Control of Primary Metabolism in Plants

Edited by

WILLIAM C. PLAXTON
Department of Biology
Queen’s University
Kingston, Ontario
Canada

and

MICHAEL T. McMANUS
Institute of Molecular BioSciences
Massey University
Palmerston North
New Zealand
Control of Primary Metabolism in Plants
Annual Plant Reviews

A series for researchers and postgraduates in the plant sciences. Each volume in this series focuses on a theme of topical importance and emphasis is placed on rapid publication.

Editorial Board:

Professor Jeremy A. Roberts (Editor-in-Chief), Plant Science Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK; Dr David Evans, School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, OX3 0BP; Professor Hidemasa Imaseki, Obata-Minami 2419, Moriyama-ku, Nagoya 463, Japan; Dr Michael T. McManus, Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand; Dr Jocelyn K.C. Rose, Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA.

Titles in the series:

1. Arabidopsis Edited by M. Anderson and J.A. Roberts
2. Biochemistry of Plant Secondary Metabolism Edited by M. Wink
3. Functions of Plant Secondary Metabolites and their Exploitation in Biotechnology Edited by M. Wink
4. Molecular Plant Pathology Edited by M. Dickinson and J. Beynon
5. Vacuolar Compartments Edited by D.G. Robinson and J.C. Rogers
7. Protein–Protein Interactions in Plant Biology Edited by M.T. McManus, W.A. Laing and A.C. Allan
8. The Plant Cell Wall Edited by J.K.C. Rose
9. The Golgi Apparatus and the Plant Secretory Pathway Edited by D.G. Robinson
10. The Plant Cytoskeleton in Cell Differentiation and Development Edited by P.J. Hussey
11. Plant–Pathogen Interactions Edited by N.J. Talbot
12. Polarity in Plants Edited by K. Lindsey
13. Plastids Edited by S.G. Moller
15. Membrane Transport in Plants Edited by M.R. Blatt
16. Intercellular Communication in Plants Edited by A.J. Fleming
17. Plant Architecture and its Manipulation Edited by C. Turnbull
18. Plasmodesmata Edited by K.J. Oparka
19. Plant Epigenetics Edited by P. Meyer
20. Flowering and its Manipulation Edited by C. Ainsworth
21. Endogenous Plant Rhythms Edited by A. Hall and H. McWatters
22. Control of Primary Metabolism in Plants Edited by W.C. Plaxton and M.T. McManus
23. Biology of the Plant Cuticle Edited by M. Riederer
Control of Primary Metabolism in Plants

Edited by

WILLIAM C. PLAXTON
Department of Biology
Queen’s University
Kingston, Ontario
Canada

and

MICHAEL T. McMANUS
Institute of Molecular BioSciences
Massey University
Palmerston North
New Zealand
2.3.3 Mitochondrial and chloroplast proteomes 35
2.3.4 Other subcellular proteomes 39
2.3.5 A stamp of authenticity for the subcellular protein postcode? 40

2.4 Quantitative analyses of the proteome 41
2.4.1 Examples of quantitative proteomics 42
2.4.2 The use of high-throughput measurements of enzyme activity as a proxy for quantitative proteomics 44

2.5 The use of proteomics to investigate post-translational modification of proteins 45
2.5.1 Systematic identification of phosphorylated proteins 46
2.5.2 Systematic identification of protein redox modifications 47

2.6 The use of proteomics to investigate protein–protein interactions 48

2.7 Future perspectives 50
References 52

3 Study of metabolic control in plants by metabolomics 60
OLIVER FIEHN

3.1 Introduction 60
3.1.1 What is metabolomics? 60
3.1.2 Systemic properties in metabolic networks 61

3.2 Metabolomic methods 62
3.2.1 Historic perspective of plant metabolite analysis 62
3.2.2 Modern instrumentation in metabolite analysis 63
3.2.3 Sample preparation for metabolomics 64
3.2.4 Metabolome coverage 66
3.2.4.1 The quest for combining sensitivity and selectivity 66
3.2.4.2 Cellular and subcellular metabolomics 68
3.2.4.3 Compound identification 69
3.2.5 Quality control 70

3.3 Metabolomic databases 71

3.4 Pathways, clusters and networks: applications of plant metabolomics 72
3.4.1 Bioengineering of metabolism 73
3.4.2 Plant biochemistry 74
3.4.2.1 Pathway analysis 74
3.4.2.2 Flux measurements 75
3.4.3 Physiological studies 76
3.4.4 Plant metabolomic methods 77
3.4.5 Food science 78

3.5 Outlook 80
References 80
4 Metabolite transporters in the control of plant primary metabolism
MECHTHILD TEGEDER and ANDREAS P. M. WEBER

4.1 Introduction

4.2 Photoassimilation and assimilate transport in source cells
4.2.1 Carbon assimilation by the reductive pentose-phosphate pathway (Calvin cycle)
4.2.2 The plastidic triose-phosphate pool – a metabolic crossway
4.2.2.1 Communication between the starch and sucrose biosynthetic pathways via TPT
4.2.3 Allocation of recently assimilated carbon to other pathways

4.3 Nitrogen assimilation

4.4 Amino acid and isoprenoid metabolism
4.4.1 Methionine and S-adenosylmethionine metabolism
4.4.2 Shikimic acid pathway and aromatic amino acid biosynthesis
4.4.3 Isoprenoid synthesis via the deoxy-xylulose 5-phosphate pathway

4.5 Sucrose and amino acid loading into the phloem for long-distance transport
4.5.1 Mobilization of stored carbon and nitrogen
4.5.2 Mechanisms of phloem loading and involvement of transporter proteins
4.5.3 Sucrose transporters
4.5.4 Amino acid transporters
4.5.5 Genetic modification of phloem loading with assimilates

4.6 Phloem unloading in sinks and assimilate transport to developing seeds
4.6.1 Assimilate distribution and transport in seed coats
4.6.2 Uptake of sucrose and amino acids by the developing embryo
4.6.3 Specialized sites of import
4.6.4 Sucrose and amino acid import into developing embryos/cotyledons
4.6.5 Genetic modification of assimilate transport in seeds

4.7 Assimilate transport and metabolism in sink cells
4.7.1 The role of hexose-phosphate import into nongreen plastids
4.7.2 The role of ATP-transport into nongreen plastids
4.7.3 Knockout of NTTs in Arabidopsis
4.7.4 Antisense repression and overexpression of NTTs in potato
4.7.5 A novel role for Rubisco in developing oilseeds

4.8 Concluding remarks

Acknowledgements

References
5 Role of protein kinases, phosphatases and 14-3-3 proteins in the control of primary plant metabolism

GREG B. G. MOORHEAD, GEORGE W. TEMPLETON and HUE T. TRAN

5.1 Introduction

5.2 Protein kinases

5.2.1 Phosphoinositide 3-kinase-like kinases

5.3 Protein phosphatases

5.3.1 Protein phosphatase 1

5.3.2 Protein phosphatase 2A

5.3.3 Protein phosphatase 2C

5.3.4 Novel protein phosphatases

5.3.5 The tyrosine and dual specificity protein phosphatases

5.3.5.1 Class I cysteine-based protein tyrosine phosphatases

5.3.5.2 Class II cysteine-based protein tyrosine phosphatase

5.3.5.3 Class III cysteine-based protein tyrosine phosphatases

5.3.5.4 Class IV protein tyrosine phosphatases

5.3.6 RNA polymerase II phosphatases-FCP1 and SCP

5.3.7 Histidine phosphatases

5.4 A Multitude of phosphospecific binding modules

5.4.1 Phosphospecific binding modules

5.4.2 14-3-3 proteins

5.4.2.1 14-3-3 structures and function

5.4.2.2 14-3-3 roles and control

5.5 The role of protein phosphorylation in the control of plant primary metabolism

5.5.1 Nutrient sensing and signalling through conserved protein kinases

5.5.2 Nitrate reductase

5.5.3 Sucrose synthase

5.5.4 Sucrose phosphate synthase and trehalose phosphate synthase

5.5.5 6-phosphofructo-2-kinase/fructose2,6-bisphosphatase

5.5.6 Starch synthase and starch branching enzyme

5.5.7 Glutamine synthetase (GS₁ and GS₂)

5.5.8 Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase

5.5.9 Phosphoenolpyruvate carboxylase and PEPC kinase

5.6 Summary

Acknowledgements

References
6 Redox signal transduction in plant metabolism 150
SANTIAGO MORA-GARCIA, FABIANA G. STOLOWICZ and RICARDO A. WOLOSIUK

6.1 Introduction 150
6.2 The reactivity of the sulfhydryl group 151
6.3 Protein-disulfide oxido-reductases 155
6.4 Thioredoxins 155

6.4.1 Thioredoxin isoforms 156
6.4.2 Reductants of thioredoxins (sources of reducing power) 158
6.4.3 Targets of thioredoxins (oxidants of thioredoxin) 161
6.4.4 Control of chloroplast enzymes by thioredoxin 162
6.4.5 Translation of chloroplast mRNA 165
6.4.6 Phosphorylation of chloroplast proteins 166
6.4.7 Control of mitochondrial proteins 166
6.4.8 Removal of reactive oxygen species 167
6.4.9 Seed germination 169
6.4.10 Modulation of receptor functions 170

6.5 Glutaredoxins 170
6.6 Protein-disulfide isomerases 173
6.7 Concluding remarks 175
Acknowledgements 175
References 175

7 Control of carbon fixation in chloroplasts 187
BRIGITTE GONTERO, LUISANA AVILAN and SANDRINE LEBRETON

7.1 Introduction 187
7.2 Ribulose-1,5-bisphosphate carboxylase-oxygenase 190
7.3 Glyceraldehyde-3-phosphate dehydrogenase 194
7.4 Fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase 197
7.5 Phosphoribulokinase 199
7.6 Other important enzymes in the Calvin cycle 201
7.6.1 Transketolase 201
7.6.2. Aldolase 202
7.7 Supramolecular complexes of the Calvin cycle 203
7.8 Conclusions 206
Acknowledgement 207
References 207

8 Control of phosphoenolpyruvate carboxylase in plants 219
HUGH G. NIMMO

8.1 Introduction 219
8.2 PPCK genes and their roles 220
8.3 Signalling pathways that control PPCK expression in CAM and C₄ plants 224
8.4 The ‘bacterial-type’ PEPC 228
8.5 Conclusions 229
Acknowledgements 230
References 230

9 Control of sucrose biosynthesis 234
ELSPETH MACRAE and JOHN LUNN
9.1 Introduction 234
9.2 Pathways of sucrose biosynthesis in leaves 234
 9.2.1 Sucrose synthesis in leaves during the day 236
 9.2.2 Sucrose synthesis in leaves at night 237
9.3 Control of sucrose biosynthesis – the precursors 238
 9.3.1 The conversion of triose-phosphate to hexose-phosphate 238
 9.3.2 The hexose-phosphate pool and UDP-glucose pyrophosphorylase 240
9.4 The committed enzymes of sucrose biosynthesis 241
 9.4.1 Sucrose-phosphate synthase 241
 9.4.2 Sucrose-phosphatase 245
 9.4.3 Evidence for a metabolon in sucrose biosynthesis 246
9.5 Integrated pathway control 247
9.6 Future perspectives 248
References 248

10 Control of starch biosynthesis in vascular plants and algae 258
MATTHEW K. MORELL, ZHONGYI LI, AHMED REGINA, SADIQ RAHMAN, CHRISTOPHE D’HULST and STEVEN G. BALL
10.1 Introduction 258
10.2 Synthesis of bacterial glycogen 259
10.3 Synthesis of starch in vascular plants 260
 10.3.1 Substrate supply and activation 260
 10.3.2 Amylose synthesis 263
 10.3.3 Amylopectin synthesis 264
10.4 Starch synthesis and breakdown in leaves and tubers 266
 10.4.1 Isoamylases are directly involved in the synthesis of amylopectin but also during starch mobilization 267
 10.4.2 Glucan phosphorylation is the key signal of starch degradation in both leaves and tubers 268
 10.4.3 Starch degradation essentially occurs through β-amylolysis in leaves 268
 10.4.4 Starch metabolism is tightly controlled by several levels of regulation 269
10.5 Control of starch biosynthesis in monocotyledonous species 269
 10.5.1 Genes in the rice genome 271
10.6 Starch synthesis in green algae

