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Preface

This document is intended to be a “How to...” document. How does one analyze multispectral
data in a fundamentally sound, multivariate fashion? The audience in mind is an Earth science
researcher who must conduct such analyses to obtain information needed for his/her research.
After a brief introduction, there are two major parts, the first having to do with multispectral data of
conventional dimensionality and the second on analysis of hyperspectral data. Each part begins
with a brief discussion of the basic concepts to be applied. Example analyses using the MultiSpec
data analysis software system are given to lead one through applying the theory covered in the
concepts section to actually analyze an example data set. Copies of MultiSpec and the data are
available from http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/.

The problem of analyzing airborne or spaceborne multispectral data is obviously a broad one, and
clearly not all of the possible facets can be covered in such a brief document as this. The intent
here is to pursue one particular facet of such analysis from beginning to end with enough depth to
result in an analysis process which is well founded on sound principles of signal theory and their
application. The particular facet chosen to be the vehicle here is that of analyzing the multispectral
data into useful themes or classes by use of discriminant analysis. In the process, the added
potential of hyperspectral data over data of conventional dimensionality is demonstrated.

Introduction

The analysis of multispectral image data is now a quite common task for Earth
scientists and other users of such data. However, it is not a trivial task. Extraction of
specific information from a multiband data set, especially as the number of bands
becomes large, is a complex problem requiring the application of techniques based on
rigorous fundamentals of both Earth science and signal processing theory if the full
potential of such data is to be realized. Although many perfectly useful ad hoc,
situation-specific techniques are described in the literature, in this document, we shall
describe rigorously based procedures which are sufficiently general to be suitable for
use in a broad range of both local and large area problems. The presentation is
divided into two main parts. The first deals with analysis of multispectral data of
conventional dimensionality (of the order of 10 to 20 spectral bands). The second
deals with hyperspectral data (100 or more spectral bands). To clarify the motivation
for the procedures, we shall begin with a very concise statement of the basic principles
and concepts involved.
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Analysis        of        Conventional        Multispectral        Data

Background and Concepts

Basic Tenant of Remote Sensing

We begin with the basic idea of remote sensing, that is, that information is available at
the aperture of a sensor, based upon the electromagnetic fields emanating from the
surface and arriving at the sensor, and in particular via the

• Spectral,
• Spatial, &
• Temporal Variations

of those fields. For simplicity, at this time we shall concentrate upon the optimal use of
spectral and spatial variations, focusing primarily upon spectral characteristics, since
multispectral data provides unique potential for information extraction in this case. We
shall leave use of temporal ones to another time.

The Broad View and Signal Space Concepts

Figure 1 provides a systems overview of a passive, optical remote sensing system. It is
seen that, using illumination provided by the sun, the sensor system views the portion
of Earth of interest, and the resulting data are transmitted to the processing station.
There, some type of preprocessing is often performed, followed by the application of
an appropriate data analysis algorithm and delivery of the resulting information to the
user. Use of ancillary data and human interaction with the data stream typically take
place during preprocessing and information extraction. Thus, rather than being
automatic, the processing in mind is more accurately described as human-assisted
machine processing. This is significant because in a fully automatic system one gives
up the strength that human intelligence and adaptability can add to the analysis
process. We will thus proceed from the viewpoint that a well-designed analysis
scheme should use the strengths of both human and machine, but do so in a manner
that maintains economy and objectivity while maximally enhancing performance.
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Figure 1. A Remote Sensing System Overview.
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Figure 2 focuses attention more directly on the information extraction process, and
casts it in the framework of a multivariate classifier. The classes to be recognized are
patterns in the spectral variations that have been sensed.
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Figure 2.  A Functional Diagram for a Remote Sensing System.

More specifically, Figure 2 draws attention to the fact that the job of the sensor system
is to transform the information contained in the observation space into a feature space.
In the context of a multispectral remote sensing system, this amounts mathematically to
transforming continuous spectral functions into a finite dimensional discrete space. As
an example, Figure 3 shows sample spectral patterns from three simple classes in
(continuous) spectral space being sampled at two discrete wavelengths, λ1 and λ2,
and they then appear as three points in a (two dimensional) feature space.

Spectral Space
Two Dimensional Feature Space

Figure 3. Spectral Space and Feature Space Representations of Spectral Responses.

Of course, sampling at additional wavelengths in Spectral Space would be possible;
the result would be to increase the dimensionality of the resulting feature space.
Though spaces of dimensionality greater than three cannot be diagrammed for human
view, there is no fundamental reason why higher dimensional spaces could not be
used and would be potentially beneficial. It is also the case that transformations more
complex than simple, discrete wavelength sampling are possible, and frequently
desirable. This becomes increasingly important with sensors with large numbers of
bands and will be treated later.
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By this transformation, from Spectral Space to N-dimensional feature space, the
problem of recognition of a pattern is thus converted into one of determining into what
part of the N-dimensional feature space a given unknown falls so that its association
with the appropriate class can thus be determined. There are many ways that this
could be accomplished. Two examples are shown in the following diagrams.
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(a) Parallelepiped Classifier
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Figure 4. Decision Boundaries for Two Classification Algorithms

Assume that data from two classes falls in the two areas indicated in Figure 4 (a) and
(b) above. The Parallelepiped Classifier is of a type known as an “absolute classifier,”
i.e., it identifies pixels as being of Class 2 if they fall within the region marked “decision
boundary” in Figure 4(a). Absolute classifiers are ones, which decide in favor of a
given class without regard to the location of other classes. It is generally the case that,
though they may be conceptually simpler, absolute classifiers do not perform as well
as “relative classifiers,” i.e., classifiers that decide in favor of a class after having
considered all possible classes.

An example of a relative classifier is the Minimum Distance Classifier. In this case, one
associates a given feature vector with the class which has the nearest mean value. In
the case of the two classes of Figure 4, the decision boundary partitioning the feature
space into Class 1 and Class 2 regions would be as shown in Figure 4(b). After
locating the centroid_ or conditional class means for the two classes, the decision
boundary becomes the perpendicular bisector of the line connecting these mean
values.

These two algorithms may provide satisfactory performance in simple cases, but most
often algorithms, which result in nonlinear decision boundaries, are required. For
example, consider the case of the classes shown in Figure 5.
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Figure 5. A nonlinear decision boundary.

In this case, the decision boundary is again a relative classifier, but with a second
order decision surface. It is located not with respect to the class means alone, but
taking into account the spread or distribution and orientation of the two classes. In
particular, it is located halfway between the nearest points of the two classes, and its
curvature accounts for the fact that with actual data, the points are not necessarily
confined to a tightly defined region, but may scatter into outlying regions. This
curvature accounts for the fact that Class 2 with its larger variance may be expected to
scatter more than Class 1.

A classifier with the characteristics of this latter algorithm has been found in practice to
be very practical, i.e., powerful enough to deal with typical data complexity, but not so
complex as to require excessive calculation or training. Indeed, the concepts
described here in rather simplistic terms in 2-dimensional space have been rigorously
studied and derived based upon fundamentally sound principles of signal processing
in noisy environments. This is certainly the situation one finds in practical remote
sensing circumstances. Indeed, while it is customary when discussing classification
algorithms, to show the classes as quite separable as was done above, in practice, the
data usually occupy a continuum with no clumping or clustering into discrete units.
Thus, one must choose classifiers and determine their parameters in some optimal
way, recognizing that 100% separability is not usually possible.

Optimal System Design

It is, thus, desirable that the procedure to be used be quantitatively optimal in some
known and appropriate sense. What must one have in order to carry out an optimal
system design?  The requirements are:

1. A Quantitative System Model. In this case this implies
• Scene Model: (We will use Stochastic Process via Training Samples)
• Sensor Model: (We will use a generalized sampling model)
• Processing Model: (We will use a pattern classifier model)

2. An Optimality Criterion, objectively expressed. (We will use classification accuracy)
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We have already described our means of sensor modeling, that of generalized
sampling and transformation to N-dimensional space, as above. The Processing
Model and Optimality Criterion  then defined in terms of the partitioning of that N-
dimensional space into non-overlapping regions, one each for each class present in
the data. The matter of Scene Modeling bears some further comment.

A scene model describes the manner in which the continuous spectra (i.e., before the
above transformation) is modeled. There are a number of theoretical approaches upon
which to base such a model of the scene. Possibilities include

• A Deterministic Model
• Fuzzy Set Theory
• A number of others which are less well developed theoretically, e.g., Interval

Valued Probabilities, Dempster-Shafer Theory of Evidence, Chaos and
Fractal Technology.

• The Theory of Stochastic or Random Processes

Each of these has desirable features. A deterministic model has the advantage of
conceptual simplicity, but does not take advantage of all information available from the
spectra. Fuzzy Set Theory is focused on situations where knowledge of circumstances
and parameters is not precise. The same is true for the third set, which also deal with
cases when partially conflicting evidence about a given parameter may be present,
characteristics which are certainly present in aspects of remote sensing.

However, these are not the key characteristics of such data. Rather, our focus is upon
models that maximally convey information of interest. Thus, we choose to focus upon
the high degree of the scene complexity. Even the noise-free spectral response of a
given material of interest does not occur in practice as a deterministic response, but
has a degree of variability about it. Added to this variability, to be sure, is noise or
corrupting influences. However, since a significant part of this overall variability is
diagnostic of the material itself, it is important to include it in the model. This is
precisely the circumstance for which the random process model was designed. The
theory of Random Processes1 is very extensively and rigorously developed in the
literature.2,3,4,5 It has found its greatest use, for example, in the design of modern
communication systems, due to its ability to deal with complex signals, containing
complex mixtures of families of signals embedded in noise. As a result of its wide use,
many theoretical tools and techniques are available for it.

                                                
1 Some texts use the name Stochastic Process  in place of Random Process.
2 Davenport,  W.B., Jr. and William L. Root, An Introduction to the Theory of Random Signals and

Noise, McGraw-Hill, 1958.
3 Papoulis, A., Probability, Random Variables, and Stochastic Processes, McGraw-Hill, 1965.
4 Helstrom, Carl W., Probability and Stochastic Processes for Engineers, 2nd Edition, Macmillan,

1991.
5 Cooper, G.R., and C. D. McGillem, Probabilistic Methods of Signal and System Analysis, 2nd

Edition, Holt, Rinehart & Winston, 1986.
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The formal definition of a Random Process is given as consisting of

• the ensemble of random functions, plus
• A probabilistic description about them.  

