SPECTRA command, 275–276

CS (keyword)
SPECTRA command, 275, 277

D (subcommand)
ARIMA command, 242–243

DA (keyword)
EXSMOOTH command, 250

DANIELL (keyword)
SPECTRA command, 274

DELTA (subcommand)
EXSMOOTH command, 252
WLS command, 175–176

DFE (subcommand)
FIT command, 199–201

DM (keyword)
EXSMOOTH command, 250

DN (keyword)
EXSMOOTH command, 250

DROP (subcommand)
READ MODEL command, 260–261
SAVE MODEL command, 263–264

EA (keyword)
EXSMOOTH command, 250

EM (keyword)
EXSMOOTH command, 250

EN (keyword)
EXSMOOTH command, 250

EQUAL (keyword)
SEASON command, 267

EXSMOOTH (command), 247–256
ALPHA subcommand, 252
APPLY subcommand, 255–256
DELTA subcommand, 252
GAMMA subcommand, 252
INITIAL subcommand, 254
MODEL subcommand, 249–251
PERIOD subcommand, 251
PHI subcommand, 252
SEASFACT subcommand, 251–252
smoothing parameter subcommands, 252–254
VARIABLES subcommand, 249

FILE (subcommand)
READ MODEL command, 260

FIT (command)
DFE subcommand, 199–201

FIT (keyword)
APPLY subcommand, 236
ARIMA command, 245

FREQ (keyword)
SPECTRA command, 276

G (keyword)
SPECTRA command, 275, 277

GAMMA (subcommand)
EXSMOOTH command, 252

GRID (keyword)
EXSMOOTH command, 252–254

HAMMING (keyword)
SPECTRA command, 273

HOLT (keyword)
EXSMOOTH command, 250

IC (keyword)
SPECTRA command, 277

INITIAL (keyword)
APPLY subcommand, 236
ARIMA command, 245

INITIAL (subcommand)
EXSMOOTH command, 254

K (keyword)
SPECTRA command, 275, 277

KEEP (subcommand)
READ MODEL command, 260–261
SAVE MODEL command, 263–264

LA (keyword)
EXSMOOTH command, 250

LG10 (keyword)
ARIMA command, 242
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LM (keyword)
EXSMOOTH command, 250

LN (keyword)
ARIMA command, 242
EXSMOOTH command, 250

LN (subcommand)
ACF command, 192

MA (subcommand)
ARIMA command, 243–244
SEASON command, 267

METHOD (subcommand)
AREG command, 234–235

ML (keyword)
AREG command, 235

MODEL (keyword)
READ MODEL command, 261
SAVE MODEL command, 264
TDISPLAY command, 280

MODEL (subcommand)
ARIMA command, 241–242
EXSMOOTH command, 249–251
SEASON command, 155–157, 267

MODEL NAME (command), 257–258
MULTIPLICATIVE (keyword)

SEASON command, 267
MXAUTO (subcommand)

ACF command, 190
PACF command, 190
TSET command, 190–192

MXITER (subcommand)
AREG command, 235–236
ARIMA command, 244

MXLAMB (subcommand)
ARIMA command, 245

NA (keyword)
EXSMOOTH command, 250

NM (keyword)
EXSMOOTH command, 250

NN (keyword)
EXSMOOTH command, 250

NOCONSTANT (keyword)
ARIMA command, 242

NOCONSTANT (subcommand)
AREG command, 235

NOLOG (keyword)
ARIMA command, 242

NONE (keyword)
SPECTRA command, 274

OUTFILE (subcommand)
SAVE MODEL command, 263

P (keyword)
SPECTRA command, 275, 277

P (subcommand)
ARIMA command, 242–243

PACF (command)
in ARIMA diagnosis, 291–294
MXAUTO subcommand, 190
SDIFF subcommand, 192–193
seasonal differencing, 192–193

PAREPS (subcommand)
ARIMA command, 244–245

PARZEN (keyword)
SPECTRA command, 274

PER (keyword)
SPECTRA command, 276

PERIOD (subcommand)
EXSMOOTH command, 251
SEASON command, 268

PH (keyword)
SPECTRA command, 275, 277

PHI (subcommand)
EXSMOOTH command, 252

PLOT (subcommand)
SPECTRA command, 274–275

PW (keyword)
AREG command, 235

Q (subcommand)
ARIMA command, 242–243

QS (keyword)
SPECTRA command, 275, 277

RC (keyword)
SPECTRA command, 277
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READ MODEL (command), 259–261
DROP subcommand, 260–261
FILE subcommand, 260
KEEP subcommand, 260–261
TSET subcommand, 261
TYPE subcommand, 261

REG (subcommand)
ARIMA command, 243–244

RHO (subcommand)
AREG command, 235

RMV (command), 151–153, 166

S (keyword)
SPECTRA command, 275, 277

SAR (subcommand)
ARIMA command, 243–244

SAVE (subcommand)
SPECTRA command, 276–277

SAVE MODEL (command), 262–264
DROP subcommand, 263–264
KEEP subcommand, 263–264
OUTFILE subcommand, 263
TYPE subcommand, 264

SD (subcommand)
ARIMA command, 242–243

SEASFACT (subcommand)
EXSMOOTH command, 251–252

SEASON (command), 151–157, 265–269
APPLY subcommand, 268–269
creating new series, 155–157
interpreting output, 156–157
MA subcommand, 267
MODEL subcommand, 155–157, 267
PERIOD subcommand, 268
VARIABLES subcommand, 267

SIN (keyword)
SPECTRA command, 276

SMA (subcommand)
ARIMA command, 243–244

smoothing parameter subcommands
EXSMOOTH command, 252–254

SOURCE (subcommand)
WLS command, 175–176

SP (subcommand)
ARIMA command, 242–243

SPECIFICATIONS (keyword)
APPLY subcommand, 236
ARIMA command, 245

SPECTRA (command), 270–278
APPLY subcommand, 277–278
BY keyword, 275
CENTER subcommand, 273
CROSS subcommand, 275–276
PLOT subcommand, 274–275
SAVE subcommand, 276–277
VARIABLES subcommand, 272–273
WINDOW subcommand, 273–274

SQ (subcommand)
ARIMA command, 242–243

SSQPCT (subcommand)
ARIMA command, 245

TDISPLAY (command), 279–280
TYPE subcommand, 280

TO (keyword), 228
TSET (command), 226

MXAUTO subcommand, 190–192
TSET (subcommand)

READ MODEL command, 261
TSPLOT (command), 186–187
TUKEY (keyword)

SPECTRA command, 274
TYPE (subcommand)

READ MODEL command, 261
SAVE MODEL command, 264
TDISPLAY command, 280

UNIT (keyword)
SPECTRA command, 274

VARIABLES (subcommand)
AREG command, 234
ARIMA command, 241
EXSMOOTH command, 249
SEASON command, 267
SPECTRA command, 272–273

WEIGHT (subcommand)
WLS command, 175–176
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WINDOW (subcommand)
SPECTRA command, 273–274

WINTERS (keyword)
EXSMOOTH command, 250

WLS (command), 175–178
DELTA subcommand, 175–176
SOURCE subcommand, 175–176
WEIGHT subcommand, 175–176
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