10.6.1 *Chlamydomonas reinhardtii* defines the best microbial system to study plant starch metabolism

10.6.2 The Chlamydomonas single cell can account for both transitory or storage starch synthesis

10.6.3 What have we learned from Chlamydomonas?

10.6.4 Similarity and differences between starch metabolism in plants and algae

10.6.5 The future of starch research in green algae

10.7 Starch synthesis in other systems

10.7.1 Bacterial cells may have a primitive starch synthesizing machinery

10.7.2 UDPglucose-based systems that produce starch

10.8 Control of starch biosynthesis

10.9 Opportunities for the manipulation of starch synthesis and structure

10.10 Conclusions

References

11 The organization and control of plant mitochondrial metabolism

ALLISON E. MCDONALD and GREG C. VANLERBERGHE

11.1 Introduction

11.2 Organization of the tricarboxylic acid cycle and mitochondrial electron transport chain

11.2.1 Tricarboxylic acid cycle and associated enzymes

11.2.2 Electron transport chain complexes I–V

11.2.3 Additional electron transport chain and associated components

11.3 Posttranslational control of mitochondrial metabolism and function

11.3.1 Phosphorylation – dephosphorylation

11.3.2 Dithiol-disulfide interconversion

11.3.3 Other oxidative modifications

11.3.4 Supramolecular complexes

11.4 Integration of mitochondrial metabolism with other metabolic pathways

11.4.1 Mitochondrial metabolism during photosynthesis

11.4.2 Ascorbate biosynthesis

11.4.3 Mitochondrial fatty acid synthesis

11.4.4 The glyoxylate cycle and lipid respiration

11.5 Mitochondrial metabolism of reactive oxygen species

11.5.1 Mitochondrial ROS generation

11.5.2 Mechanisms to scavenge mitochondrial ROS

11.5.3 Mechanisms to avoid mitochondrial ROS generation

11.5.4 Signaling functions of mitochondrial ROS
11.6 Additional stress-induced metabolic pathways associated
with plant mitochondria 311
11.6.1 GABA shunt 311
11.6.2 Mitochondrial amino acid catabolism 312
11.6.3 Formate dehydrogenase 312
11.6.4 Mitochondrial aldehyde dehydrogenases 313
11.6.5 Mitochondrial glycerol-3-phosphate dehydrogenase 314
11.6.6 Nucleoside diphosphate kinase 314
11.6.7 Root organic anion exudation 315
11.7 Concluding remarks 315
Acknowledgements 316
References 316

12 Photosynthetic carbon–nitrogen interactions: modelling
inter-pathway control and signalling 325
CHRISTINE H. FOYER, GRAHAM NOCTOR and PAUL VERRIER
12.1 Introduction 325
12.2 Integration of C and N metabolism in leaves 326
12.3 Control of nitrate assimilation rates and the C/N interaction 329
12.4 Pathway coordination and the C/N signal transduction network 331
12.5 Modelling the C/N interaction 333
12.5.1 Construction of a tentative model to explore the
sensitivities in the GS and GOGAT reactions 335
12.6 Conclusions and perspectives 342
Acknowledgements 342
References 342

13 Control of sulfur uptake, assimilation and metabolism 348
MALCOLM J. HAWKESFORD, JONATHAN R. HOWARTH and
PETER BUCHNER
13.1 Introduction 348
13.2 Sulfate uptake and distribution 351
13.2.1 Transcriptional regulation of transport 352
13.2.2 Post-translation controls 353
13.3 The assimilatory pathway – activation and reduction 354
13.3.1 Cytosolic pathways 354
13.3.2 Reductive assimilation in the plastid 354
13.3.2.1 Sulfate activation by ATP sulfurylase 354
13.3.2.2 Sulfate reduction by APS reductase 355
13.3.3 Transcriptional regulation and coordination with
C and N pathways 356
13.4 Control of flux through the assimilatory
pathway – cysteine synthesis 357
13.4.1 The ‘cysteine synthase’ complex 358
13.4.2 Metabolic control of the ‘cysteine synthase’ complex 358
Contributors

Dr. Luisana Avilan Departamento de Biologia, Facultad de Ciencias, Universidad de Los Andes, Merida 5101, Venezuela
Professor Steven G. Ball Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS/USTL, IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq, Cedex France
Dr Oliver E. Bläsing Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
Dr Peter Buchner Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Dr Christophe d’Hulst Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 CNRS/USTL, IFR 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq, Cedex France
Professor Oliver Fiehn UC Davis Genome Center, Davis, CA 95616, USA
Professor Christine H. Foyer Crop Performance and Improvement Division, Rothamsted, Harpenden, Herts AL5 2JQ, UK
Dr Yves Gibon Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
Dr Brigitte Gontero CNRS-Universités Paris VI et Paris VII, Institut Jacques Monod, Tour 43, Laboratoire de Génétique et Membranes, 2 place Jussieu, 75 005 Paris, France
Dr Malcolm J. Hawkesford Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Dr Jonathan R. Howarth Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
Dr Sandrine Lebreton CNRS-Universités Paris VI et Paris VII, Institut Jacques Monod, Tour 43, Laboratoire de Génétique et Membranes, 2 place Jussieu, 75 005 Paris, France
Dr Zhongyi Li CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia
Dr John Lunn Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14424 Potsdam, Germany
Dr Elspeth MacRae Mt Albert Research Centre, HortResearch, Private Bag 92169 Auckland, New Zealand
Dr Allison E. McDonald Department of Life Sciences and Department of Botany, University of Toronto at Scarborough, Scarborough, ON M1C 1A4 Canada
Professor Greg B. G. Moorhead Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

Dr Santiago Mora-Garcia Instituto Leloir, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina

Dr Matthew K. Morell CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia.

Professor Hugh G. Nimmo Division of Biochemistry & Molecular Biology, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK

Professor Graham Noctor Institut de Biotechnologie des Plantes, UMR CNRS 8618, Université de Paris XI, 91405 Orsay cedex, France

Dr Sadiq Rahman CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia

Dr Ahmed Regina CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601, Australia

Dr Fabiana G. Stolowicz Instituto Leloir, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina

Dr Lee J. Sweetlove Department of Plant Sciences, University of Oxford, Oxford, UK

Professor Mechthild Tegeder School of Biological Sciences, Center for Reproductive Biology, Center for Integrated Biotechnology, Washington State University, Pullman, WA 99164-4236, USA

Dr George W. Templeton Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

Dr Oliver Thimm CNAP, Department of Biology, University of York, PO Box 373, YO10 5YW York, UK

Dr Hue T. Tran Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

Dr Bjorn Usadel Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany

Professor Greg C. Vanlerberghe Department of Life Sciences and Department of Botany, University of Toronto at Scarborough, Scarborough, ON M1C 1A4 Canada

Dr Paul Verrier Biomathematics and Bioinformatics Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK

Professor Andreas P. M. Weber Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA

Professor Ricardo A. Wolosiuk Instituto Leloir, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
The ability to control the rates of metabolic processes in response to changes in the internal or external environment is an indispensable attribute of living cells that must have arisen with life’s origin. This adaptability is necessary for conserving the stability of the intracellular environment which is, in turn, essential for maintaining an efficient functional state. The remarkable advances in molecular genetics that have occurred over the past several decades have somewhat eclipsed areas of traditional biochemistry such as protein chemistry, enzymology and metabolic control. With many genomes sequenced and others nearing completion, the next step is the less straightforward task of analysing the expression and function of gene products (proteins), as well as more thoroughly elucidating metabolism and its control. The task of completing the picture of all cellular proteins, their actions and reactions, is one of the biggest challenges facing life science researchers today. Although molecular biology has generated a host of impressive techniques (i.e., protein over-expression, site-directed mutagenesis, metabolic engineering, cDNA microarrays, etc.) for assessing various aspects of protein/enzyme structure-function and regulatory control, one cannot deduce the properties of a functional protein or the kinetic and regulatory properties of an enzyme solely from genetic information. Furthermore, recent genome sequencing projects have revealed a plethora of gene sequences that encode proteins having unknown functions, and many organisms whose genomes are currently being sequenced have not had their metabolism extensively studied. Where feasible, their metabolic phenotype is determined using annotated genome sequence data. Thus there appears to be a resurgence of interest in protein, enzymological and metabolic research for understanding biological processes in the post-genome era. Efficient approaches are needed for determining (a) the function of unknown gene products, (b) protein expression and corresponding metabolite levels in different cells and in different sub-cellular compartments under various developmental and environmental conditions, (c) covalent modifications of proteins in response to different stimuli, (d) protein:protein interactions, (e) the relationship between protein structure and protein function, (f) membrane transporter proteins that selectively translocate specific metabolites between different sub-cellular compartments and (g) the sophisticated mechanisms that serve to control the flux of metabolites through specific metabolic pathways in vivo.

Although biochemists frequently employ the terms ‘regulation’ and ‘control’ interchangeably, the need to discriminate between these terms has been emphasised by David Fell [1]. Metabolic control refers to adjusting the output of a metabolic pathway in response to an external signal. By contrast, metabolic regulation occurs when an organism maintains some variable which remains relatively constant over time, despite fluctuations in external conditions. Homeostasis is therefore a consequence of
metabolic regulation, which itself may be a result of metabolic control. For example, the regulation of mammalian blood glucose is largely due to the secreted peptide hormones glucagon (‘starved’ signal) and insulin (‘fed’ signal) controlling intracellular metabolism within the liver. In this case, the concentration of blood glucose is regulated (kept constant) mainly by controlling (varying) fluxes of metabolic pathways (i.e., glycogen breakdown versus synthesis, glycolysis and gluconeogenesis) in hepatocytes. Regulation and control are properties of highly elaborate metabolic systems. An ongoing challenge is to link our knowledge of molecular, reductionist-based, enzyme control mechanisms to organismal-level explanations of metabolic regulation.

The advent of genomics, proteomics and metabolomics has revolutionised the study of plant development and is now having a significant impact on the study of plant metabolism and its control. In the last few years, significant advances have been made as enzyme gene families are elucidated, and new proteinaceous and allosteric regulators are identified. Enzyme activity is the major factor influencing the magnitude of metabolic fluxes in any cell. Metabolic control may occur at several levels, beginning with gene transcription and proceeding through various stages of protein synthesis and turnover. More rapid alterations in metabolic flux occur through activation and inhibition of pre-existing key enzymes along the major metabolic pathways, particularly by mechanisms such as reversible covalent modification and by the actions of allosteric effector molecules that reflect the cell’s adenylate energy charge, oxidation/reduction potential and/or the accumulation of metabolic end products. Discoveries concerning plant metabolic control continue to be made at a rapid rate, particularly in the field of signal transduction. Each discovery adds to the view that plant signal transduction and metabolic control networks have remarkable intricacy. Although great advances have been made in our understanding of the mechanisms that contribute to the control of plant metabolism, our comprehension of why plant metabolic systems behave as they do in vivo is incomplete. However, the tools to address these questions are rapidly evolving, and advances in the theory of metabolic control and in computing power to analyse metabolism have kept pace with experimental developments. This holds great promise for those plant molecular geneticists who wish to reap a harvest via the process of metabolic engineering. A volume that reviews this progress and can point out the major research areas for the future, therefore, is very timely.

In this volume, a group of international specialists present their ideas and interpretations of specific subject matter relevant to plant primary metabolism and its control. Each chapter is written by an acknowledged expert or group of experts and provides an informed discussion on how the problem of metabolic control may be evaluated using the wide assortment of sophisticated techniques available to the modern researcher. The chapters are interrelated in order to provide the reader with an integrated view, reviewing information from the current literature and developing novel hypotheses based upon data acquired from extensive and diverse research activities.