In this case, what makes up the ensemble of the random functions is the list of all
spectral responses over which the system is to be optimized, or at least a
representative subset of them. What this amounts to, of course, depends upon the
application context.

To make the implications of this theory more clear, Figure 6 shows a series of spectral
response functions of a certain soil type, together with the corresponding feature
space diagram for a particular two-dimensional space. Parts (a & b) of the figure show
a deterministic model, as might be obtained by averaging several observations. Parts
(c & d) show a “signal + noise” model of this soil. Part (c) was actually derived by
displaying the maximum variation present between five samples of the same soil at
each wavelength.

However, in order to describe fully this soil spectrally from the five observations, the
data of parts (e & f) would be necessary. Note that the significant degree of correlation
present between the two bands selected here, rather than being an indication of
useless redundancy, serve to define the shape of the distribution in the feature space
(f), and indeed indicate that the data in feature space is more compactly defined and
thus less likely to overlap other nearby classes.  
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Spectral Space

(a) The spectral response of a specific soil.

Feature Space

•

λ

λ

1

2

(b) The 2-D feature space equivalent for (a).
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(c) The range of responses for five samples of the
same soils. This amounts to a signal + noise
model.
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(d) The 2-D feature space equivalent for (c).

(e) The actual spectra of the five samples of the
same soil. Compared to (b), this shows how the
spectra vary about the mean.
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(f) The 2-D feature space equivalent for (e).

Figure 6. Various models of the spectral response for a specific soil type.

This example helps to display why the random process model and the kind of
transformation used is significant to the preservation of information in spectral features.
Note that,
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• In the deterministic case, only the location of the centroid of the spectral
response is maintained. No information about how the spectra vary about
their mean in spectral space or how the class distributes itself over the
feature space is provided.

• In the signal + noise case, the centroid and some of the information of the
shape of the distribution, that having to do with the range of the variation, are
modeled, but not other characteristics of that variation.

• In the last of the three, if each of the five (and perhaps a lot more) 2-
dimensional data points were to be plotted in the 2-dimensional space, they
might only occupy the area indicated in black. If there were another class in
the near vicinity of this class, there is less likelihood of overlap if the more
complete representation of case 3 is used than that of case 2.

Thus, case 3 provides a more complete representation of the data. It shows not only
how the data vary in each band, but also how they co-vary between bands, something
that cannot be readily visualized in spectral space. In the feature space on the right,
this characterization shows up as not only where in the space the centroid is, but also
the shape of the variation about that centroid. Indeed, if the spectral space on the left
were sampled at enough wavelengths and these samples expressed in all N of these
dimensions, this would provide a complete characterization of how the data from this
family of spectra vary, complete in the sense that the spectral space representation of
each individual sample could be completely reconstructed from the feature space
representation. Thus, one could be sure that no information had been lost in
transforming from spectral space to feature space6.

We note in passing that it has been found that the shape of the distribution becomes
increasingly important as the dimensionality of the representation increases7. Indeed,
for high dimensional cases such as for hyperspectral data, one must avoid using two
or three-dimensional concepts, as the rules of geometry in high dimensional space are
quite different than those of the two or three dimensional spaces which have formed
our intuitive understandings. One must also avoid any type of preprocessing which,
while it may adjust the location of the centroid in an assumed useful way, it also
unknowingly distorts the shape of the distribution. Further we note that, with this model,
there is neither requirement nor an advantage in the data being converted from
radiance response to percent reflectance, nor to any particular set of radiometric units.

                                                
6 Indeed, a much more generalized means for transforming between spectral space and feature

space exists. Mathematically this is expressed by the transformation pair,

x
n
 = ⌡⌠

a

b

 X(λ)  φ
n
(λ)  dλ           X(λ)  =  ∑

n=1

N
 x

n
φ

n
(λ) 

Where X(λ) is the spectral function, xn is the component in feature space and the φn are the
(generalized) basis functions. The instantaneous sampling used above is just a special case of this,
using a specific set of basis functions. This generalization becomes especially important and
practical for hyperspectral data, where the sensor measures the value of X(λ) at many λ’s; It is also
important for optimal feature extraction.

7 Chulhee Lee and David A. Landgrebe, "Analyzing High Dimensional Multispectral Data, IEEE
Transactions on Geoscience and Remote Sensing, Volume 31, No. 4, pp. 792-800, July 1993.
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Under various circumstances, any of the above models might be used. In fact, all are
found or implied by the various analysis methods found in the literature. Generally
speaking, simpler classification tasks can be done with simpler data (fewer bands,
fewer gray-values per band) using simpler models and correspondingly simpler
classification algorithms.  For example, a deterministically based decision algorithm
might work satisfactorily for easily identifiable classes modeled in a deterministic
fashion. One might also choose a linear classifier where somewhat more difficult
classes have been modeled in signal-plus-noise fashion. However, to extract the most
information (most or most detailed classes, highest accuracy), one will require more
complex data and will want the most complete model. In this case, one would also
want to use a decision algorithm that can make full use of the model complexity.
Hereafter we will focus upon this latter possibility, using a full random process model
and a classification scheme that can take advantage of both the location and shape of
the class distributions in N-dimensional feature space.

Specifying the Classes

Clearly there must be some way for the analyst to specify to the analysis process what
information is desired. That is, “How does one specify to the analysis algorithm the
classes of materials desired to be identified?” There are a number of possible
approaches to this part of the problem. For example, if one were to proceed with a
deterministic model in mind, one might approach this part of the problem via
previously stored “spectral signatures,” i.e., previously measured spectral responses
from the various classes of material of interest. While straightforward in concept, this
approach has several significant drawbacks, two of which are the following.

(1) Extensive preprocessing is required. This is the case because one must
reconcile the observation conditions present when the data were collected
(atmosphere, sun angle, view angle, terrain effects, etc.) with the conditions
under which the “spectral signatures” were measured. This requires a great
deal of additional data, quite complex calculations, and is usually difficult to
accomplish to precision approximating the precision of the original data.

(2) One must have already on hand the spectral responses of the materials to be
identified. Further, since it is fundamentally true that relative decisions can be
made more accurately than absolute ones, one must have spectral responses
of other materials that may occur in the same scene as well. This makes the
approach less robust against problems involving large areas and arbitrary
locations over the Earth.

Instead, a simpler procedure from an operational standpoint is to label samples within
the data set to be analyzed which display the characteristics of the desired classes.
These samples are referred to as design samples or training samples, and in effect
form the model of the classes to be identified. This allows the analysis process to be
more robust in the sense that it can be applied to data collected from arbitrary sites.
Further, because the design samples are from within the data set to be analyzed,
many of the observation variables are accounted for, thus there is a reduced need for
complex preprocessing. This is the approach in mind in the following.
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The actual means by which labels for the design samples can be accumulated varies
greatly with the situation. Often ancillary information or knowledge of the scene can be
used to interpret the needed labels from imagery of the scene. In some large area
classifications, low altitude photographic missions, which are relatively inexpensive to
carry out, may provide the needed information8. In some cases, deterministic
knowledge of specific spectral characteristics may be used9. Suffice it to say that it may
well not be necessary to be able to collect “ground truth” from the ground in order to be
able to accumulate an appropriate set of design samples.

The Gaussian Assumption

In the remote sensing situation, there is often an additional factor to the class modeling
process. There is usually a paucity of these design samples by which to estimate the
distribution in N-dimensional space for any given class. Thus, from a limited number of
samples, one must determine as accurately as possible what the location and shape
of the distribution of each class of samples is likely to be in feature space.

Experience has shown that, properly used, the assumption that each of the class data
subsets may be modeled in terms of one or a combination of Gaussian distributions is
a quite practical and powerful way to proceed. In feature space this is seen to amount
to fitting one or a small number of Gaussian hypershapes to the actual distribution of
each class. Among the advantages of using the Gaussian model is the mitigation of
the need for large training sets to adequately define the desired classes, especially
when the spectral dimensionality is large. However, use of this assumption does
impose upon the analysis process some means for identifying the various modes of
each desired information class and the fitting of densities to each of these modes.     The
analysis         process        then         consists         of        finding        the         parameters        for         a         complete         set         of
Gaussian        distributions         which       fit       the        data        set        and       for         which        subsets        of       the        distributions
correspond       to       the        classes        of       interest.

Basic Requirement of Feature Space Analysis

In summary, to properly train a classifier one must establish a list of classes in terms of
their distributions in feature space, including training samples for each, which satisfy
the following.

• The list of classes must be exhaustive, in the sense that there is a logical
class to which to assign every pixel in the scene,

• The classes must be adequately separable using the available features, and
• The classes must be of informational value, i.e., they must be classes of

interest to the user.

                                                
8 Bauer, M.E., T.E. Burk,  A.R. Ek, P.R. Coppin, S.D. Lime, T.A. Walsh, D.K. Walters, W. Befort and D.

F. Heinze, “Satellite Inventory of Minnesota Forest Resources,” Photogrammetric Engineering &
Remote Sensing, Vol. LX, No. 3, pp.  287-298, March 1994.

9 Hoffbeck, Joseph P. and David A. Landgrebe, “Classification of High Dimensional Multispectral
Image Data,” Fourth Annual JPL Airborne Geoscience Workshop, Arlington, Virginia, October 25-
29, 1993.
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An equivalent statement to this is that a well-trained classifier must have successfully
modeled the distribution of the entire data set, but it must be done in such a way that
the different classes of interest to the user are as distinct from one another as possible.
What is desired in mathematical terms is to have the density function of the entire data
set modeled as a mixture of class densities, i.e.,

p(x|θ) = ∑
i=1

m
 αipi(x|φi)         and  ∑

i=1

m
 αi  = 1 (1)

where p is the probability density function describing the entire data set to be
analyzed, x is the measured feature (vector) value, pi is the density function of class i
desired by the user, αi is the probability of class i, m is the number of classes, and φi
denotes the parameters necessary to define class i. Given the Gaussian assumption,
these parameters are a set of xi   and Σ i, the mean vectors and covariance matrices

for each class. Thus the task of analyzing a given data set reduces to finding the set of
{φi: xi  ,Σ i} which satisfy the exhaustive, separable, and informational value criteria.