For the purposes of this volume, primary metabolism is defined as the primary auxotrophic pathways in plants (CO₂ fixation and assimilation; sucrose and starch
synthesis) and those in common with the primary pathways in mammalian cells (i.e., glycolysis and respiration). However, Part I of the volume (the first six chapters) is devoted to more generic aspects of metabolic control, with chapters on plant enzyme control by reversible covalent modification (i.e., protein-kinase mediated phosphorylation and dithiol-disulfide interconversions), metabolite transporters and the emerging roles of genomics, proteomics and metabolomics for informing the study of plant metabolic control. The chapters in Part I provide a basis for full appreciation of the information in the seven chapters of Part II. The latter focus on the control of specific pathways and enzymes of primary plant metabolism.

William C. Plaxton
Michael T. McManus

Reference

1 Evaluation of the transcriptome and genome to inform the study of metabolic control in plants

Oliver Thimm, Oliver E. Bläsing, Björn Usadel and Yves Gibon

1.1 Introduction

New technologies often lead to major advances in biology. For plant biology, recently developed profiling methods, together with bioinformatics, have profoundly revolutionised the subject driving it to the whole system level. The accumulation of sequence data from various species (and the completion of nucleotide sequencing of several plant genomes) and remarkable advances in analytical and computational methods have enabled the development of a range of functional genomics approaches. Because many enzymes are highly conserved, identity searches allow the discovery of homologous enzymes, novel isoforms and pathways. Sequence data can also give information about the intracellular localisation of the encoded proteins. Furthermore, these genomic resources allow the development of high-throughput transcript profiling techniques and provide background knowledge for protein profiling. Although genetic maps of pathways from primary metabolism are now pretty well described, those from the secondary metabolism are still far from complete. However, our knowledge about how metabolic pathways are controlled in higher plants is expanding (see further chapters in this volume), and high-throughput transcript profiling provides the first insight into this control.

Parallel transcriptional analysis or ‘transcriptomics’ is believed to be one of the most important experimental approaches for discovering the function of genes [1]. The documentation and analysis of how genes respond to environmental or developmental challenges, as well as to genetic changes (e.g. knocking out, repressing or overexpressing genes), should allow the assignment of hypothetical functions. A strong theme that has emerged from microarray experiments is that groups of genes that are functionally related tend to be co-regulated at the transcriptional level [2, 3]. Aside from the fact that it may be a long time before the functional relationship is fully understood, finding such patterns of expression is definitely not trivial. Indeed, the major bottleneck in such experiments is no longer the generation of data, but the analysis and interpretation of the datasets produced. To meet this problem, a variety of bioinformatic tools have recently been developed in order to extract relevant information from large-scale datasets. However, many bioinformatic
solutions are not intuitively accessible for biologists, because they imply data processing algorithms that can only be understood and applied with the assistance of statisticians and programmers. Moreover, bioinformatic tools cover mainly data management, processing and visualisation, whereas the development of tools for the integration of data and their interpretation is still in its infancy. With regard to the costs of profiling experiments, the output rarely meets the initial expectations or the intrinsic potential of the generated data.

In this chapter, we present the transcript profiling technologies that are available and discuss the different steps that are required in transcriptomics approaches, from planning of experiments to data visualisation. As an example, we present results obtained by comparing the transcriptome of an *Arabidopsis thaliana* starchless mutant with its corresponding wild type.

1.2 Transcript profiling technologies

Several methods have now been developed to measure steady-state levels of mRNA for hundreds to thousands of genes in parallel. DNA microarrays are the most commonly used tools to date, although other transcript profiling technologies based on nucleotide sequencing have been developed. These include serial analysis of gene expression (SAGE), massively parallel signature sequencing or using fragment sizing, differential display, and cDNA-amplified fragment length polymorphism analysis [4, 5].

The DNA microarray technique is based on nucleic acid hybridisation, a property initially discovered by Gillespie and Spiegelman [6], and is analogous to the Northern blot technique [7]. Indeed, this technique quantifies the highly specific hybridisation of an immobilised DNA strand (probe) with a nucleic acid strand, which is a labelled antisense copy of the target mRNA. Immobilised DNA should be in excess to allow a pseudo-first-order hybridisation kinetic, in order that the derived signal will be linearly related to the concentration of the labelled target. To date, two types of microarrays have evolved: DNA double-strand-based microarrays and oligonucleotide-based microarrays. DNA microarrays consist of DNA probes of various lengths spotted or ink-jetted onto nylon membranes or glass slides with a chemically modified surface. DNA probes can be full-length cDNAs, expressed sequence tag (EST) clones or amplified PCR fragments that encode the expressed part of a gene. Therefore, the length of the spotted DNA fragments ranges from a few hundred to thousands of base pairs.

Oligonucleotide-based arrays are made of oligonucleotides generated by standard synthesis and subsequently spotted, or by oligonucleotides directly synthesised on the solid support by photolithographic techniques. The typical length of oligonucleotides ranges from 20 to 80 base pairs. Probe density represents 20,000–30,000 spots per glass slide for DNA arrays and can be dramatically increased in the case of arrays prepared with photolithographic techniques (>250,000 oligonucleotides cm⁻²). As a consequence, oligonucleotide arrays are best suited for the evaluation of the full transcriptome. Since the generation of
oligonucleotide arrays relies on the quality of currently available sequence information, hybridisation targets can, however, represent outdated genome annotations, leading to either unspecific or missed hybridisation events. A disadvantage of cDNA microarrays is that they rely on collections of cDNA clones, for which quality and identity must be ensured over the whole microarray manufacturing process. In addition, gene families with closely related members could cause misleading cross-hybridisation problems. Prior to hybridisation, target mRNA is extracted from the plant material and reversely transcribed into cDNA, which is labelled with radioactivity or with fluorescent dyes. In the case of oligonucleotide-based arrays, cDNA is often used to synthesise labelled antisense RNA by linear amplification. Microarrays made of nylon membranes have to be hybridised with radioactive target cDNA, because labelling with fluorescent dyes is not applicable, due to the high background fluorescence of such membranes. In contrast, glass slides allow the hybridisation with fluorescent targets, the most commonly used being cDNAs labelled with Cy5 or Cy3 that allows the detection of different samples (e.g. control and treatment samples) hybridised to a single chip at different wavelengths. Treatment and control samples are combined in one hybridisation event, so that a ratio between the fluorescent signals of Cy5 and Cy3 can be established, reducing chip-to-chip variations. Finally, signals are detected with a phosphoimager or with a laser scanner attached to a confocal microscope.

Transcript profiling involves RNA preparation, reverse transcription, probe labelling, microarray manufacturing, hybridisation, signal detection and quantification. All these steps are prone to error, so that the results of microarray experiments are rarely comparable when generated by different expression profiling approaches or research groups, even when the same mRNA pool was used [8]. However, we anticipate that in the near future, companies will provide full service on extracted RNA, thus further reducing technical error.

In addition to the model Arabidopsis, major crop plants such as rice and sugar cane are also becoming a target for commercial expression profiling. Consequently, plant research will benefit from additional information on phylogenetic diversity. Also, real time RT-PCR [9] has emerged as a powerful alternative to microarrays, when subsets of genes are studied. Indeed, real time RT-PCR allows the precise quantification of transcript levels, with a much higher linearity range and sensitivity than microarray platforms [10].

1.3 Transcript profiling workflow

To ensure a high standard of publications, the editorial boards of ‘The Plant Cell’ and ‘Plant Physiology’ have recently modified their criteria of acceptance for manuscripts dealing with transcriptomics [11, 12]. Now, transcript profiling experiments have to be designed and described properly, based on the MIAME standard (Minimum Information about a Microarray Experiment, [13]). Datasets have to include an adequate number of replicates; the verification of gene subsets with alternative approaches such as real time PCR will not be regarded as compensatory
for replicates. Data analysis should include appropriate statistical methods, so that arbitrary methods such as the calculation of fold changes (FC) to select differentially expressed gene are no longer accepted. Additionally, the entire dataset has to be deposited in public gene expression repositories, for example, TAIR (The Arabidopsis Information Resource, [14]).

1.3.1 Data generation

Profiling experiments are not merely expensive; they are also extremely time consuming in terms of data analysis and interpretation. Furthermore, a dramatic increase in the number of parameters that can be measured does not mean that the quality of the information improves. Indeed, a poorly designed experiment is likely to lead to ‘a flood of misleading or un-interpretable data, which will be even more difficult to identify and put aside than in the past’ [15].

Preliminary experiments or literature searches may be very useful to help reveal differential expressions of genes in an accurate way. Of central importance is that many genes exhibit strong oscillations throughout a night and day cycle [16, 17], including a large proportion of the genes involved in metabolism [18, 19]. As a consequence, when comparing a mutant with its corresponding wild type for example, it will be very difficult to choose the critical time point, unless a precise time window has been established via preliminary experiments in which diagnostic markers are measured to evaluate the physiological and/or developmental state. Ideally, a 24-h time-course experiment would be performed in both genotypes, but this is expensive and requires sophisticated analyses. As an alternative, samples taken throughout the day and/or the night periods might be pooled, but considerable information will be lost. However, such approaches should at least give an estimate of average transcript levels (see example below). Another possibility is to grow plants in continuous light (http://www.Arabidopsis.org/info/expression/ATGenExpress.jsp), although this growth condition is artificial and can hide important but conditional phenotypic traits. For example, starchless mutants will only exhibit a carbon starvation phenotype, if they are grown in photoperiods of less than 16 h [19]. A minimum of three replicates from three independent experiments for each data point has been suggested, which are eventually combined with dye-swap replicates when cDNA arrays are being used [20]. Information about biological variation is not necessarily desired and can be reduced by pooling a consistent number of individuals.

Another important variable is the way in which the plant material is harvested. Whenever possible, sampling should be achieved at the location of the experiment and as quickly as possible. Indeed, any change such as a temperature shift, or a wound response provoked by a dissection, can exert dramatic effects on the transcriptome. As an example, our colleagues have observed anomalously high levels of transcripts encoding heat shock proteins in plants acclimated to low temperature (M.A. Hannah, personal communication). However, they finally established that this was due to the transfer of the plants to room temperature prior to the harvest. With these considerations in mind, it is apparent that performing transcript
profiles from single cells [21] is particularly challenging and requires sophisticated techniques [22].

After sampling, the isolation of clean RNA is tedious work, depending on the tissue of interest. Several generic protocols are available for plant material, and kits including disposable cartridges can be purchased from various companies. However, in certain cases, dedicated protocols are necessary. For example, a method involving a hot borate buffer has been recommended for the extraction of high quality RNA from seeds [23]. To ensure quality, the integrity of RNA has to be checked by gel or capillary electrophoresis, in combination with UV spectrometry. In general, a final step consisting of the isolation of polyA$^+$ RNA is performed in order to reduce the technical noise due to background hybridisation.

1.3.2 Data management

Efficient data analysis depends on the individual organisation of raw and normalised experimental data. A crucial step for data handling is the unique naming and description of every chip file in any subsequent analyses. This specification should contain an intuitive abbreviation of the investigated genotype, whether a control or test experiment was carried out, an indication of the analysed time-point or the developmental stage in serial experiments and an index of replication. For each experiment an additional descriptive file should inform about further experimental details based on MIAME standards [13]. Database systems are the dedicated tools for data management, especially if multiple experiments, projects or users have to be organised [24–26]. Databases standardise data formats, use controlled vocabularies for experimental descriptions, define user-specific data access and facilitate the exchange of data. A well-structured and transparent data resource avoids experiment redundancy and allows data mining and large-scale data analysis (e.g. co-response analysis or data integration approaches [24, 25]).