Note again that even when classes are not Gaussian, the above equation is generally
enough to handle this situation, in that one may model a given non-Gaussian class as
a linear combination of Gaussian subclasses. In theory, by using enough such
Gaussian subclasses to model a single class, one can assure that the model can fit
any class to any given precision, e.g., by using a Parzen density approximation with a
Gaussian kernel to fit an arbitrary nonparametric density.  In practice, however, it is
usually the case that only a small number (one or two) of such subclasses are
necessary in actual cases.

Summary of the Concepts

The following is a brief summary of the concepts that have been presented as a sound
basis for the analysis of multispectral data:

• The spectral variations measured at a pixel location play the major role in
conveying extractable information via multispectral data. Spatial variations
play a lesser but still significant role.

• Rather than achieving a fully automated analysis method, a more powerful
goal is to achieve an analysis method that effectively combines human
interaction with the quantitative strengths of machine methods.

• The role of the multispectral sensor is to transform the continuous spectral
functions emanating from a pixel area to a finite dimensional discrete space.
In the limit as N, the number of spectral samples sensed, increases, this N-
dimensional space becomes complete in the sense that one could precisely
recreate the original continuous spectral function from the coordinates of a
sample in this space, thus implying that no information is lost in undergoing
the transformation which the multispectral sensor accomplishes.
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• The role of the analysis algorithm is to partition the resulting N-dimensional
feature space into M mutually exclusive subregions, each one of which
being a class of surface cover of interest to the analyst. Optimally locating
the boundaries of these subregions, then, is the central task of any analysis
process, and, indeed, is a perfectly general way of defining the analysis
process, however implemented.

• Relative classifiers, which consider all possible classes in determining the
optimal one, may generally be expected to out-perform absolute classifiers,
which reach a decision based upon response characteristics defined by an
absolute basis.

• A key concept is the manner in which the spectral response is viewed or
modeled. Though any of a number of theoretically based approaches to this
modeling could be taken, the most general and most thoroughly developed
theoretically is the random process model. It has the advantage of dealing
effectively with very complex classes in a noisy signal environment, but it
can also be gracefully simplified to deal with less complex problem
situations.

• The defining of the boundaries of the subregions of interest involves
bringing together or reconciling the data collected and the conditions under
which it was collected with pre-knowledge which delineates the information
desired from the analysis. A useful way of accomplishing this reconciliation
is to select samples from within the data set which exemplify the classes of
interest, for this mitigates many of the non-information bearing variations
present in the data. It thus reduces the need for preprocessing adjustments
of the data, adjustments which many times can themselves unknowingly limit
the information that can be extracted from the data.

• The use of the multivariate Gaussian model to model the distributions of the
classes in N-dimensional feature space is an especially useful way to
proceed. It is effective when there is the usual paucity of design samples by
which to estimate class distributions, and by using more than one Gaussian
distribution per class, it can be effective even when a class, itself, is not
Gaussian.

• The goal of the analyst is thus to define a list of classes which is exhaustive,
separable, and of informational value. Mathematically, this means that the
density function of the entire data set must be partitioned as:

p(x|θ) = ∑
i=1

m
 αipi(x|φi)         and  ∑

i=1

m
 αi  = 1 

Where p is the probability density function describing the entire data set to
be analyzed, x is the measured feature (vector) value, pi is the density
function of class i desired by the user, αi is the probability of class i, m is the
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number of classes, and φi denotes the parameters necessary to define class
i.

Turning Theory to Practice: How to Analyze a Data Set with MultiSpec10.

We shall next proceed to give an example of analysis of a data set that makes use of
the concepts described above. In doing so, we shall use the facilities of the
MultiSpec data analysis software system. This system and the data set to be used
are available at http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/ without charge to
anyone desiring them; thus one is encouraged to follow along the analysis steps in
parallel with their description below. It is assumed at this point that the reader has
reviewed the documentation of MultiSpec and thus is familiar with the various
algorithms implemented in it.

Before undertaking the example analysis, we will begin to relate the previously stated
principles and concepts to the various processors contained in MultiSpec. Please note
that the approach that has been described is quite general, and the applications to
which it might successfully apply are quite varied. There are many specific procedures
to analyzing multispectral image data, almost as many as there are analysts. The steps
used in any given analysis must necessarily be based upon the scene, the information
desired, and the data analyst's initial assumptions about the data characteristics. In
general terms, to meet the requirements of a sound analysis as previously described,
there are several helpful tools in MultiSpec:

• Clustering (sometimes called unsupervised classification) algorithms are
focused upon finding classes of data that are separable. However, the
resulting clusters do not necessarily have any relationship with the classes
of informational value.

• Training samples focus the analysis upon classes of informational value.
However, the classes initially so defined are not necessarily separable. Thus
some combined or iterative use of clustering and training sample selection
may be required.

• Clustering can also initially assist in obtaining a list of classes that are
exhaustive. Later in the process a feature in MultiSpec called the
Probability Map becomes valuable in determining any needed additional
classes.

The problem is that data do not ordinarily occur in N-dimensional space as separable
“clumps,” let alone clumps of the desired informational classes. Rather, data in N-
dimensional space usually exist as a continuum. Thus it is not possible for a clustering
algorithm by itself to divide data into separable classes of interest.

There are two additional matters to be mentioned before turning to specific steps
useful in analyzing data. The first has to do with choosing or calculating the best set of

                                                
10 MultiSpec © Purdue Research Foundation. A copy with its documentation may be obtained from

http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/.
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features to use for a given classification. There are at least two reasons why one might
not want to use all of the features available in the data set to do a classification. One is
that if adequate performance can be obtained with a subset of the features smaller
than the full set, much computation time can be saved.

However, perhaps a more compelling reason is that one may well expect higher
accuracy if a smaller set of features are used. This is due to what is known as the
Hughes effect11. It is easy to understand that if one has very precise knowledge of the
class distribution functions, the classification accuracy should be a non-decreasing
function of the number of features used. However, because there are only a finite
number of training samples available, and indeed, that number is often not large, the
precision to which the class distributions can be estimated is often limited. As a result,
the accuracy of the analysis that can be achieved will usually increase for a while, as
more features are used, then peak and begin to decline. A further practical
complication is that it is usually not possible to determine before the fact just what the
best feature dimensionality is for a given classification.

For these reasons, feature selection, (i.e., selecting e.g., the best 4 of the available 10
features) and feature extraction (i.e., calculating, usually via a linear transformation on
the existing features, a new feature space which is more suited to the specific problem)
capabilities are very important in the analysis process. Several such capabilities are
implemented in MultiSpec. Two, in particular, are to be noted. Discriminant Analysis
Feature Extraction (DAFE) is a method that is well known in the field of pattern
recognition12. It provides an optimal transformation to a feature space of up to M – 1
dimensions, where M is the number of classes. The second, Decision Boundary
Feature Extraction (DBFE), provides an optimal linear transformation to a space of
arbitrary dimensionality and gives information as to how many dimensions need be
used in any given problem. It is predicted by theory and usually found in practice that
DAFE, which is a very fast computation, provides the best results when the number of
features to achieve satisfactory classification is less than M, while DBFE, a more
lengthy calculation, provides better results when the number of features needed is
greater than M and there are an adequate number of training samples. MultiSpec also
implements the principal components transformation, which may be useful at low
dimensionality, but which becomes undesirable at moderate or high dimensionality,
since it tends to de-emphasize narrow band features which may be diagnostic of
classes, often one of the very reasons for gathering high dimensional data.

The final characteristic of an analysis algorithm that needs to be mentioned at this
point is that of its effectiveness at generalization. That is, given that it can accurately
classify its training samples, how well can it classify other members of the same
classes in the data set? This is closely related to how well the set of classes defined by
the training samples result in equation (1) above being an equality. An algorithm in
MultiSpec called “Statistics Enhancement” is directed at improving the fit of the classes

                                                
11 G.F. Hughes, "On The Mean Accuracy Of Statistical Pattern Recognizers," IEEE Trans. Infor.

Theory , Vol. IT-14, No. 1, pp. 55-63, 1968.
12 Fukunaga, K. Introduction to Statistical Pattern Recognition, Academic Press, 1990.
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as indicated by equation (1). The algorithm is more fully described in the reference13,
however, basically it is a technique for using a combination of the training statistics
and a portion of all other samples (unlabeled) in the data set in an iterative fashion to
improve the degree of equality of equations (1).

Typical Analysis Steps using MultiSpec

The steps for accomplishing the analysis task according to the discussed approach
using MultiSpec are:

1. Familiarization with the data set.

• Display the data using the Display Image processor. Compare the displayed
image with any ground reference information about the site that may be
available. Compose a tentative list of classes that is adequately (but not
excessively) exhaustive for this data set.

2. Preliminary selection of the classes and their training sets.

•  Using the Cluster processor, cluster the area from which training fields are to
be selected, saving the results to disk file. Display the resulting thematic map
for use in marking training areas.

• Using either the display of the original data or that of the thematic cluster map,
make a preliminary selection of training fields that adequately represent the
selected classes.  

• Use the Feature Selection Processor to determine how separable the tentative
classes are. It may then be necessary to iterate between the previous steps.

• Cluster the training fields to check the modality. This will also be useful in
identifying the need for subclasses.

3. Determination of the spectral features to be used.

• Use the Feature Selection processor to choose the best subset of features for
carrying out the classification for a given training set. The Feature Extraction
processor is also available for this task.

4. Preliminary Classification of the data.

• Classify the training fields only, using the spectral bands or features selected
to verify their purity and separability.

5. Classification, Evaluation of the classification and Extraction of the desired
information.

                                                
13 Behzad M. Shahshahani and David A. Landgrebe, “Effect of Unlabeled Samples in Reducing the

Small Sample Size Problem and Mitigating the Hughes Phenomenon,” IEEE Transactions on
Geoscience and Remote Sensing, Vol. 32, No. 5, September 1994.
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• Review the results of training field classification. Make modifications to the
training as required to obtain satisfactory results at this point. Mark as many
fields as possible as Test Fields using the Statistics Processor. Classify
these fields and examine the accuracies obtained to determine how well the
classifier training generalizes beyond the training set.

• Depending upon the results of these evaluations it may be necessary to repeat
previous steps after modifying the class definitions and training. After
becoming satisfied with the results, classify the entire data set, perhaps
setting a modest threshold value, saving the classification results to a disk
file, and creating a Probability Results file.

• Use the Display Image processor to generate thematic map versions of the
results and the probability result files for subjective evaluation purposes. The
results file display is useful in determining that the classification results are
appropriate and consistent from a spatial distribution standpoint. The portion
of points thresholded in the results display, together with the probability map
helps to determine if any important modes in the data have been missed in
the class definition process. Depending on the outcome, it may again be
necessary to iterate using some of the previous steps. The List Results
processor can be used to provide a quantitative evaluation of the results
based upon the accuracy figures of the training and test fields classification.

• From the Probability Results file displayed as a thematic map, determine if
there are areas with very low likelihood of membership to any of the existing
classes. For any that are found, create appropriate new classes. Also,
determine how well the classifier generalizes to areas outside the training
sets. Use the Enhance Statistics processor to improve the fit of the
composite class statistics to the data set and reclassify.

Again, substantial variance from these steps might be appropriate, depending upon
circumstances; however, these steps provide a reasonable overall picture of how to
proceed.

An Example Analysis

The specific procedure to be used in analyzing a data set is controlled by what
information one has about the scene before the fact and what specific information one
desires as a result of the analysis. For example,

• Urban Land Use Example. One might desire to obtain a map of an urban
area which delineates areas of the city that are in such land use classes as
high density housing, low density housing, commercial, industrial, etc. One
might expect to know, before the fact, where in the city, examples of each of
these classes are found.

• Geology Example. One might have example spectra of specific minerals that
are expected to be expressed on the surface and one might wish to
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determine the general layout and shape of the expression of these minerals
for purposes of estimating the manner, in a geologic sense, in which they
came to be distributed as they are.

• Soil or Vegetation Example. One might have a general knowledge of the
location of various soil categories and plant species in the scene and from
that one might wish to determine tabular information giving the portion of the
scene each occupies.

• Soil or Vegetation Example. Again from general knowledge of the location of
various soil and plant classes in the scene, one might desire a thematic map
showing not only how much of each is in the scene, but also where each is
located.

Note that the goal in the above cases varies somewhat. If the results are to be in the
form of a thematic map, then accuracy of the classification becomes of greater
importance. On the other hand, if only tabular information is required, then accuracy
decreases in importance in favor of obtaining unbiased results with regard to the
classes, i.e. it is not as important that each pixel be correctly classified as it is that the
proper number of pixels be assigned to each class.

We shall illustrate an analysis of a data set of the fourth case indicated above. In order
to simplify the logistics of making this example analysis available to others, only a
small portion of a data set was chosen for this example. It contains 145 lines by 145
pixels (21,025 pixels) and 9 spectral bands selected from a June 1992 AVIRIS data
set14 of a mixed agriculture/forestry landscape in the Indian Pine Test Site in
Northwestern Indiana. The data set is designated 92AV3C9. Each of the nine bands
are approximately 10 nm wide centered at the following wavelengths.

Band No. AVIRIS
Band No.

Wavelength
center, µm

1 8 0.4795
2 16 0.5584
3 27 0.6675
4 39 0.7560
5 46 0.8235
6 70 1.0550
7 86 1.2092
8 136 1.6589
9 186 2.2186

In carrying out the analysis of the data set, we will generally follow through the
numbered steps above, although, due to the relatively small size of the data set and
the small number of spectral bands, all of the steps may not be needed. We will
indicate specific choices of MultiSpec options and parameter values in boldface type
and,

• Ancillary comments not in the mainstream of this processing task but which may be relevant in
other circumstances will be indicated in indented, smaller type.

                                                
14 Only 9 bands were selected from the AVIRIS data set to provide an analysis problem of conventional

dimensionality. An analysis using the full 210 bands of the AVIRIS data set, constituting a true
hyperspectral analysis problem, is given in the following section.
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1. Familiarization with the data set and related information. Begin by choosing Open
Image from the File menu and use the default options to display the data in simulated
color infrared image form.15 The result is shown in Figure 7.

N

Figure 7. Data Set 92AV3C9 displayed in simulated color infrared form16.

It is seen that the area appears to be about 2/3 agriculture and 1/3 forest or other
natural perennial vegetation. However, due to the early season date of data collection,
the cultivated land appears to have very little canopy cover as yet. There is a major
dual lane highway (U.S. 52 & U.S. 231) and a rail line crossing near the top and a
major secondary road (Jackson Highway) near the middle, both in a NW-SE direction.
Several other county roads are also somewhat apparent, and show more clearly on a
USGS quadrangle map, (Figure 8), as does the terrain relief of the area.

                                                
15 Most of the figures that follow are more effective if viewed in color.
16 The original for this and several subsequent figures are in color. Black & White hard copy versions

will thus be difficult to interpret. If possible, view these figures in soft copy form on a color screen, so
that the figures will be more interpretable.
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Figure 8. Portion of a USGS Quadrangle map of the test area.

The small rectangular dots on the quadrangle map indicate houses or other buildings
existing at the time the quadrangle map was made. Thus a number of low-density
housing areas can be found in the data. Additional information useful in deriving
training samples for the ground cover of the area is contained on the following
generalized reconnaissance map.
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Figure 9. A generalized reconnaissance map of the test area, designated file 92AV3gt.GIS (in color).

A comparison of this reconnaissance map with the data in image form (Figure 7)
shows that the reconnaissance map is highly generalized. Many small variations
within fields that can be seen in the image data are ignored in the reconnaissance
map. Thus, not every pixel inside of a designated area on the reconnaissance map
should be expected to belong to the class associated with that area. Further, the map
tends to give land use classes, rather than land cover classes. Thus, an area marked
“Corn-notill” on the map may really have a land cover of bare soil and residue from
previous vegetation, with only a small percent of corn vegetation as land cover.

• In the case of any given data set, various kinds of additional ancillary information might be
available. Examples include soil maps, imagery from other sensors, airphotos, etc.
Assembling this kind of information is an important part of a data analysis process, but
obviously varies substantially for each analysis situation.

2. Preliminary selection of classes and their training sets. Next we consider how
detailed a thematic map it might be both possible and desirable to develop. For this
purpose, it is useful to consider possible classes in a hierarchical form. Besides the
cultural features, there are several species of annual and perennial vegetation. Further
subdivision possible within the annual vegetation category would be corn, oats,
soybeans, and wheat. Still further subdivision within these might be to subdivide the
corn and soybean classes by tillage practice, since the amount of residue from
previous vegetation varies in this case. Within the category of perennial vegetation,
classes such as alfalfa/hay, grass, and trees/woods would be possible categories. Due
to the early season date of data collection, several species of annual vegetation have

background
Alfalfa
Corn-notill
Corn-min
Corn
Grass/Pasture
Grass/Trees
Grass/pasture-mowed
Hay-windrowed
Oats
Soybeans-notill
Soybeans-min
Soybean-clean
Wheat
Woods
Bldg-Grass-Tree-Drives
Stone-steel towers
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so limited a canopy (< 5%) that these areas may not be separable in terms of plant
species. Rather, the soil type or the tillage practice as manifested by the amount of
surface residue from previous vegetation may be more appropriate classes.

All of the previous information will be useful in selecting classes and training sets. A
very useful additional display is a map in which the scene has been subdivided into
objects, i.e., areas of contiguous pixels that are spectrally similar to one another but
spectrally separable from one another. Such a presentation can be obtained by
selecting Cluster from the Processor menu. It is useful to adjust the parameters of
the clustering so that one achieves roughly the same number of clusters as the
number of classes desired, about 15 in this case. Choose Isodata with one pass for
initial centers. After a little experimentation, the following parameter values would
be found to lead to about 15 clusters.

Min. initial cluster size of 50
First line distance of 500
Final distance of 1000
Threshold level of 256
Use All 9 bands.
Classify the Image Area
Save to Disk File

Use the default values for all other parameters. The result of the clustering may be
displayed using the Open Image selection of the File menu, as follows.

Cluster 1                      
Cluster 2                      
Cluster 3                      
Cluster 4                      
Cluster 5                      
Cluster 6                      
Cluster 7                      
Cluster 8                      
Cluster 9                      
Cluster 10                     
Cluster 11                     
Cluster 12                     
Cluster 13                     
Cluster 14                     
Cluster 15                     
Thresholded                    

Figure 10. Cluster Classification Map (in color).
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It is seen that, in most cases, even the agricultural fields are not uniform in their
association with a single cluster, but are significantly mottled in appearance. This
characteristic can be mitigated somewhat and a clearer association with individual
clusters obtained by use of the ECHO spectral/spatial classifier using the cluster
statistics. Thus select Classify from the Processor menu and choose the ECHO
procedure, classify the Image Area, and save the results to Disk File. Continue to
use all bands since their number is not large. The result will be as follows.

Cluster1                       
Cluster2                       
Cluster3                       
Cluster4                       
Cluster5                       
Cluster6                       
Cluster7                       
Cluster8                       
Cluster9                       
Cluster10                      
Cluster11                      
Cluster12                      
Cluster13                      
Cluster14                      
Cluster15                      

Figure 11. ECHO classification of Cluster Statistics  (in color).

It is seen that this display clarifies the association of areas with spectral characteristics
to some degree, although most areas are still a mixture of more than one cluster in
spectral space.

• Note that this two-step procedure, clustering followed by ECHO classification, provides an
effective unsupervised multivariate image partitioning capability. 

An alternate procedure might be to mark in the data the desired initial cluster centers, then
have these used in the clustering process, thus “guiding” the clustering toward clusters
which might turn out to be closer to the classes desired.

By now referring to the image of the data (Figure 7), the ECHO classification (Figure
11) and the generalized reconnaissance map (Figure 9), one can make a first draft at
selecting classes and training fields. A possible choice will be illustrated. At this point
we are assuming that all of the classes of the reconnaissance map will be separable
and thus training samples have been established for each. We show in Figures 12 and
13 the training fields outlined on both the ECHO classification map and the color
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infrared image, because the process is one of selecting classes and their training
fields that satisfy both criteria, i.e., classes that are separable and of informational
value. The ECHO map shows classes which are separable, but classes must be
combined in such a way that they are also of informational value.