A number of information management systems (IMS), including commercial software, have been developed in various research fields to cope with more and more complex datasets. These include medical research [27], microarray analysis in Arabidopsis [28], proteomics [29] or protein crystallography [30]. Classically, IMS allow project management, sample processing and tracking, data retrieving, sorting, visualisation and correlative approaches. Typically, such systems are centralised, often web-based, with restricted or conditional access. We are currently developing a flexible IMS, which is stand-alone, and involves various modules for the design of experiments, the collection and management of data and its subsequent analysis (J. Hannemann et al., unpublished). This IMS will also allow the import of pre-existing data. Basically, the aim is to collect and link genotypic, environmental and phenotypic data in a ‘decentral’ mode, but with the possibility of collaborative sharing of data. The synchronisation of data from different research groups will be made possible by the edition of the nomenclatures. Indeed, the sharing of data is a critical issue for data mining, as this is the best way to increase replication and number of analytes, especially those requiring extensive equipment and know-how.
1.3.3 Data processing

Data processing is the most sensitive step in gene chip analysis, since this technology has still inherent methodological drawbacks that make it susceptible to technical variation and signal misinterpretation. Many authors have contributed on the current technological and statistical problems, and many bioinformatic tools have been developed to increase the accuracy and precision of gene chip analysis. Because of the strong effects of data processing strategies on the final results, the user should carefully choose his/her data analysis tools. Therefore, the processing strategy and its underlying algorithms should be understood in detail. This is hardly ever achieved by biologists, since an advanced mathematical and statistical knowledge is required. Additionally, the field of data processing is progressing so quickly that it is very difficult to keep up-to-date.

A number of algorithms have been recently developed to improve the performance of the standard microarray analysis software (Microarray Suite, MAS) released by Affymetrix™. MAS is a stand-alone platform allowing the processing of raw data in a predefined, but partially flexible workflow. Many of these algorithms are modular program packages using the open source statistical scripting language R [31]. Relevant packages are integrated into the Bioconductor project, which is dedicated to the analysis of genomic data [32]. Some of these tools work at a command-line level, which represents an additional hurdle for researchers without any programming experience. In contrast, R and the Bioconductor project are well documented and offer beginners comprehensive online help. In addition, many R courses are available for free, following the idea of an open source platform (e.g. http://compdiag.molgen.mpg.de/ngfn/pma2005.shtml). For the first time, researchers can assemble their own data analysis pipelines by downloading pre-programmed modules that can be found in the public domain. Furthermore, several Bioconductor packages have been integrated into user-friendly graphical interfaces (e.g. affylmGUI, http://bioinf.wehi.edu.au/affylmGUI/) to meet the demand of biologists.

The following sections will briefly introduce and compare the current strategies of data processing in terms of their impact on data interpretation.

1.3.3.1 Raw data handling

The whole genome Arabidopsis microarray (ATH1) from Affymetrix, uses nearly 23,000 probe sets with 11 gene-specific 25-mers (probes) that have been designed to match the last 600 bp of 3’coding sequences. The expression level of each gene is assessed by summarising the signal intensities of the individual probes. To deal with unspecific binding, cross-hybridisation and background noise, a derivative oligomer was designed (mismatch: MM) for every specific oligomer (perfect match: PM), by changing the 13th base to its complementary (PM/MM couples are defined as probe pairs). The first version of the Affymetrix™ MAS software (4.0) used a robust average of PM-MM differences for expression measurement that includes background correction and deals with outlier probes [33]. By using this approach, about one-third of all PM-MM differences turned out to be negative,
suggesting that MM oligomers are also subject to specific hybridisation [34, 35]. Additionally, it was observed that the inherent linear scale measure is not appropriate to measure expression [34, 36]. The Affymetrix algorithm was further optimised (latest MAS release 5.0), defining the signal of a gene as the robust average (Tukey Biweight) of $\log (PM - CT)$ [37]. Since this algorithm uses a log scale measure, the problem of negative PM-MM differences had to be addressed and CT values were introduced, where $CT = MM$, if $MM < PM$. In cases where $MM > PM$, CT values are adjusted to be smaller than PM. But this correction only masks the recurrent specific signal binding to MM probes. Therefore, alternative strategies have been suggested by several authors, chiefly RMA (log-scale robust multi-array analysis) method from Irizarry et al. [34], dCHIP from Li and Wong [36, 38], the PDNN model (positional-dependent-nearest-neighbour) from Zhang et al. [39] and the GCRMA approach from Wu et al. [40].

RMA includes a three-step procedure that corrects for background noise, normalises across multiple arrays and finally summarises probe-level values using PM information only. PM signals are supposed to contain specific binding, non-specific binding, background and optical noise. To correct the specific signal for background noise, RMA makes use of the assumption that the signal is exponentially distributed, whereas the background noise is normally distributed. Distribution parameters are estimated by PM values and the modelled background noise is subtracted from PM signal intensities to assess specific signal intensities. Li and Wong observed that PM value variation could be considerably higher within a probe set than the variance of certain PM across different arrays, indicating a strong probe affinity effect. A multiplicative model is used in dCHIP to estimate the probe affinity effect from a minimum number of 8–10 arrays, to remove outlier probe intensities and to calculate expression measures [36].

PDNN and GCRMA assess unspecific binding by referring to available oligomer sequence information. Zhang et al. [39] developed the PDNN model – a free energy model for the formation of RNA-DNA duplexes. It reflects the specific contribution of different parts of oligomers to the overall probe binding stability and assesses specific and non-specific binding without the use of MM signal information. The background correction used in GCRMA combines the physical aspects of Zhang et al. and the non-specific binding model of Naef and Magnasco [41]. Using available sequence information, GCRMA performs a background adjustment based on GC content and probe affinities (sum of position-dependent base effects) of PM and MM [40, 42].

1.3.3.2 Normalisation

Signal intensity is not only the result of mRNA expression level, but is also strongly affected by technical variability that includes all technical, chemical and human factors that are involved in sample preparation, hybridisation and image processing. The purpose of normalisation strategies is to reduce these effects and to enhance the comparability of specific signals across different arrays.

In addition to different expression measures, the software tools mentioned in Section 1.3.3.1 also make use of different normalisation strategies. Although the
performances of the different strategies have been compared intensively, a common gold standard has not been defined to date. Generally, it can be stated that the choice of a strategy depends on the individual user’s needs. Excellent examples of intelligible discussions dealing with gene expression measurements and normalisation strategies can be found in Saviozzi and Calogero [43] and O’Connell [44].

The MAS5.0 linear approach scales summarised probe set signal intensities. This results in the same average value for all arrays, but does not affect the correlation of the data [43, 45]. To deal with commonly observed non-linear relations between different arrays, Li and Wong proposed a non-linear scaling strategy that is used in dCHIP [36, 38]. Basically, arrays are normalised at a probe intensity level to a chosen baseline array with a median overall brightness. This normalisation is only carried out on non-differentially expressed genes (invariant set) which are defined in parallel with an iterative intensity ranking approach [38]. RMA and GCRMA use the quantile method with the aim to make the distribution of probe intensities (before summarisation) the same for all arrays analysed. The expression estimate for each gene is assessed with a robustly fitted (median polish) log-scale expression effect/probe effect model [44]. It has been shown that RMA expression measure has a higher precision than dCHIP and MAS5.0, when applied to replicates of the same experiment. RMA-derived probe values showed better correlation and smaller standard deviation (SD) especially at low gene expression levels [34, 46]. Comparing the performance on the basis of fold changes (FC: gene expression value of a control experiment/ gene expression value of a treatment experiment) in spike-in experiments, RMA shows higher sensitivity and specificity when compared with MAS5.0 and dCHIP.

Besides normalised expression values, MAS5.0 provides test statistics that allow a significant improvement of performance based on (i) gene-specific detection calls (either A = absent, M = marginal or P = present), indicating the level of expression and the quality of the probe set hybridisation and (ii) FC P-values derived from non-parametric test statistics. Scatter plot analyses of data normalised with MAS5.0 have shown that high SD at low expression levels mainly originate from genes that are classified as absent. To reduce signal variability and improve performance, genes called absent should be removed routinely from further analysis [43]. When MAS5.0 P-values are used for FC analysis, MAS5.0 performed as well as RMA and better than dCHIP [46]. Basically, MAS5.0 provides an accurate summary including background and MM correction, but sometimes the real expression level is underestimated, since MM can also contain specific signal intensities [34, 44]. Otherwise, RMA expression measures have a higher precision of expression measures, but are less accurate for low expression values [40, 44]. The normalisation with RMA and dCHIP showed a higher correlation and smaller SD when applied to replicates of the same experimented data [43]. Nevertheless, RMA normalisation should be applied carefully, since adjusting distributions across multiple arrays may lead to the removal of signals in the tails [34]. In particular, if many genes are differentially expressed or only a small portion of genes is expressed at all, the quantile normalisation may increase the number of false negatives. The normalisation across all datasets also complicates the interpretation of data, as is
observed if additional arrays are integrated into an existing dataset, for example. The necessary re-normalisation across old and new data could lead to changed expression values in the original dataset and alter prior results. RMA FC estimates are about 10–20% compressed in comparison to FC calculated by MAS5.0 [46]. This is important to note, since many researchers still use a certain FC cut-off to restrict the number of differentially expressed genes for subsequent analysis.

1.3.4 Data analysis

As mentioned previously, the introduction of genome scale profiling experiments revolutionised plant biology in such a way that it is no longer possible to work on results expressed as means ± SD. Instead, a multitude of tools have been adapted or developed to help making sense out of the data.

1.3.4.1 Differential expression

One objective of microarray experiments is the identification of differentially expressed genes under different experimental conditions. Even after careful normalisation and filtering procedures, expression data are still noisy and statistical methods have to be applied to test whether changes in expression levels are significant [47, 48].

An early approach was the calculation of FC, and the definition of a general cut-off for a significant change in expression. Several authors agreed that a two-fold change in expression can reliably be detected by modern transcriptomic systems [49–51]. Although FC provide an intuitive value, they are not confirmed statistically, and the definition of a cut-off threshold remains arbitrary. High FC of low expressed genes should be interpreted carefully, since their signal variation across replicates is typically high. Complementary, conventional t-tests can be used, providing the probability whether a change in expression was detected by chance. As a result, even minor changes can be highly scored, irrespective of their biological relevance. Methods based on t-tests depend on strong parametric assumptions, which are often violated by the restricted number of replicates that are commonly used in microarray experiments [52].

The most widespread method to identify differential expression is the ‘significance analysis of microarrays’ (SAM), which assimilates a series of gene-specific t-tests [48]. SAM scores genes based on their change in expression, in relation to SD of replicates, without strong parametric assumptions [48, 52]. As a compensate for chip replicates, SAM uses repeated data permutations to generate controls and assess statistical significance [43]. Compared to the FC method, SAM reduces the false discovery rate (FDR, percentage of genes identified by chance) in one reported example from 73–84% to 12% [48].

The simple rank product (RP) method circumvents the previously mentioned parametric problems and provides both biological and statistical meaningful values [47]. RP is based on ranked FC, calculated pairwise from comparison control and treatment experiments. FC ranks (divided by the number of chip genes) are multiplied
and averaged by a geometric mean to protect against outliers. A permutation-based procedure converts RP values to E-values that estimate the statistical significance of rank products. In comparison to current methods, the simple RP method outperformed the sophisticated SAM with a comparable FDR of 10% [47]. Moreover, the similarity of RP and FC results indicates a high biological relevance of RP values. The non-parametric nature of the approach makes RP particularly useful if only a low number of replicates are available.

1.3.4.2 Data mining

Data mining was initially defined as the ‘non trivial extraction of implicit, previously unknown, and potentially useful information from data’ [53]. Basically, the aim is to find patterns in large datasets by the use of various strategies, ranging from classical approaches such as cluster analysis [2] or principal component analysis (PCA) to machine learning approaches such as artificial neural networks (ANN), decision trees or support vector machines [3].