Cluster1                       
Cluster2                       
Cluster3                       
Cluster4                       
Cluster5                       
Cluster6                       
Cluster7                       
Cluster8                       
Cluster9                       
Cluster10                      
Cluster11                      
Cluster12                      
Cluster13                      
Cluster14                      
Cluster15                      

Figure 12. Unsupervised Scene Segmentation showing the training fields selected (in color).
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Figure 13. Data displays showing training fields (in color).

In order to allow for precise duplication of the results that follow, the addresses of the
training fields selected are provided in Table 1. Note that only one field has been
selected for each class. This will likely not be adequate, since one sample from a
single area is usually not adequate to characterize a class in the entire data set,
however, it is deemed adequate for a first trial.
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Class Line Column No. of Samples

alfalfa

67
73
75
70
 67

98
98

101
101
98

18

Corn-notill 33 to 41 31 to 56 234
Corn-min 63 to 71 6 to 21 144

Corn

35
 35
 48
 48
 45
 44
 35
 35

7
5

10
23
22
16
10
5

108

Grass/pasture 75 to 85 4 to 21 198
Grass/trees 48 to 70 28 to 35 184

Grass/pasture-mowed 73 to 78 109 to 112 24
Hay-windrowed 39 to 59 124 to 138 315

Oats 63 to 71 23 to 24 18
Soy-notill 42 to 63 78 to 92 330

Soy-min till 78 to 111 34 to 45 408
Soy-clean 52 to 58 5 to 24 140

Wheat 119 to 124 26 to 46 126
Woods 121 to 137 91 to 121 527

Bldg-grass-trees-drives 18 to 27 27 to 34 80

Stone-steel towers
14
23
24
16

47
44
49
52

45

Table 1. Coordinates for training fields. Those for Alfalfa, Corn, and Stone-steel
towers were delineated in polygon form. All others are rectangular.

• An alternate approach to defining training statistics is to set the parameters of the initial
clustering so as to provide two or three times as many clusters as the number of final classes
desired, then to define classes by studying how to combine two or more clusters into a
desired information class. In this case, the maximum likelihood or ECHO classification would
be done using the statistics of all clusters, and the final classes achieved by grouping classes
together after classification.

Next choose Feature Selection from the Processor menu. Under Combination
Groups, choose 9 . Use the default options for all other parameters. This will list the
Bhattacharyya distance between all class pairs to indicate the relative separability of
each class pair. There are 120 possible such class pairs in this case. The results are
given in terms of the following symbols:
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Classes used: Symbol
1:  Alfalfa 1
2:  Corn-notill 2
3:  Corn-min 3
4:  Corn 4
5:  Grass/pasture 5
6:  Grass/trees 6
7:  Grass/pasture-mowed 7
8:  Hay-windrowed 8
9:  Oats 9
10: Soy-notill A
11: Soy-mintill B
12: Soy-clean C
13: Wheat D
14: Woods E
15: Bldg-grass-trees-drives F
16: Stone-steel towers G

Table 2. Classes and their Symbols used in Table 3.

The class pairs and their corresponding B-distance are given in Table 3 in order of
ascending B-distance size. The sorting was done by copying the row of class pair
symbols and the row of their corresponding B-distances from the MultiSpec text
window to a spreadsheet and sorting them there.

 3C  AB  4B  6F  3B  2B  2A  AC 18 24  DF  BC  3A 78 69 34  9F  5E

1.48 2.8 2.91 2.94 2.95 3.02 3.1 3.41 3.45 3.74 4.05 4.08 4.33 4.37 4.62 4.64 5.3 5.4

23  2C 46 17  7F  EF  4A  6E  9D  4G  4C  AG  8F  BF  5F  6D  CG 49

5.64 6.56 6.63 6.79 6.82 6.98 7.63 7.95 8.15 8.17 8.74 9.31 9.58 9.61 9.73 10 10 10.4

48  1F  2G  6B  BG  4F  5D 68  7B  BD  DE 28  9B  3G  1B 67 56  6A

10.9 11 11.2 11.2 11.2 11.7 12.1 12.1 12.9 12.9 14 14.9 15 15.1 15.2 15.5 15.9 16.4

26  FG  9E 47  8B 79 59 16  BE  AF  6C  3F  4D  5B 14  2F  7D  8C

17.1 20 20.9 21.2 21.8 23.5 24.5 25.3 26.1 26.8 27.6 28.5 28.7 28.7 29.3 29.5 31.8 31.9

 CF  8A  7A 89 27 36 19 29  8D  2D  7C  3D  AD  1D 38  4E  CD  9C

31.9 32 34.2 35.1 35.7 36.1 38.6 38.9 40.8 41.8 41.9 42.8 46.2 46.6 47.4 47.6 48.1 48.8

 6G 39 37 12  9A  1C  8E  3E 57 58  8G  7E  1A 13  DG  7G  9G 45

55.3 57.3 58.1 61.7 64.5 66 68.6 70.7 72.8 74 75.1 76.7 77 79.6 82.4 86 93 94

 5G  EG 35  2E  1E  CE  5C  1G 25 15  AE  5A

99.9 102 112 121 135 149 156 162 162 170 171 194

Table 3. Bhattacharyya interclass distances in order of ascending distance.

It is seen that some of the distances are quite small, implying that they may be only
marginally separable. Those class pairs less than 3 indicate that it may not be possible
with only the 9 bands available to separate all classes of corn and soybeans from
each other, or if so, the separations may not be particularly robust in generalization to
a larger area. It appears only a little more likely that it will be possible to separate
tillage classes.

3. Determination of the spectral features to be used. Under some circumstances it
would be appropriate to use the Feature Selection processor at this point to select a
subset of features to use for initial classification. This might be called for in cases
where the number of available spectral bands was large or the number of training
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samples available for one or more classes was small (e.g., ≤ the number of spectral
bands). However, in the present case, since neither of these conditions is present, we
shall proceed directly to a preliminary classification.

4. Preliminary Classification of the data. Choose Classify under the Processor
menu and use the default options to classify the training fields. This will help to verify
their purity and the separability of at least the training fields. The results in terms of
alphanumeric field maps and tables of accuracy appear in the MultiSpec text window.
Inspection of these results indicate good accuracy (98.2% overall) with no fields
showing unreasonable or unexplainable errors.

5. Classification, Evaluation of the Classification and Extraction of the desired
information. Choose Classify from the Processor menu and select Image File for
classification. Also save the results to Disc File and deselect Text Window. This will
result in a maximum likelihood pixel classification of the data set that can be displayed
in thematic map form, as in Figure 14.

Alfalfa                        
Corn-notill                    
Corn-min                       
Corn                           
Grass/pasture                  
Grass/trees                    
Grass/pasture-mowed            
Hay-windrowed                  
Oats                           
Soy-notill                     
Soy-min till                   
Soy-clean                      
Wheat                          
Woods                          
Bldg-grass-trees-drives        
Stone-steel towers             

Figure 14. Maximum Likelihood Classification of original training statistics (in color).

A superficial evaluation of this result reveals that it shows some promise, but needs
improvement. For example, a large portion of the large field at the center has been
classified as Corn-notil when in fact it should be Soy-min till. A Corn-min till field near
the lower left corner is classified partly as Soy-min till and partly as corn-notill. The
improvement process can be begun by adding training fields from these three areas,
as follows:
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Class Lines Columns
Soy-min till 3 to 17 102 to 117
Soy-min till 80 to 95 51 to 71
Corn-min till 128 to 134 20 to 46

A new classification, this time using the ECHO classifier, but otherwise with default
options results in significant improvement, as can be seen in Figure 15.

Alfalfa                        
Corn-notill                    
Corn-min                       
Corn                           
Grass/pasture                  
Grass/trees                    
Grass/pasture-mowed            
Hay-windrowed                  
Oats                           
Soy-notill                     
Soy-min till                   
Soy-clean                      
Wheat                          
Woods                          
Bldg-grass-trees-drives        
Stone-steel towers             

Figure 15. ECHO classification with 3 new training fields added (in color).

In order to obtain a more quantitative estimate of the accuracy of the results, the fields
defined by the generalized reconnaissance map can be used as test fields. To do so,
Close the current Project, being careful to save the project for future reference, and
Open the Project, 92AV3.Project, containing the test field boundaries. Then, with the
above ECHO classification map active, choose List Results from the Processor
menu, and request a Class Type Map, and Summarize by Class. The result is as
follows.
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Project Number of Samples in Thematic Image Class

Class Class Percent Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Name No. Correct Samples Alfalf Corn-n Corn-m Corn Grass/ Grass/ Grass/ Hay-wi Oats Soy-no Soy-mi Soy-cl Wheat Woods Bldg-g Stone

Alfalfa 1 66.7 54 36 0 0 0 0 0 0 11 0 0 7 0 0 0 0 0

Corn-notill 2 49.6 1434 0 711 19 70 0 2 0 0 0 119 493 11 0 0 9 0

Corn-min 3 61.6 834 0 6 514 80 0 0 0 0 1 0 183 49 0 0 1 0

Corn 4 91 234 0 0 0 213 0 0 0 0 0 0 16 1 0 0 4 0

Grass/Pasture 5 64.8 497 0 0 0 12 322 4 2 4 0 0 19 1 0 1 132 0

Grass/Trees 6 90.2 747 0 0 0 25 0 674 0 0 1 0 1 0 0 1 45 0

Grass/pas-mo 7 100 26 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0

Hay-windrowed 8 98.6 489 1 0 0 0 0 0 2 482 0 0 0 0 0 0 4 0

Oats 9 95 20 0 0 0 0 0 0 0 0 19 0 0 0 0 0 1 0

Soybeans-notill 10 68.5 968 0 10 3 32 0 2 0 0 1 663 249 6 0 0 2 0

Soybeans-min 11 90.6 2468 0 65 49 40 0 2 0 0 0 40 2236 23 0 0 13 0

Soybean-clean 12 22.5 614 0 1 5 24 0 5 2 0 1 2 433 138 0 0 3 0

Wheat 13 96.7 212 0 0 0 0 0 0 0 0 0 0 1 0 205 0 6 0

Woods 14 94.9 1294 0 0 0 0 13 4 0 0 0 0 0 0 2 1228 47 0

Bldg-Grass-Tree- 15 70.5 380 0 0 0 0 2 21 0 0 1 0 4 1 0 83 268 0

Stone-steel towe 16 93.7 95 0 0 2 0 0 0 0 0 0 0 0 0 0 0 4 89

TOTAL 10366 37 793 592 496 337 714 32 497 24 824 3642 230 207 1313 539

OVERALL PERFORMANCE(7824/10366)=75.5

Table 4.  Quantitative classification summary for the fields of Figure 9.