(i) Making sense of in-house data. Whereas the great advantage of multi-parallel platforms is the recording of thousands of different values at the same time, it is simply not feasible to browse through all these data. A very straightforward way to make use of such a dataset is to use a ‘guilt by association’ approach [54]. This consists of searching for genes that behave similarly with respect to a given gene already associated with a particular process, assuming that a functional relationship may exist. A further step to bring the data into a meaningful context is clustering, which consists of grouping genes and/or experiments that behave similarly. The idea is that the partitioning of the individual data points into groups will reveal new commonalities, or point out further potential group members. A number of tools suitable for clustering, commercial or free, stand-alone or Web based (TIGR Multiexperiment Viewer (TMEV), Genesis, TU Graz, R statistics environment) are available. Prior to clustering, a distance function has to be defined, typically an Euclidean distance or a correlation (for a discussion of different distance functions see, for example, D’Haeseleer et al. [55]). Most programs include hierarchical cluster analysis (HCA), self-organising maps (SOM) and k-means clustering. On the one hand, HCA builds cluster trees that are very similar to phylogenetic trees. A sensitive step here is to cut the tree at the right height to obtain groups. On the other hand, both k-means clustering and SOM require the pre-definition of the number of clusters to be made. This poses a challenge, since the number of expected clusters is not known, a priori. In fact, the multiple combinations of clustering methods and distance functions that can be chosen have strong consequences on the group composition. Unfortunately, there are no clear guidelines to deal with this problem [55], and depending on methods used, contradicting outputs might occur. However, a clearly defined question can help in evaluating clusters. For example, a procedure able to group well-identified genes properly will have the potential to associate further unknown genes to this group.

Another way to deal with multi-dimensional datasets is PCA. PCA aids in the explorative identification of key variables that best explain the differences in observations
(experiments). PCA reduces dimensionality and preserves as much variance as possible. The method is well suited for the analysis of large datasets. However, the researcher has to identify the biological background of the key variables [56]. A similar method is correspondence analysis, which at the same time projects experiments and genes, so that genes and experiments that resemble each other group together. It has been used by Fellenberg et al. [57] to show that some yeast cell cycle experiments were probably wrongly classified in terms of cell cycle progression.

(ii) **Mining large databases.** After having extracted as much information as possible from a given microarray experiment, it is possible to extend data mining one step further. For example, it can be interesting to check for additional information about candidate genes in previous experiments performed by other research groups. Fortunately, many plant microarrays are deposited in public databases (e.g. NASC [58], TAIR [14], BarleyBase [59], GEO [60], EBI [61] and the Stanford Microarray Database [62]). A more straightforward approach is the mining for new information pertaining to genes of interest. Questions that are usually asked include where a gene is expressed, if it is co-expressed with other ‘interesting’ genes and whether such an association is context dependent. Several plant databases now offer expression values, as well as correlations over a broad range of experiments, following the ‘guilt by association’ approach. Currently, there seem to be two different approaches. One is to include all available experiments for calculations of distance measures and is featured by Genevestigator [26] and Expression Angler (http://bbc.botany.utoronto.ca/ntools/cgi-bin/ntools_expression_angler.cgi). The other approach, featured by CSB.DB [24], focuses on manually selected sets of experiments with similar biological contexts. Using the latter approach, the biologist can test the context dependence of gene associations, thus learning more about the nature of the associations.

A majority of data mining approaches rely on a context-dependent classification of experiments, and thus on a standardised description of the experiments. Efforts have been undertaken to establish standards for microarray experiments (MIAME) and ontologies for microarray experiments are being developed within the Microarray Gene Expression Data Society [63]. A context-dependent re-classification of experiments might be performed to answer specific questions and will require precise information about the experiments. Having done so, a new experiment might be classified as belonging to previously encountered groups. For example, the investigation of an expression profile of a mutant might match profiles conducted under a specific stress. The classification methods that are used most often are ANN, classification trees and support vector machines. Basically, these supervised machine-learning approaches rely on pre-defined classes obtained with training sets. One major problem is that many training samples are needed to obtain a high recognition rate. Even though various microarray platforms may deliver conflicting results (for example, see [64] for a comparison of Arabidopsis microarrays), it has been shown that ANN can be trained on multi-platform data to efficiently discriminate expression data derived from different tissues [65]. A rather novel approach is to take the functional classifications of genes relevant for experiment classification, thus looking at classes of genes that are affected, rather than single genes. Using
this approach, Breitling et al. [66] could successfully put microarray experiments from three different organisms into a meaningful context.

Another approach is the extraction of cis-elements from genes that behave similarly. The assumption is made that if genes are transcribed together, they should also share some cis-elements. For example, Chen et al. [67] showed the enrichment of DRE and ABRE elements in cold responsive genes of Arabidopsis. To further increase the accuracy of these searches, it is often desirable to use available data as much as possible. Thus it is possible to run promoter searches with both co-expression information and sequence data from homologues of different species to obtain better predictions [68]. To bring all different information together, co-response networks can be built [69]. These can then be analysed for centrality and other network theoretical parameters. Genes having many connections to other genes (the so-called hubs) are believed to have key functions and might, therefore, constitute ideal targets for knock-out or overexpression experiments.

Finally, data mining should not be perceived as a ‘magic solution that will pick out the gold from the mud of huge datasets’. It is likely that genes that are always co-responding will be found. These include subunits of a protein complex, such as the ribosomal proteins. However, in the case of regulatory pathways, a co-response is probably very often conditional, and its identification will require extensively documented experiments.

1.3.4.3 Functional categorisation

The aim of gene ontologies is the organisation, description and visualisation of biological knowledge [70]. Thus functional gene categories (FGC) play a major role in modern genomics. Transcript profiling analysis is highly facilitated with the use of FGC, since affected categories can quickly be identified and biologically interpreted. Furthermore, FGC allow an inter- and intra-species transfer of knowledge when combined with sequence similarity analysis. Necessary gene information is gathered by a combination of manual and electronic approaches. Despite the development of sophisticated text-mining strategies, manual interference is still indispensable, involving the extraction of textual information from scientific publications and the verification of electronic approaches (Fluck et al., in preparation).

The most comprehensive and widespread ontology in use is GO (gene ontology) developed by the Gene Ontology Consortium, as a generic tool to classify biological genomes by three main categories, namely: (i) biological process (e.g. purine metabolism), (ii) molecular function (e.g. kinase activity) and (iii) cellular component (e.g. Golgi apparatus) [70]. Recently, the vocabulary of the Arabidopsis GO was extended to describe (iv) anatomy and (v) developmental stages [71]. GO has developed 17,593 terms that have been used to assign about 75% of the Arabidopsis genome to at least one category. These terms are organised in a complex hierarchical ‘child to parent’ relationship, where each ‘child’ may belong to multiple ‘parents’. In parallel, the MIPS database has developed the FunCat system, which covers approximately 60% of annotated Arabidopsis genes using a restricted set of 28 main categories [72]. Recently an additionally FGC system has been developed,
which is characterised by a high flexibility of category structure and low redundancy of functional gene assignments [73]. Thirty-four major FGC (BINs) and several hundred associated subBINs are used to group genes, either by broad functional and motif similarities (e.g. alcohol dehydrogenases or cytochrome P450s) or to assign individual genes to defined steps in biochemical pathways if sufficient biological evidence is available.

Obviously, the GO initiative represents the most comprehensive and accepted approach to organise and develop gene annotations. Therefore, a variety of bioinformatics tools have been developed to browse, query and edit GO terms, including AmiGO (http://www.godatabase.org/cgi-bin/amigo/go.cgi), COBrA (www.xspan.org) and DAG-Edit (http://www.geneontology.org/GO.tools.shtml). Furthermore, functional information can be used for bioinformatic-aided interpretation of transcriptomic data. GOToolBox, FuncAssociate, PathwayProcessor, PathMAPA, GiGA, MAPPFinder and ArrayXPath all use different statistical tests such as bootstrap analysis, Fisher Exact Test or different ranking methods to reveal significantly affected GO categories in transcriptomics datasets [74–79]. Equivalent tools are available for the FunCat and BIN system (Classification SuperViewer, http://bbc.botany.utoronto.ca and MapMan, http://gabi.rzpd.de/projects/MapMan/), which use Monte Carlo simulation or the non-parametric Wilcoxon Rank Sum Test for the identification of functional hotspots, respectively. The suitability of FGC for biological research strictly depends on assignment quality and category structure of the system itself, rather than on available bioinformatic support. Although the GO system benefits from comprehensiveness, its structure complicates an intuitive extraction of genes involved in a biological process of interest. The GO slim system, a simplified version of the original GO system that uses only 40 high-level GO terms [71], only slightly improves information access.

The FunCat system benefits from its simple and well-organised structure, but a detailed data analysis is severely hampered by obvious annotation mistakes, presumably introduced by electronic annotation procedures. Moreover, the high number of multiple gene entries in the FunCat and GO system negatively affects a statistical functional data analysis and data visualisation (see next section). The BIN system was designed to complement the GO system. It makes use of the wealth of biological knowledge stored in public databases (such as GO, TAIR, KEGG and AraCyc) that has been intensively re-organised and curated to serve biologist-friendly data visualisation and analysis [14, 73, 80, 81]. However, a functional-based transcriptomics analysis is the key for a deeper understanding of plant biology, especially when combined with sophisticated data mining strategies [24]. FGC analyses allow the combination of co-responding pathways or categories to new functional modules. Furthermore, this approach aids to functionally associate putative or unknown genes, when concerted expression patterns with known processes have been revealed.

1.3.5 Data visualisation

Visualisation tools translate efficiently abstract numeric values into accessible graphical information. In genomics, visual compression of information and reduction
of dimensionality address different purposes. For example, scatter plot analyses are used to ensure data quality, in particular to investigate the effects of replication, normalisation or experimental treatment on data correlation of tens of thousands of individual data points [82]. Furthermore, well-known statistical analysis methods such as cluster and PCA analysis have been rediscovered for genomics applications, after being combined with powerful visualisation tools (e.g. TMEV). However, the development of visual pathway analysis tools represents an even more revolutionary advance for genomics data interpretation. Pathway analysis tools convert expression data into false colours that are subsequently mapped onto images of biochemical pathways or biological processes. Data mapping depends on functional classification of each gene \textit{a priori}. This allows a spatial data arrangement onto maps, according to the assigned functional category. Thus pathway tools make use of biological knowledge to place transcriptomic data into their functional background. The visual integration of biological knowledge allows the user a detailed data interpretation, regardless of his/her area of expertise. With the use of visual pathway tools the major limitations of classic list approaches can be overcome. Typically, huge lists of differentially expressed genes are generated. To restrict the number of genes for manual inspection, data are filtered according to FC or P-values derived from statistical tests (e.g. SAM [48]). Thus, small expression changes, in particular, are excluded from further analysis and valuable information is lost. Even minor, but consistent changes in expression across pathways or pathway branches may indicate a concerted regulatory response [73].

During the last 3 years, a variety of pathway visualisation tools have been developed [73, 76–79, 83–86], of which MetNet, GiGA, Pathway Processor, PathMAPA and MAPMAN are applicable to Arabidopsis chip data. Although the concept of these pathway tools is very similar, the real potential of a pathway-aided analysis can only rarely be exploited. Suitable pathway analysis tools should enable: (i) a targeted analysis of expression changes across related pathways (e.g. photosynthesis, glycolysis or the citrate cycle), (ii) an untargeted discovery of functional modules (concerted response of unrelated pathways and processes) and (iii) functional association of unknown genes. The fulfilment of these claims depends primarily on the structure and quality of the ontology used and on the flexibility of the data display. Although a display of whole datasets quickly reveals a global trend in specific transcriptional responses, a detailed investigation at a single gene level is indispensable for the generation of biological hypothesis (e.g. the inspection of transcriptional responses of individual members of a gene family). This is only possible if the used ontology is of high quality.

As mentioned in Section 3.4.3, only MAPMAN makes use of a manually curated gene ontology that was especially developed for visual pathway analysis. Other tools use publicly available ontologies such as GO, KEGG and MIPS, which suffer from a non-intuitive structure, electronic annotation mistakes and redundant functional assignments [70, 87–89]. Untargeted discovery of functional modules and functional association of unknown genes depends on a flexible user-driven display, as only the abandonment of known pathway structures and a visual re-arrangement of the gene display can reveal new regulatory coherences. Therefore, static
pathway maps (e.g. KEGG pathway maps) are only of limited value. They provide the user a wealth of proven biological knowledge, but hamper a creative data interpretation. Furthermore, suitable visualisation tools are characterised by flexible data input formats. This allows the display of results from upstream data analyses (e.g. cluster or promoter motif analysis), sub-cellular localisation or the visual integration of heterogeneous profiling techniques (see examples in Section 4).

1.4 What can we learn from transcript profiles performed in a starchless mutant?

An example of the application of transcript profiles is work with the starchless pgm mutant of Arabidopsis that lacks plastidic phosphoglucomutase, an enzyme that is essential for starch synthesis in the leaf [90]. In plants, normally a fraction of the photosynthate is exported during the day as sucrose from source leaves to support respiration and growth in the rest of the plant, but during the night, the entire plant becomes a net consumer of fixed carbon. Some photosynthate is stored in leaves as starch in the light and is re-mobilised at night to support leaf respiration, as well as the continued synthesis and export of sucrose. In the pgm mutant, sugars accumulate during the day, but are rapidly depleted in the first part of the night. A recurring phase of sugar starvation during the second part of the night leads to a severe growth impairment [91]. In the present experiment, transcript profiles were performed to evaluate the impact of these alterations in sugar metabolism on the expression of genes. Plants of both pgm and wild type (WT) genotypes were harvested every 4 h throughout a day and night cycle and three biological replicates were prepared in the case of the WT, but only one in the case of pgm. One replicate was made out of 15 pooled plants and total RNA was extracted with a TriZol protocol. After hybridisation on ATH1 microarrays, a quality check was carried out using the ‘affy’-package of the R software environment. In general, all probes were found to contribute significantly to the expression signal. Subsequently, all wild-type and pgm data were normalised separately with the RMA method. The replication, checked by using scatter plots, pair-wise Pearson correlations and PCA, was found to be very good in the WT (not shown).

Average expression was calculated as the mean of six data points throughout the day and night cycle, thus mimicking a pooling of samples. As shown in Plate 1, the mutation provokes a general decrease in the expression of the genes involved in the light reactions of photosynthesis and in the synthesis of tetrapyrroles. Genes encoding nitrate reductase, and to a lesser extent other enzymes involved in the synthesis of amino acids, were also found to be down-regulated. In contrast, a quite large proportion of enzymes involved in the degradation of amino acids were found to be up-regulated. A naive interpretation of such results would be that photosynthesis and nitrogen assimilation are decreased in the mutant, while the recycling of amino acids is increased. Interestingly, one gene encoding asparagine synthetase is strongly induced in pgm, which also exhibits high asparagine levels, a typical response to carbon starvation [92, 93].
In fact, enzymes involved in the fixation of nitrogen actually had lower activities in the mutant, and glutamate dehydrogenase was strongly increased [22]. However, photosynthesis, estimated as the net carbon fixation, was found to be only slightly lower in the mutant [94].

A general decrease in the expression of genes related to photosynthesis nevertheless suggests a co-regulatory event associated with the altered carbon status in the mutant and thus constitutes a pattern. CSB.DB was then queried with all members of this BIN in the ‘multigene query’ mode, to check whether these genes co-respond in general. As shown in Figure 1.1, these genes were found to be strongly co-regulated over a set of 51 microarrays obtained from various treatments. This suggests that these genes share a common regulatory pathway, for which various signals, such as alterations in the carbon status, are integrated upstream. Indeed, this rather simple example confirms that co-responding genes can be functionally related.

To compare amplitudes of diurnal changes in gene expression in the WT and in \(pgm\), the log 2 ratios of amplitude calculated as the difference between maximum and minimum values, in the \(pgm\) mutant and in the wild type were established, and visualised with the MapMan program (Plate 2). As expected, the mutation provokes a global increase in the amplitude of changes in gene expression in metabolism (spots in blue). Interestingly, a few genes show markedly decreased amplitudes (spots in red) in \(pgm\), namely the two genes encoding nitrate reductase, a cab gene, two genes involved in amino acid metabolism, and genes involved in starch
degradation. Less marked was the apparent decrease in amplitude in many photosynthesis-associated genes.

An important question arising from these results was to check whether larger variations of steady state transcript levels were reflected by changes in the corresponding enzymes. For that purpose, 23 enzymes from the primary metabolism were determined throughout a diurnal cycle in both genotypes [19] and log 2 of the amplitude ratios was calculated. Plate 3 indicates that in pgm, the expression of most of the genes encoding the enzymes we measured had markedly larger amplitudes, but in most cases, this had no consequence on the corresponding activities. Furthermore, there is a trend of increased diurnal changes of the enzymes involved in sucrose and hexoses-P metabolism, particularly fructokinase and cytosolic fructose-1,6-bisphosphatase, but without being necessarily related to alterations in the expression of the corresponding genes (e.g. hexokinases). This example suggests that transcriptomics alone cannot capture the entire physiology of a complex organism. Consequently, it will be necessary to gather and integrate as much data as possible from other levels, i.e. proteins, metabolites and fluxes, to uncover all functions of the remaining ‘unknown’ genes. The controls on primary metabolism exerted at the post-translational level and by key metabolites are discussed in more detail in later chapters.

1.5 Conclusion/perspectives

Plant biology was literally revolutionised by the development of high-throughput expression profiling techniques, which have prefaced the post-genomic era. Because these powerful methods generate vast amounts of data, new challenges have appeared, triggering an intensive development of statistical approaches and programming solutions. Fortunately, these approaches are not organism specific, and thus plant scientists benefit from the progress made in other disciplines, such as medicine or microbiology. The necessity to efficiently manage large datasets spurred the development of numerous databases. Currently, it can be predicted that data will converge to a few centralised public databases, since some journals encourage the deposition of ‘omics data in the public domain’. Many solutions are proposed to exploit the data obtained from microarray experiments. In most cases, algorithms aim to classify analytes and/or experiments. However, the availability of tens of classification tools, together with their various options, renders the choice of the ideal strategy difficult. Indeed, there is no gold standard, but we can hope that more user-friendly and self-explanatory programs will be developed. Moreover, biological education will hopefully include more advanced statistics in the future.

Despite the remarkable achievements of transcriptomics, we are still far from a systems understanding. We have, in fact, just begun the exploration of the plant system as a whole since post-transcriptional and post-translational regulation events are not taken into account in transcriptomic studies, despite being major players in the control of metabolism. Therefore, functional genomics will largely benefit from complementary approaches such as metabolite, protein or enzyme profiling. In
contrast to transcript profiling, these techniques need still intensive manual input and tremendous expert knowledge. While the isolation of nucleic acids benefits from the similar chemical properties, metabolites, protein and enzymes differ highly in structure, physicochemical properties and turnover. Thus, only small fractions of the plant’s metabolome, proteome and enzymome can be assessed in parallel [19, 94, 95], but already provides useful information when integrated with transcriptomics data [19, 96, 97].

In view of the rapid progress being made in the analytical aspects of metabolomics, proteomics and enzyme profiling, more sophisticated approaches for data integration and interpretation will be required. In particular, the planning of experiments and data management will be aided by statistics and information management systems. Moreover, we predict that public data mining will be one of the most important biological tools of the future, since profiling techniques will be still expensive and not affordable for every scientist. For example, data mining will be a premium source for hypothesis-driven research. Therefore, new algorithms and interfaces have to be developed that allow, for example, pattern matching queries across multiple databases and across heterogeneous datasets to reveal multi-level regulatory networks. A prerequisite is that databases use a standardised nomenclature. Several attempts have been made to impose a controlled vocabulary for the annotation of genes and the description of experiments [13, 71]. However, current genomics databases still suffer from low transparency, heterogeneous data processing strategies and different naming of public datasets [14, 58].

The term ‘phenomics’ has been introduced more recently and defines the high-throughput analysis of phenotypes [98]. It aims to understand the complex phenotypic consequences of genetic mutations or variations at the level of the organism [99], and probably poses the biggest challenge of bioinformatics to date. Phenomics extends our current understanding of data integration, since apart from the unification of all available genomics and post-genomics data, the concatenation of numeric and of textual information is necessary. Textual information originates from controlled vocabularies of phenotype descriptions of ecotypes and mutants and furthermore from biological knowledge that has been gathered from publications using text-mining approaches [71, 100]. Once these phenomics resources have been set up, it is possible to link genomic information with phenotypes across different species and to proceed once again in the understanding of whole plant systems.

Acknowledgements

We thank Mark Stitt for his kind and generous support, Alisdair Fernie and Ian Graham for constructive discussions of the manuscript and Jan Hanneman for his comments on information management systems. The authors are funded by the German Academic Exchange Service (DAAD), the Max Planck Society and the German Ministry for Research and Technology, in the framework of the German plant genomics program Genomanalyse im Biologischen System Pflanze (0312277A and 0313110).
References

44. M. O’Connell (2003) Differential expression, class discovery and class prediction using S-PLUS and S+ ArrayAnalyser. *Special Interest Group on Knowledge Discovery and Data Mining Explorations* 5, 38–47.

The use of proteomics in the study of metabolic control

Lee J. Sweetlove

2.1 Introduction

Proteomics has emerged as one of the three central planks of the postgenomic landscape (the other two being transcriptomics and metabolomics) and there has been an explosion of interest and activity in the proteomic field of research. Proteomics can be defined as the systematic study of the complete protein content of an organism. Originally, the word was coined as a response to the emergent field of transcriptomics and the proteome tended to be thought of in terms of abundance of the protein products expressed by the genome [1]. That is, there was a direct linkage being made between transcription and protein abundance. As the field has developed, however, the original meaning of the term proteome has been extended to include post-transcriptional elements of the proteome: protein isoforms generated by alternative splicing and post-translational modifications, regulatory post-translational changes such as phosphorylation and the organization of proteins into complexes [2]. In some sense, any study of the properties or abundance of a protein constitutes proteomics and the word proteomics is often associated with research dealing with the behavior of a single protein or a small group of proteins. However, to most people, proteomic research is that which retains an element of systematic and global coverage of protein behavior in a cell or organism. Notwithstanding the fact that technical considerations generally limit analysis to a small proportion of the total proteome, it is the intent of systematic coverage that is at the heart of proteomics. In this chapter, in which the use of proteomics to study the control of metabolic pathways and networks will be considered, proteomics will be viewed in this systematic light and a distinction will be made between proteomics and traditional studies of the properties and behavior of single proteins.

Unlike transcriptomics, which can be viewed as a mature technology, proteomics is still very much a developing method. While transcriptomics exploits sequence-specific hybridization to capture specific transcripts and gives genuinely global coverage, the lack of an equivalent capture methodology for proteins has limited the extent to which the proteome can be interrogated. Emerging approaches such as aptamers or antibodies may eventually lead to protein chips that could approach the complete proteome [3], but this approach is still in the very early stages of development. Most current proteomic research instead relies on a combination of protein fractionation depending on physicochemical properties and protein identification by mass spectrometry [4]. These methods generally give access to hundreds of
proteins – a small proportion of the estimated total protein set. Despite these technical limitations, and the maturity of the transcriptomic approach, there is still much to be gained from the proteomic method in terms of investigating control of metabolic pathways and networks. While some elements of pathway flux, particularly developmentally programmed changes, are controlled at the transcriptional level [5, 6], it is thought that the majority of metabolic control mechanisms operate at the posttranscriptional level [7]. Protein abundance is a consequence not just of transcription of the appropriate gene, but also of the rate of translation of the resultant mRNA transcript [8] as well as the rate of protein turnover [9]. In addition, control of protein abundance is just one factor that controls enzyme activity – a whole host of posttranslational regulatory inputs come into play to allow rapid modulation of enzyme activity in response to altered biochemical and physiological demands [10]. Proteomics is the only approach that will capture all these different levels of metabolic control and therefore, despite its current limitations, has the most potential to uncover novel aspects of mechanisms of metabolic network control.