The overall accuracy appears to be 75.5%, however, note that many of the “errors” are
not significant. For example, class 5, Grass/Trees had many of the test samples
assigned to the Building-Grass-Trees-Drives, which, depending on the specific
objective of the analysis, may not represent errors at all. Indeed, if the objective of the
analysis was directed primarily at soils, tillage, or crop classification, the classes 5, 6,
7, and 15 could be combined into a single group, substantially raising the calculated
accuracy.

Similarly, if the interest is primarily in crop classification, classes 2, 3, and 4 could be
combined, as could classes 10, 11, and 12. On the other hand, if erosion related to
tillage practice is the primary interest, classes 2 and 10, 3 and 11, and 4 and 12 could
be combined, again increasing the calculated accuracy.

There are several additional possibilities that could be investigated as well. These
include the following.

• As previously indicated, defining a class by contiguous pixels from a single
area is usually not adequate, as it is unlikely that pixels from a single area
show all of the characteristic variability that will exist over a whole scene.
Thus additional training areas over those already added would no doubt
improve the characterization of the classes.

• The extent to which the list of classes is exhaustive relative to the data. If a
Probability Map had been requested and Saved to Disk  at the initial
classification, the following map (Figure 16) could have been viewed. This is
a map showing in color-coded fashion the degree of membership of each
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pixel to the class to which it has been assigned. The dark blue areas of the
map indicate low probability of class membership for the class to which
those pixels have been assigned, the yellow or light areas, high probability.
The legend quantifies this probability in terms of a Gaussian distribution. In
this case, this map points up several cases where additional classes might
be established. For example, it would appear useful to define a class called
Roads.
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Figure 16. Probability Map from Initial Classification (in color).

• The use of feature selection or feature extraction. For example, one might
choose Feature Extraction from the Processor menu and generate a
new feature space via an optimal linear transformation of the spectral bands.
Though a classification using all of the new features would give the same
performance as the complete set in the old space, an appropriately sized
subset of the new features might improve the performance.

• Once an adequately exhaustive set of classes have been appropriately
defined use of the Enhance Statistics processor under the Processor
menu should make the class statistics more robust in the sense of providing
for better generalization to samples other than the training samples.

These are some of the additional possibilities. Obviously, there are many parameter
settings, permutations and combinations of these that could be explored, too many to
test here. However, in order to obtain some idea of how well this data set could be
classified into the classes contained in the generalized reconnaissance map, we will
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use all of the fields defined in that map as training fields for one final classification. The
result is shown in Figure 17 and was obtained by using the Discriminant Analysis
option of the Feature Extraction processor. The classification was done using the
ECHO algorithm with the first 5 of the transformed features. Table 5 shows the
accuracy summary based upon the generalized reconnaissance map fields and
indicates an accuracy above 80%. As can be seen, there remains some confusion
between soybeans and corn, and given the limited canopy development (≤ 5%) there
appears little likelihood that this confusion can be eliminated using this data set.

Alfalfa                        
Corn-notill                    
Corn-min                       
Corn                           
Grass/Pasture                  
Grass/Trees                    
Grass/pasture-mowed            
Hay-windrowed                  
Oats                           
Soybeans-notill                
Soybeans-min                   
Soybean-clean                  
Wheat                          
Woods                          
Bldg-Grass-Tree-Drives         
Stone-steel towers             

Figure 17. ECHO Classification of first 5 Decision Boundary Feature Extraction
(DBFE) transformed features of recon. map training statistics (in color).
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ject Number of Samples in Thematic Image Class

ss Class Percent Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

me No. Correct Samples Alfalf Corn-n Corn-m Corn Grass/ Grass/ Grass/ Hay-wi Oats Soybea Soybea Soybea Wheat Woods Bldg-G Stone

alfa 1 83.3 54 45 0 0 0 1 0 0 3 0 5 0 0 0 0 0 0

n-notill 2 78.9 1434 0 1132 56 16 2 0 0 0 1 31 82 110 0 0 1 3

n-min 3 78.3 834 1 81 653 15 0 0 0 0 1 2 5 75 0 0 1 0

n 4 91.5 234 1 3 1 214 1 5 0 0 1 1 1 3 0 0 3 0

ss/Pasture 5 83.3 497 3 0 2 3 414 4 0 0 1 0 1 11 0 0 57 1

ss/Trees 6 94 747 0 0 0 4 0 702 0 0 0 0 0 0 0 3 38 0

ss/pas-mo 7 92.3 26 0 0 0 0 1 0 24 1 0 0 0 0 0 0 0 0

y-windrowed 8 95.7 489 10 0 0 0 0 0 6 468 0 0 0 0 0 0 5 0

s 9 90 20 0 0 0 0 0 2 0 0 18 0 0 0 0 0 0 0

Soybeans-notill 10 74.9 968 0 7 1 153 0 6 0 0 1 725 1 73 0 0 1 0

beans-min 11 81.2 2468 5 88 51 129 21 4 0 0 0 72 2003 91 0 0 4 0

bean-clean 12 92.5 614 4 0 5 11 0 3 0 0 0 9 5 568 0 0 5 4

eat 13 87.7 212 0 0 0 0 0 0 0 0 0 0 1 0 186 0 25 0

ods 14 70.4 1294 0 0 0 0 2 1 0 0 0 0 0 0 0 911 380 0

Bldg-Grass-Tree- 15 73.9 380 0 0 1 3 1 3 0 0 0 0 0 1 1 88 281 1

Stone-steeltowe 16 98.9 95 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 94

TAL 10366 69 1311 770 548 443 730 30 472 23 845 2099 933 187 1002 801 103

ERALL PERFORMANCE( 8438/10366) = 81.4

Table 5. Quantitative Classification summary based upon the fields of Figure 9.

Analysis        of        Hyperspectral        Data

More Background and Concepts

For some years, the availability of multispectral data has been limited to data of
relatively low dimensionality (< 10 bands). Recent advances in sensor technology,
making possible data with several hundred bands, has provided a significant step
function in the complexity of such data, and was motivated by the hypothesis that this
new type of data, commonly referred to has hyperspectral data, provides the potential
for gathering much more detailed information than previously possible, and doing so
with greater accuracy. However, the significant increase in data complexity, quite
aside from its increased volume, means that more than simply scaling up of computer
speed and storage allocation will be required to realize the potential that this data
provides. New analysis techniques will be required.

The techniques described in this paper and implemented in MultiSpec result from a
substantial effort17 to devise suitable means to analyze hyperspectral data. The
techniques resulting (as well as those described above) are based upon principles
having their origin in communication systems research of the last half dozen decades.
Basically the perspective is that of modeling both the signal (variations diagnostic of
the materials of current interest) and the noise (variations not currently of interest) in
order to optimally discriminate among the expected list of signals. In the field of
communication engineering, this approach has made possible the transmission of
                                                
17 D. A. Landgrebe and C. J. Johannsen, Principal Investigators, Final Report, NASA grant NAGW-925

“Earth observational research using multistage EOS-like data,” Purdue University, May, 1994. A
copy is available from http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/Final_Report5_94.html.
See also 1997-98 annual report at http://dynamo.ecn.purdue.edu/~landgreb/ann.report.pdf.



Multispectral Analysis -   34   - April 16, 1998

information even when the signal-to-noise ratio is very much less than one, e.g., the
transmission of scientific data from deep space probes using very low power
transmitters.

The hypothesis followed here is that following these communication system principles
in the case of multispectral remote sensing data analysis should make possible the
extraction of information from data to a similarly unexpected degree. The advent of
hyperspectral data makes practical a realistic test of this hypothesis. Using
hyperspectral data from the site and time of the previous section but using all 220
spectral bands instead of the nine used previously, we will focus upon the six classes
of soybeans and corn defined previously. These six classes represent two different
plant species that have been grown under three different tillage practices, no-till,
minimum-till, and clean till. Crops grown under no-till, minimum-till and clean till
practices result in, respectively, a substantial amount, a moderate amount, or almost
no residue from last season’s crops being present on the surface. At the time of
collection, the corn and soybean plants had only recently emerged and had achieved
a canopy of only very limited ground cover (≈ 5%).

Figure 19. A close-up view of an area of the field marked 3-9 (Corn-no til) in Figure 9, showing the low
percentage of canopy ground cover present at the time of data collection.

Figures 19 and 20 show examples of the degree of crop canopy cover in two example
fields. Given this low canopy ground cover, the variation in spectral response due to
(a) the soil type variations, and (b) the varying amount of residue from last season’s
crop, would provide a much greater influence upon the net pixel spectral response
than would the vegetative species variation. In this sense, then, the problem of species
identification represents a specific example of a generic low signal-to-noise
information extraction problem. It is seen in the previous section that, even following
sound practices, it was not really possible to discriminate between these two current
plant species with high accuracy using the nine well-positioned spectral bands of the
data of conventional dimensionality. In the following section we will lead the reader
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through analysis steps that allow for discriminating between these two plant species to
essentially arbitrarily high accuracy.

Figure 20. A close-up view of an area of the field marked 3-8 (Soybeans-min. til) in Figure 9, showing the
low percentage of canopy ground cover present at the time of data collection.

In addressing the problem of high dimensional data analysis, it is important to
recognize the differences that working in high dimensional space makes. One must
understand as thoroughly as possible, based upon currently available fundamental
knowledge about high dimensional space, what may be different about the information
extraction characteristics of such spaces. This is an area in which the background
fundamental knowledge is still not far advanced, but there are some characteristics
that are known to be different than intuition might suggest. For example, here are two
conjectures about geometrical properties whose validity would at first seem clear18.

• Borsuk’s Conjecture: If you break a stick in two, both pieces are shorter than
the original.

• Keller’s Conjecture: It is possible to use cubes (hypercubes) of equal size to
fill an N-dimensional space, leaving no overlaps nor underlaps.

As it turns out, counter-examples to both have been found for higher dimensional
spaces. Thus, one must be careful about using two or three-dimensional conceptual
truths as a basis for conclusions in higher dimensional spaces.

Other aspects that are out of the ordinary are statements such as, “as the
dimensionality increases, the amount of volume increases enormously fast, and most

                                                
18 Science, Vol. 259, 1 Jan 1993, pp. 26-27
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of it is away from the origin19.” Indeed, it is this enormous volume that provides the
potential for discriminating between the spectral responses of many more materials,
for there is volume available within which many more spectral responses can reside
without overlapping others. However, even there it is the case that what seems
obviously true is not quite as one would expect. As an example, consider the following
graph of results20.
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Figure 18. Classification accuracy using first order statistics only, second order statistics only, and both.

The top curve shows classification accuracy vs. dimensionality for a conventional
maximum likelihood Gaussian classification. Such a classifier uses both first and
second order statistics, both the mean vector and the correlation or covariance matrix.
The class mean vector defines the location of the centroid of the class in N-
dimensional space. The second order statistics define the shape and orientation of the
class distribution. The lower two curves of Figure 18 show the performance using the
mean vector information only and the covariance information only. Note that at low

                                                
19 Jimenez, Luis, and David Landgrebe, “Supervised Classification in High Dimensional Space:

Geometrical, Statistical, and Asymptotical Properties of Multivariate Data,” IEEE Transactions on
System, Man, and Cybernetics, Volume 28 Part C Number 1, pp. 39-54, Feb. 1998.

20 Chulhee Lee and David A. Landgrebe, "Analyzing High Dimensional Multispectral Data, IEEE
Transactions on Geoscience and Remote Sensing, Volume 31, No. 4, pp. 792-800, July 1993.
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dimensionality, N < 6, the mean-only classification provides higher accuracy than the
covariance-only information, as one might expect. That is, the location of the
distribution apparently contributes more to class separability than does the shape and
orientation of the distribution. However, in this case, with increased dimensionality this
performance soon saturates and improves no further. On the other hand, the
covariance-only result continues to increase with dimensionality, indicating that for
high dimensionality the shape and orientation are more significant to separation than
is the location information. The implication of this is that, for hyperspectral data, one
must pay close attention to the estimation of the second order statistics, in addition to
the mean spectral response.

Some implications of this to the analysis of hyperspectral data are the following:

• Larger numbers of training samples will be needed to properly characterize
classes than is the case with multispectral data of conventional
dimensionality. In general, estimates of second order statistics converge
more slowly to their final values than do first order statistics as the number of
samples is increased.

• Care must be exercised that, preprocessing procedures which are intended
to improve the first order characteristics do not inadvertently negatively
impact the second order characteristics and thus, rather than improve,
actually diminish the information content of the data. Examples of where this
could occur are in attempts to “calibrate” the data or to “correct” for various
observational or environmental effects.

Other differences arise for more straightforward reasons. For example, while the
principal component transformation is quite commonly used with low dimensional
data, the fact of now having a large number of spectral bands change the implications
of its use. The principle component transformation basically focuses upon the signal
variation of the data set as a whole, not of the separation between classes. It attempts
to maximize the variation contained in the low order transformed components,
relegating variations of less significant size to higher order components. Thus in 4-
band data, a modest variation occurring in a single band is likely to have a significant
effect, showing up in low-ordered principal components. However, the same sized
variation occurring in one of 220 bands might not, and yet it could be just as diagnostic
of a class of interest.

The matter of the best way to analyze hyperspectral data is not a mature technology.
Indeed, it will be appropriate for this to be the subject of research for some time to
come, as more hyperspectral data from different sensors over different types of scenes
for different applications come under study.  At present, it seems inappropriate to
attempt to analyze such high dimensional data in a single step. Rather we shall follow
a process as diagrammed in Figure 21. We shall introduce a preliminary or pre-
processing step that is intended to re-orient the feature space toward the specific set of
classes of current interest. This will allow for the selection of a lower dimensional set of
features that can be effective with a conventional classification algorithm.
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220 Dimensional Data

Feature Selection  Classifier/Analyzer

Training Data

Class-Conditional
Pre-Processing

Figure 21. The concept to be followed in analyzing a hyperspectral data set.

As previously indicated, the data set to be used is a small segment of an AVIRIS data
set collected in June 1992 over the Indian Pine Test site, a 100 square mile area in
northwestern Indiana. The data set is the same 145 by 145 set of pixels used
previously, but this time the full 220 bands will be used. The data set is designated
92AV3C, and is 9.04 Megabytes in size. The small size (21,025 pixels) of this data set,
in fact, makes it too small to be of practical significance. The limited size was chosen
as a compromise toward making the data set easily portable so that the reader would
find it easier to download remotely. Due to the need to have more extensive sized
training sets for the 220 band data, we will use the entire set of fields defined by the
generalized reconnaissance map, file 92AV3gt.GIS, as the training set. Since this will
mean that the training set will be the set used for accuracy evaluation, it will not be
possible to test the ability of the classifier to generalize beyond its training set. This
question will be left to another occasion. The file 92AV3.Project contains the fields of
the generalized reconnaissance map as training fields and may be used as the
MultiSpec project file.

Example Analysis Steps Using MultiSpec

Begin the analysis process by Open ing the project file 92AV3.Project, and Open
the project image using the default bands 50, 27, and 27 for red, green, and blue
respectively. The fields of the generalized reconnaissance map should show outlined
as training fields. The first step will be to do the class-conditional preprocessing step
indicated above, to focus the needed dimensionality based upon the now available
training statistics to a level that will enable a classifier to function effectively.

• At a number of points in processing hyperspectral data, exercising good judgment can
reduce the amount of processing time or effect a tradeoff between processing and storage
requirements. For example, the project file 92AV3.Project, has been provided without the
class statistics stored with it. This significantly reduces the size of the file and speeds the
process of opening the project substantially. However, it means that the project statistics must
be recalculated before any processor requiring them can be used. (To do so, open the
Statistics processor, click on the Project button and then the Update P. Statistics
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button.) Saving and loading a project file with the project statistics included may be faster than
recalculating them each time the file is opened, but substantially more storage space is
required.

We will use the Feature Extraction processor under the Processor menu, and we
will choose the Decision Boundary option of this processor. It will be necessary to
use a subset of classes which excludes all classes that have less than 221 training
samples, to avoid singularity problems with matrix inversion. Classes that must thus be
excluded are Alfalfa, Grass/pasture-mowed, Oats, Wheat, and Stone-steel towers. This
is a lengthy calculation. It determines a linear transformation that is optimal for the set
of classes involved, and orders the features determined in order of their value in
discriminating between the classes. One may then use the first N of these features to
classify the data to the level of accuracy desired.

Figure 22 shows the resulting maximum likelihood pixel classification for N = 19, the
largest value of N that can be used and still include all of the classes, since Oats has
only 20 training pixels. Table 6 gives the quantitative evaluation of the classification. It
is seen that the overall accuracy is 86.3% at this dimensionality.

• If the classification is done directly after the Decision Boundary Feature Extraction using the
Use Transformation option of the Classifier processor, note that a 19 feature classification
will still take as long as a 220 feature classification would, because the classifier must use all
220 bands to calculate the linear combination defining each feature for each pixel. A possibly
faster method would be to use the Reformat processor of the Processor menu to create a
transformed data set with the transform just calculated. Then classifications can be done
without the Use Transformation option of the Classifier processor set, and only the first 19
of the features will actually be used for the 19-feature classification. That is what was done for
the following examples.

Alfalfa                        
Corn-notill                    
Corn-min                       
Corn                           
Grass/Pasture                  
Grass/Trees                    
Grass/pasture-mowed            
Hay-windrowed                  
Oats                           
Soybeans-notill                
Soybeans-min                   
Soybean-clean                  
Wheat                          
Woods                          
Bldg-Grass-Tree-Drives         
Stone-steel towers             
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Figure 22. 19 DBFE Feature Maximum Likelihood Pixel Classification (in color).

ject Number of Samples in Thematic Image Class

ss Class Percent Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

me No. Correct Samples Alfalf Corn-n Corn-m Corn Grass/ Grass/ Grass/ Hay-wi Oats Soybea Soybea Soybea Wheat Woods Bldg-G Stone

alfa 1 100.0 54 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n-notill 2 83.1 1434 0 1191 46 2 2 2 0 0 0 75 110 5 0 0 1

n-min 3 89.0 834 0 31 742 2 0 0 0 0 0 4 37 18 0 0 0

n 4 99.1 234 0 0 0 232 2 0 0 0 0 0 0 0 0 0 0

Grass/Pasture 5 96.6 497 0 1 0 0 480 0 0 0 0 1 3 8 0 0 4

ss/Trees 6 97.7 747 0 0 0 0 0 730 0 0 0 1 0 0 0 0 16

ss/pas-mo 7 100.0 26 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0

Hay-windrowed 8 98.2 489 9 0 0 0 0 0 0 480 0 0 0 0 0 0 0

s 9 100.0 20 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0

-notill 10 87.7 968 0 47 2 0 2 2 0 0 0 849 66 0 0 0 0

beans-min 11 68.3 2468 2 290 146 1 17 3 0 0 0 234 1685 87 0 0 2

Soybean-clean 12 96.7 614 0 0 10 0 0 0 0 0 0 0 8 594 0 0 0

at 13 99.1 212 0 0 0 0 0 0 0 0 0 0 1 0 210 0 1

ds 14 95.7 1294 0 0 0 0 5 2 0 0 0 0 0 0 0 1238 49

g-Grass-
e

15 84.5 380 0 0 0 0 1 6 0 0 0 0 0 0 0 51 321

ne-
eltowe

16 100.0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95

AL 10366 65 1560 946 237 509 745 26 480 20 1164 1910 712 210 1289 394

RALL PERFORMANCE (8947/10366 ) = 86.3

Table 6. 19 DBFE Feature Maximum Likelihood Classification Evaluation

It is seen that the classification map appears to have a good many “salt and pepper”
errors to it. A more accurate classification results if the ECHO spectral/spatial
classification algorithm is used on the same statistics. The results of doing so are
shown in Figure 23 and Table 7.
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Alfalfa                        
Corn-notill                    
Corn-min                       
Corn                           
Grass/Pasture                  
Grass/Trees                    
Grass/pasture-mowed            
Hay-windrowed                  
Oats                           
Soybeans-notill                
Soybeans-min                   
Soybean-clean                  
Wheat                          
Woods                          
Bldg-Grass-Tree-Drives         
Stone-steel towers             