In this chapter, the different ways in which proteomics has been used to investigate plant metabolism will be discussed. The chapter will begin with a very brief overview of the basic methodologies of proteomics and will then review a series of different proteomic approaches that have relevance to control of metabolism. The first of these is quantitative proteomics, which seeks to determine change in protein abundance in relation to different physiological or genetic perturbations. The second approach concerns the issue of protein localization, and the impact of the growing catalog of different organellar proteomes will be reviewed. Third, the issue of posttranslational modifications (PTMs) of enzymes will be dealt with and the considerable potential that proteomics has to systematically identify post-translational modifications such as phosphorylation and thiol redox changes will be reviewed. Finally, the importance of protein–protein interactions and the ways in which proteomics can be used to probe protein complexes will be discussed. The chapter will conclude with a look at the future in terms of the emerging technologies that will drive the expansion of proteomics into a genuinely global approach. Throughout the chapter, the different proteomic approaches to the investigation of metabolic control will be illustrated using examples from the literature. Wherever possible, to limit the number of metabolic pathways being considered and to give a common theme throughout the chapter, the examples will be restricted to the metabolic pathways of central carbon metabolism and respiration (Figure 2.1). While this chapter will concentrate specifically on the application of proteomics to the control of primary plant metabolism, readers interested in more general aspects of plant proteomics should consult one of the many excellent reviews written on the subject [11–17].

2.2 Proteomic methodologies

The emergence of proteomics has been driven by the development of a number of specific technologies. In this section, an overview of the main experimental principles of the proteomic approach will be given. This overview will be necessarily brief as
the main focus of this chapter is the application of proteomics, not the development of the technology behind it. If a more detailed description of technical aspects of proteomics is required, the reader is urged to consult one of the many reviews of this topic. The following reviews on generic aspects to proteomics methodologies are particularly well written and authoritative [4, 18–21]. In addition, the practical basis of proteomics in plants has recently been expertly reviewed [22].

2.2.1 Extraction of proteins from plant tissue

Effective and consistent extraction of proteins from plant tissue is one of the most critical and demanding steps of any proteomic experiment and yet protein extraction
is frequently paid insufficient attention in the race to develop evermore sophisticated automated protein identification platforms and state-of-the-art mass spectrometers. The aim of protein extraction is to reproducibly extract, and maintain in a soluble state, the full protein complement of the tissue under consideration. Given the wide range of physicochemical properties of different proteins, this is inevitably an ideal that is rarely, if ever, achieved. Instead, protocols have been developed with a particular downstream application in mind [22]. Thus, there are specific methods designed to avoid disruption of protein complexes when fractionation of native proteins by blue-native gel electrophoresis (BN-PAGE) is desired [23]. Similarly, specific subsets of proteins can be preferentially extracted i.e. membrane proteins [24–26] and cell wall-bound proteins [27]. Besides paying attention to the physicochemical properties of the protein set to be extracted, one must also attempt to preserve the post-translational state of the protein. Thus, rapid acid extractions are required to maintain redox status of oxidizable amino acid side groups such as thiols [28]; the use of phosphatase inhibitors is necessary to preserve phosphorylation status and protease inhibitors should be used to prevent unwanted proteolysis. Whichever extraction procedure is used, it is often necessary to further clean up the sample to remove contaminants such as ribonucleotides, lipids, polysaccharides and secondary metabolites such as phenolics that interfere with subsequent protein fractionation steps. Indeed, plants can be considered the most challenging of all organisms in this respect, since they frequently contain high levels of these contaminating molecules [22]. Generally, protein precipitation is used as a convenient method both to remove such contaminants and also to concentrate the sample. The commonly used acetone/trichloroacetic acid method is extremely effective with tissues such as young leaves but can result in coextraction of polymeric compounds, particularly in more mature tissues where the content of cell wall polysaccharide and polyphenols is higher [29]. A more generically useful technique involves phase extraction in phenol followed by protein precipitation with methanol and ammonium acetate [30]. This method gives the highest quality protein extracts for subsequent gel electrophoresis and has proved capable of delivering high quality protein extracts from tissues with high polyphenolic or polysaccharide content [31, 32].

2.2.2 Separation, display and quantification of proteins

Once proteins have been extracted, the next challenge is to resolve and quantify as many of the different proteins within the extract as possible. By far and away the most accessible of the available technologies to do this is two-dimensional gel electrophoresis (2DGE). The boom in 2DGE has been driven by the commercialization of isoelectric gel electrophoresis strips with an immobilized pH gradient that allow highly reproducible separation of proteins according to charge. A large variety of such strips are available covering different pH ranges. Particularly important is the development of overlapping narrow-pH-range strips that allow for much greater resolution across the pH range [21]. Isoelectric focusing is generally used as the first dimension separation followed by sodium dodecyl sulfate gel
electrophoresis (SDS-PAGE) as the second. Alternatively, BN-PAGE can be used for the first dimension [33]. The three methods have even been combined to provide a threedimensional separation [34]. An interesting alternative to multidimensional electrophoresis approaches is to use sucrose density gradient centrifugation to fractionate native protein complexes and then further resolve these protein fractions using standard SDS-PAGE [35].

Upon completion of the electrophoretic steps, the proteins need to be visualized. Ideally, the protein stain used should provide linear quantitation over several orders of magnitude and avoid modification of proteins in such a way that interferes with subsequent identification by mass spectrometry. Thus, it is generally preferable to avoid methods such as silver staining which oxidatively modify proteins and have a limited linear response range [21]. The most robust and accessible stain is colloidal coomassie blue [36], although more sensitive fluorescent stains are now available. A recent comparison of available protein stains revealed that the fluorescent dyes Sypro Ruby (Invitrogen Ltd) and Deep Purple (Amersham Biosciences Ltd) were approximately three times more sensitive than colloidal coomassie blue but were prone to saturation with the most abundant protein spots [37]. It is also worth bearing in mind that the use of fluorescent dyes necessitates picking spots ‘blind’ when it comes to extracting proteins from the gel for identification, and therefore requires an expensive robotic system linked to the fluorescent imaging system. Furthermore, the increased sensitivity of these stains often results in the detection of proteins of insufficient abundance to enable routine identification using mass spectrometry [15].

2.2.3 Identification of proteins by mass spectrometry

If the development of reproducible 2DGE approaches is considered to be one driver of the proteomic boom, the other has been the development of increasingly accurate and affordable mass spectrometers that can exploit genome sequence information to identify proteins. The basic approach is illustrated in Figure 2.2. Essentially, protein identification is achieved by digestion of the protein with a site-specific protease such as trypsin to generate a diagnostic set of peptides (known as a peptide mass fingerprint). The masses of the peptides are measured accurately with a mass spectrometer and matched to databases of predicted peptide mass fingerprints generated from translations of genomic sequences [18]. Generally, this type of analysis is done using relatively inexpensive time-of-flight or ion-trap mass spectrometers [19] with peptide ionization and vaporization being achieved with a laser (this method is generally referred to by the acronym, MALDI: matrix-assisted laser desorption ionization). This method is robust, tolerant of contaminants and readily automated. However, the results are sometimes ambiguous and the approach only works well with mixtures of proteins of extremely low complexity. Increasingly a more sophisticated approach is being adopted that uses two mass spectrometers in tandem (MS/MS) [4]. In this approach, individual peptides can be isolated from the spectrum and further fragmented by energetic collision with an inert gas to give a series of fragment ions.
Utilizing the same principle as peptide mass fingerprinting, the fragment ion mass pattern can be mapped back onto the genome sequence databases for protein identification. Because of the ability to isolate individual peptides and analyze them one at a time, relatively complex mixtures of peptides can be handled, allowing the identification of hundreds of proteins in a complex mixture. In addition, the method has a greater success rate at identifying proteins from nonsequenced species because some domains of proteins are more conserved from species to species. Peptides from these conserved domains often yield statistically significant identifications. Generally, when using tandem MS/MS, peptide ionization is by electrospray which is compatible with in-line liquid chromatography to provide further fractionation of the peptide sample prior to mass spectrometry. In addition, information about post-translational modifications of specific amino acid residues can also be divined [38]. While the tandem MS/MS method is undoubtedly more powerful, the hardware is significantly costlier than single mass spectrometer setups and requires specialized knowledge to operate. Nevertheless, it is clear that the majority of proteomic experiments will end up being performed using tandem MS/MS machines.
2.2.4 Gel-free proteomic approaches

A reliance on gel electrophoresis to display and quantify proteins represents a major bottleneck in the proteomic workflow since sophisticated image-analysis software is required and extraction of the required information is notoriously difficult to automate [39]. Furthermore, 2DGE that uses isoelectric focusing as a first dimension underrepresents hydrophobic proteins [24]. Therefore, much effort has been expended to develop alternative, more high-throughput and unbiased approaches to this problem. The ability of tandem mass spectrometers to analyze complex mixtures of peptides means that it is possible to analyze proteins directly in the mass spectrometer without prior separation by gel electrophoresis [4]. For very complex protein mixtures (i.e. a total cellular extract) it is still necessary to perform some prefractionation of the sample to avoid loss of resolution due to the presence of peptides of similar mass. Liquid chromatographic separations are well suited to this task and can either take the form of a single fractionation (generally using a C18 reverse-phase microbore LC column) [40] or a multidimensional chromatographic approach (sometimes referred to by the acronym MuDPIT – multidimensional protein identification technology) [41]. In fact, the latter technique is most commonly two dimensional, consisting of a strong anion exchange resin followed by C18 reverse-phase resin [42, 43]. This so-called shotgun approach to proteomics represents the current state-of-the-art in terms of throughput and can rapidly generate large catalogs of protein identity. However, quantitation within this approach is inherently complicated by variability in the efficiency of ionization of peptides in different samples. That is, the amount of a peptide peak observed in the mass spectrum can be as much influenced by ionization efficiency as by the actual amount of the peptide in the sample. A solution to this problem has emerged that is based on stable isotope labeling, the principle being that two peptides of identical chemical structure but different isotope composition are expected, according to stable isotope dilution theory, to generate the same response in a mass spectrometer [44]. Thus, an isotopically labeled reference sample can be combined with the test sample prior to mass spectrometry and this will result in a pair of peaks for each peptide that represents mass isotopomers. Since both peptides were ionized together, their relative abundances can be validly compared. There are a number of different ways of introducing isotope tags into protein populations. One method is to incubate cell cultures with isotopically labeled nutrients (i.e. 15N amino acids) and compare to a control sample incubated with the equivalent light isotope (i.e. 14N amino acids). This approach has been dubbed ‘SILAC’ for stable isotope labeling with amino acids in cell culture [45]. Alternatively, isotope labels can be attached chemically via isotope-coded affinity tags (ICATs) or similar agents [46, 47]. The tags contain a reactive group specific for particular amino acid functional groups (i.e. sulphydryls, amino groups, phosphate-ester groups and N-linked carbohydrates [4]), a linker with either light or heavy isotopes as well as an affinity tag (such as biotin) to allow purification of tagged peptides. The latter step can be useful if one is particularly interested in a particular class of proteins (i.e. cysteine-containing proteins as putative thioredoxin
targets). In addition, it reduces the complexity of the mixture, facilitating subsequent mass spectrometry.

2.3 Cataloging protein localization

Over the past few years researchers in plant sciences have been applying the approaches of proteomics to a range of plant species (although the model plant species Arabidopsis thaliana and rice predominate due to the availability of complete genome sequence information). To date, the proteomic effort has been dominated by efforts to generate lists of proteins that are present in particular tissues, cell types or organelles. This concentration on the cataloging of proteins has in part been driven by the fact that this type of qualitative proteomics is most readily tackled by current technologies. However, there are useful biological reasons for establishing a catalog of protein localization [14]. In a metabolic context, genes that encode enzymes usually exist as small families with each member encoding different isoforms [48]. One view of the existence of such gene families is that it is representative of functional redundancy within the plant genome [49]. However, it is perhaps more likely that each isozyme fulfils specific roles in specific locations within the plant or within the cell [5]. Therefore, establishing the localization of members of enzyme families in a systematic fashion provides an essential molecular foundation upon which an understanding of metabolic control can be built. It is almost impossible to make an accurate assessment of how metabolic networks are constructed and controlled if we do not know which isoforms are present where.