Figure 23. 19 DBFE ECHO classification (in color).

ject Number of Samples in Thematic Image Class

ss Class Percent Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

me No. Correct Samples Alfalf Corn-n Corn-m Corn Grass/ Grass/ Grass/ Hay-wi Oats Soybea Soybea Soybea Wheat Woods Bldg-G Stone

alfa 1 100.0 54 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n-notill 2 90.2 1434 0 1294 7 2 2 2 0 0 0 36 85 5 0 0 1 0

n-min 3 96.2 834 0 6 802 2 0 0 0 0 0 2 10 12 0 0 0 0

n 4 98.3 234 0 0 2 230 2 0 0 0 0 0 0 0 0 0 0 0

Grass/Pasture 5 97.0 497 0 1 0 0 482 0 0 0 0 1 3 8 0 0 2 0

ss/Trees 6 97.9 747 0 0 0 0 0 731 0 0 0 1 0 0 0 0 15 0

ss/pas-mo 7 100.0 26 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0

Hay-windrowed 8 99.0 489 5 0 0 0 0 0 0 484 0 0 0 0 0 0 0 0

s 9 100.0 20 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0

-notill 10 96.8 968 0 12 1 0 2 2 0 0 0 937 14 0 0 0 0 0

beans-min 11 90.2 2468 1 56 16 0 17 3 0 0 0 116 2227 30 0 0 2 0

Soybean-clean 12 96.4 614 0 0 15 0 0 0 0 0 0 2 3 592 0 0 0 2

at 13 99.1 212 0 0 0 0 0 0 0 0 0 0 1 0 210 0 1 0

ds 14 95.2 1294 0 0 0 0 5 1 0 0 0 0 0 0 0 1232 56 0

Bldg-Grass-Tre 15 97.4 380 0 0 0 0 1 4 0 0 0 0 0 0 0 4 370 1

Stone-steeltow 16 100.0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95

AL 10366 60 1369 843 234 511 743 26 484 20 1095 2343 647 210 1236 447 98

RALL PERFORMANCE(9786/10366 ) = 94.4

Table 7. 19 DBFE Feature ECHO Classification Evaluation
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Indeed the accuracy can be further improved by using more of the DBFE features.
Figure 24 and Table 8 give the results for the 50-feature case, again using the ECHO
algorithm. Note that the accuracy has now risen to 97.8 %.

Alfalfa                        
Corn-notill                    
Corn-min                       
Corn                           
Grass/Pasture                  
Grass/Trees                    
Grass/pasture-mowed-not used   
Hay-windrowed                  
Oats-not used                  
Soybeans-notill                
Soybeans-min                   
Soybean-clean                  
Wheat                          
Woods                          
Bldg-Grass-Tree-Drives         
Stone-steel towers             

Figure 24. 50 DBFE Feature ECHO Classification (in color).
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ject Number of Samples in Thematic Image Class

ss Class Percent Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

me No. Correct Samples Alfalf Corn-n Corn-m Corn Grass/ Grass/ Grass/ Hay-wi Oats Soybea Soybea Soybea Wheat Woods Bldg-G Stone

alfa 1 100.0 54 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n-notill 2 96.1 1434 0 1378 3 0 2 2 0 0 0 18 28 2 0 0 1

n-min 3 99.2 834 0 2 827 0 0 0 0 0 0 0 1 4 0 0 0

n 4 99.1 234 0 0 2 232 0 0 0 0 0 0 0 0 0 0 0

Grass/Pasture 5 99.0 497 0 0 0 0 492 0 0 0 0 0 4 1 0 0 0

ss/Trees 6 99.9 747 0 0 0 0 0 746 0 0 0 0 0 0 0 0 1

Grass/past.-mo 7 0.0 26 0 0 0 0 1 1 0 23 0 0 1 0 0 0 0

Hay-windrowed 8 100.0 489 0 0 0 0 0 0 0 489 0 0 0 0 0 0 0

s 9 0.0 20 0 4 0 0 11 2 0 0 0 0 1 0 0 0 2

Soybeans-notil 10 98.6 968 0 3 0 0 2 2 0 0 0 954 7 0 0 0 0

beans-min 11 97.6 2468 0 9 5 0 12 6 0 0 0 12 2408 14 0 0 2

Soybean-clean 12 98.5 614 0 0 4 0 0 0 0 0 0 2 2 605 0 0 0

at 13 99.5 212 0 0 0 0 0 0 0 0 0 0 0 0 211 1 0

ds 14 98.5 1294 0 0 0 0 1 2 0 0 0 0 0 0 0 1274 17

g-Grass-
e-

15 98.9 380 0 0 0 0 0 0 0 0 0 0 0 0 0 4 376

ne-
eltowe

16 100.0 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95

AL 10366 54 1396 841 232 521 761 0 512 0 986 2452 626 211 1279 399

RALL PERFORMANCE(10141/10366)=97.8

Table 8. 50 DBFE Feature ECHO Classification Evaluation.

Figure 25 shows a graph of accuracy vs. number of features used for the DBFE
features and shows that at 50 features, the accuracy is still increasing for the Maximum
Likelihood pixel classifier. For ECHO, the accuracy is slightly higher than for the
Maximum Likelihood Pixel classifier. In spite of the greater complexity of this algorithm,
it is also usually as fast or faster than the pixel classifier.
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Figure 25. Accuracy vs. number of features for the Decision Boundary and Discriminant
Analysis Feature Extraction algorithms with Maximum Likelihood Pixel
classification. For the DBFE algorithm, the ECHO classifier accuracy is also
indicated for 19 and 50 features.

• Another possible method for carrying out the Class-Conditional Preprocessing calculation is
to use the Discriminant Analysis Feature Extraction (DAFE) option of the Feature Extraction
Processor. This option has several desirable features. It is a much shorter calculation, and
classes may be included even though they have a number of training samples less than the
number of features. It also tends to give higher accuracy so long as the number of features
used is less than M – 1 where M is the number of classes. However, it calculates optimal
features only up to M – 1, and the features determined beyond that point are unreliable. The
performance for the Maximum Likelihood pixel classifier using DAFE features is shown in
Figure 25. It is seen that the rate of increase of performance became small as the number of
dimensions, N, approached the number of classes, M=15, in the above graph. Thus theory
and this example suggest that a good practice would be to use DAFE when the number of
classes to be used is greater than the number of features needed, otherwise to use DBFE.

Closing Comments

In this example we have shown one set of steps which can be used to analyze
hyperspectral data.  The method produced arbitrarily high accuracy even for classes
that have a signal-to-background ratio that is very small, thus demonstrating the
increased value of such high dimensional data. We note, however, that the
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generalization characteristics of the particular example were not demonstrated here,
due to the constraint upon data set size imposed arbitrarily on the example to hold the
data set to a size that can be easily transferred.

Development of these techniques continues. A number of newer features resulting
from continuing research but not used in the hyperspectral analysis case above have
already been incorporated into MultiSpec or are pending. Among these are the
following.

• Statistics Enhancement Processor. This processor improves the generalization
characteristics of a given set of training statistics relative to a data set to be
analyzed21.

• LOOC (Leave One Out Covariance estimation) This algorithm allows for a more
effective estimation of class covariance matrices when the number of training
samples is small22.

• Projection Pursuit Feature Extraction. We note the following. DAFE may limit
performance when there are only a small number of classes or where the classes
have similar mean responses. DBFE may not perform well when the ratio of the
number of training samples to dimensionality is not large. Projection Pursuit is an
additional feature transformation algorithm for which all calculation is done in the
final (reduced) dimensionality, rather than the initial dimensionality. It has been
incorporated into MultiSpec23, as a scheme for preliminary feature reduction
preceding use of DAFE or DBFE.

• Several additional classifier algorithms have been added to MultiSpec recently,
among them the Correlation Classifier sometimes called the Spectral Angle
Mapper (SAM), a matched filter classifier called Constrained Energy Minimization
(CEM)

A number of other aids to the training analysis process have been incorporated into
MultiSpec. For example, one can pre-specify the number and location of initial cluster
centers for a clustering process.

In considering the acquisition of information by multispectral remote sensing means,
one must ask the following questions.

1. Is the desired information actually present in the electromagnetic variations
traversing the space between the target and the sensor? If so,

2. Does the sensor successfully capture these variations with enough precision
and detail to insure that the desired information is now contained in the data
stream coming from the sensor to the analyst’s location?
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If the answer to both of these questions is yes, then it is up to the analyst to find a way
to discriminate between the desired diagnostic variations and all others, which are
invariably present. According to the framework presented above, the task of the
analyst is to find a way to partition the N-dimensional feature space in such a way that
the feature variations associated with materials of interest are contained within
subregions of this space as uniquely and mutually exclusively as possible.

The factor that changes substantially with hyperspectral data over that of conventional
dimensionality is the magnitude of the volume available in this space. This is at once
both the opportunity that was sought and a challenge. The magnitude of this volume is
the very thing that provides the opportunity for many more materials to be
discriminatable. However, it is this very characteristic that adds substantially to the
complexity of doing so. As has been seen, as the dimensionality goes up, the ability of
the analyst to use intuitive concepts which otherwise seem self-evident, is precluded,
and in fact many of these concepts become misleading. Instead, one must rely upon
quantitative tools that objectively provide information to the analyst about the
separability of spectral responses in feature space, so that the right path through the
analysis process can be quickly found. Indeed, at this stage of development, it is not so
much, “Is it possible to discriminate between this material and others in the scene,” as
it is, “Can I find a way to discriminate between this material and others in the scene.”