2.3.1 Localizing proteins to different tissues

Studying the properties of enzymes localized in different tissues and subcellular compartments of plants is one of the mainstays of classical metabolic biochemistry. For example, an investigation into the regulatory properties of sucrose-phosphate synthase in different rice tissues allowed the identification of an isozyme specific to nonphotosynthetic tissues [50]. The proteomic approach now offers researchers the opportunity to undertake a much more systematic examination of which isoforms of enzymes accumulate in different plant tissues. This knowledge represents the first level of the information hierarchy required to establish the regulatory properties of the metabolic network present in a given location. This information could then be combined with studies of the properties of each gene product. Given that overexpression of recombinant enzymes in heterologous systems such as bacteria is now routine and one-step purification of overexpressed enzymes can be achieved through the use of affinity tags, such information could potentially be generated in a relatively systematic and high-throughput manner.

To give a flavor of the type of information that can be gleaned from tissue-specific proteomic studies, the following section will consist of several examples from the literature. One of the earliest attempts to profile the proteome of different
tissues was a study of green and etiolated shoots from rice [51]. Proteins were extracted from the two different tissues and fractionated using 2DGE. A small number of proteins were then identified using Edman degradation sequencing. This technique for protein identification is less efficient than the mass-spectrometry-based approaches that have superseded it; Edman degradation requires comparatively large amounts of protein and many proteins become modified during the electrophoresis steps such that they are ‘blocked’ from sequencing. Consequently, the dataset generated by Komatsu et al. [51] is rather limited and as such care has to be exercised in drawing conclusions from the list of proteins presented. Nevertheless, in the context of primary metabolism, two interesting observations were made. First, a plastidic aldolase was discovered in both green and etiolated tissues. Second, an isozyme of the glycolytic enzyme, phosphofructokinase, was also found to be present in both tissues. Other rice proteomic studies have focused on anther tissues to begin to establish which proteins are important in pollen production [52, 53]. Using 2DGE and either peptide mass fingerprinting or tandem MS/MS, Imin et al. [53] identified 53 proteins present in anther tissues at the young microspore stage. Among these proteins were several enzymes associated with respiratory pathways including triose-phosphate isomerase, phosphoglyceromutase, enolase, malate dehydrogenase (cytosolic), pyruvate dehydrogenase, aconitase, mitochondrial complex I subunits and mitochondrial ATP synthase subunits. The identification of these enzymes of glycolysis and respiration as particularly abundant in the anther tissues confirms the importance of energy supply for pollen formation [54]. Given this fact, it is perhaps unsurprising that mitochondrial genome mutations often lead to cytoplasmic male sterility [55]. However, when the very early stages of male gametophyte development were assessed, a different picture emerged. Here, respiratory proteins did not dominate and instead enzymes associated with sucrose breakdown and starch synthesis were found [52], corresponding to a known phase of starch accumulation in the developing pollen grain.

Besides analyzing proteome variations in tissues in different developmental contexts, attempts have also been made to look at specialized tissues such as phloem. Phloem is made up of sieve element cells and companion cells. The sieve element, although a living conduit, lacks a nucleus and many of the usual organelles and is supported metabolically by companion cells. Nevertheless, sieve element sap has been found to contain a considerable protein complement which probably originates in the companion cells and is transferred to the sieve element via plasmodesmatal connections [56]. Two recent studies have examined the nature of the proteome of extracted sieve element sap. The sieve element sap of cucumber and pumpkin phloem was found to contain a number of antioxidant enzymes [57]. A more comprehensive study of the sieve element proteome in Ricinus communis revealed not only antioxidant proteins, but also a number of enzymes, including phosphoglycerate mutase, phosphoglycerate kinase, enolase, malate dehydrogenase and UMP kinase [58]. The presence of these glycolytic enzymes raises the possibility that the sieve element is metabolically active in its own right. One possibility is that limited metabolism of sucrose occurs, possibly as a signalling or metabolite-sensing mechanism.
By far and away the most comprehensive study of a tissue-specific proteome of a single plant species was conducted in rice [59]. Proteins were extracted from leaves, roots and seeds and analyzed either by 2DGE followed by tandem MS/MS or by using the MuDPIT method. Over 2500 unique proteins were identified: 1002 leaf-specific proteins, 1350 root-specific proteins and 877 seed-specific proteins. In accordance with the distribution of functional classes of proteins encoded by the rice genome, metabolic proteins represented the second most abundant class of proteins in the dataset. Within this metabolic dataset, the main metabolic pathways of primary metabolism were fully represented (glycolysis/gluconeogenesis, citric acid cycle, oxidative pentose-phosphate pathway and most pathways of amino acid biosynthesis) and were found to occur within each of the three tissues analyzed. However, there were distinct tissue-specific patterns of the distribution of the isoforms of these enzymes. Some plastidial and cytosolic isoformes of glycolysis were found to be present in all tissues (aldolase, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and phosphoglyceromutase) but the majority of metabolic enzymes were found to be tissue-specific in their localization. A case in point is ADP-glucose pyrophosphorylase (AGPase), a key enzyme of starch biosynthesis. As will be discussed in Chapter 10, the AGPase protein is a heterotetramer consisting of two small catalytic subunits and two large regulatory units [60]. The two isoforms of the small subunit were detected in both leaf and seed. However, two isoforms of the large subunit were detected exclusively in seed while the third was leaf specific. Given that the large subunit determines the allosteric properties of AGPase, this information allows one to make an assessment of the differential control of storage starch synthesis in a seed and transitory starch synthesis in a leaf.

While the various studies mentioned thus far represent pioneering efforts to establish the foundations of a plant proteome, it is clear that the coverage of the proteome generated by such studies is patchy and a long way from complete. Rice dominates in terms of species for which we have tissue-specific proteomic information and surprisingly there is very little information of this type for the other main model plant species, Arabidopsis, where most of the studies have focused on subcellular proteomes. Even in the relatively extensive rice dataset, only a few tissue types are covered and many have not been investigated. Furthermore, although tissue-specific proteomes are a useful starting point, very few tissues are homogeneous in terms of cell type. Ideally, further dissection of tissues into specific cell types is required. Such an approach has been initiated for barley seeds in which the proteomes from embryo, aleurone layer and endosperm have been investigated [61]. Clearly, there is much work to be done in this area of tissue-specific proteomics.

2.3.2 Establishing subcellular protein localization: methodologies

The vast majority of the research of plant proteomes to date has focused on the issue of establishing lists of proteins resident in specific organelles. So far, proteomes have been published with varying degrees of comprehensiveness for the chloroplast, amyloplast, mitochondrion, peroxisome, nucleus and vacuole as well
as other subcellular locations such as the apoplast/cell wall. These subcellular proteomes are drawn exclusively from either Arabidopsis or rice. Many of the groups carrying out these investigations have deposited their protein sets in publicly available, searchable databases (Table 2.1).

<table>
<thead>
<tr>
<th>Database</th>
<th>Website URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastid proteome database</td>
<td>http://ppdb.tc.cornell.edu</td>
</tr>
<tr>
<td>Arabidopsis mitochondrial proteome project</td>
<td>http://www.gartenbau.uni-hannover.de/genetik/AMPP</td>
</tr>
<tr>
<td>Mitop2</td>
<td>http://ihg.gsf.de/mitop2/start.jsp</td>
</tr>
<tr>
<td>AraPerox (database of Arabidopsis peroxisomal proteins)</td>
<td>http://www.araperox.uni-goettingen.de/</td>
</tr>
<tr>
<td>Aramemnon database of membrane proteins</td>
<td>http://aramemnon.botanik.uni-koeln.de/</td>
</tr>
<tr>
<td>Protein GFP fusions</td>
<td>http://deepgreen.stanford.edu</td>
</tr>
<tr>
<td></td>
<td>http://bioinf.scri.scri.ac.uk/cgi-bin/ProtLocDB/home</td>
</tr>
<tr>
<td>dbSubLoc</td>
<td>http://www.bioinfo.tsinghua.edu.cn/dbsubloc.html</td>
</tr>
<tr>
<td>Rice protein database</td>
<td>http://gene64.dna.affrc.go.jp/RPD</td>
</tr>
</tbody>
</table>

Note added in proof: Much of the information in these databases has been collated into a single database of Arabidopsis subcellular protein localization (www.suba.bcs.uwa.edu.au/)
density gradient centrifugation. For organellar proteomics, it is usually necessary to modify and refine the method to ensure minimal contamination from other subcellular compartments [68]. However, even with the utmost care, some level of contamination is inevitable and given the increasing sensitivity of protein stains and mass spectrometers, these contaminants are more likely to be picked up. In future, it may be necessary to exploit other physicochemical properties of organelles as well as size/density to form the basis of purification. Promising possibilities include free-flow electrophoresis, which fractionates on the basis of charge [69] and immuno-affinity methods [70]. As the amount of final protein material required for identification becomes ever less with increasing sensitivity of protein identification technologies, the emphasis needs to shift away from quantity and toward quality [14].

Some would argue that the quest for an entirely pure organelle fraction is fruitless and whatever combination of purification techniques are used, some low level of contamination is unavoidable [71]. An alternative approach is to exploit quantitative information within an imperfectly pure organelle preparation. One method uses the distribution of known marker proteins throughout a density gradient [20, 71]. Cells are extracted and organelles are fractionated using a sucrose density gradient. Following centrifugation, the gradient is divided into a number of fractions and the proteins in each fraction are displayed and quantified using 2DGE. From this information, the abundance of known organelle marker enzymes across the density gradient can be plotted to give a profile of organelle distribution. Other proteins can be added to the organelle set if their abundance profile is statistically the same as the marker protein. A related approach uses ICATs to pinpoint contaminating proteins [72, 73]. The technique relies on a quantitative comparison of two organelle-enriched fractions, each of which contains cross-contaminants from the other organelle. Thus, if a quantitative comparison is made between an endoplasmic reticulum (ER)-enriched fraction contaminated with Golgi and a Golgi-enriched fraction contaminated with ER, then the genuine ER proteins will be more abundant in the former and genuine Golgi proteins will be more abundant in the latter.

2.3.3 Mitochondrial and chloroplast proteomes

Such careful quantitative approaches are relatively recent developments and require more complex experimental production lines. For this reason, nearly all the reported organellar proteome studies rely on a simple organelle purification. Moreover, the vast majority of the organelle studies to date concentrate on just two organelles – the chloroplast and the mitochondrion. At least part of the reason for this is the relative ease with which these two organelles can be isolated to a high degree of purity. However, perhaps the main motivating factor for the interest in these organelles is their central roles in carbon assimilation, energy metabolism, biosynthesis, redox homeostasis and programmed cell death. Put simply, chloroplasts and mitochondria are pivotal to the most fundamental biochemical reactions upon which plants depend. Increasingly, the breadth of processes that involve mitochondria and chloroplasts is being recognized and there is a growing interest in
establishing a complete listing of the proteomes of these two organelles so that the full breadth of their physiological functions can be understood.

The very reasons that have made mitochondria and chloroplasts an attractive target for proteomics researchers had previously driven research into the function of these organelles using more classical approaches over the last few decades. In fact, they are the most intensively studied of all organelles and metabolism has historically been the main focus of attention. For this reason, despite extensive proteomic studies of mitochondria [74] and chloroplasts [75], there have been relatively few surprises relating to their metabolic proteomes. However, for both organelles, some important refinements of our appreciation of their metabolic capacity have emerged as a consequence of the proteomic investigations.

The main function of mitochondria is the production of ATP and biosynthetic precursors, and it is therefore to be expected that the enzymes associated with the citric acid cycle and the respiratory chain dominate the mitochondrial proteome. In Arabidopsis, a total of 30 proteins from the citric acid cycle and 78 from the respiratory chain have been identified [74]. The majority of these proteins are already well studied, but the proteomic investigations do offer some clarification. For example, the exact distribution of the products of the four aconitase genes in Arabidopsis was not clear. Aconitase occurs both in the cytosol and mitochondrial matrix. In yeast, a single gene encodes aconitase and an inefficient mitochondrial targeting method is believed to result in dual localization [76]. It was assumed that a similar situation might occur in plants. Proteomic studies have demonstrated that products of three of the four Arabidopsis aconitase genes reside in the mitochondrion (and moreover show evidence of post-translational modifications to produce more than three isoforms). In addition, blue-native gel electrophoresis has revealed that NAD-malic enzyme is present as a high molecular weight complex in rice mitochondria [77]. The complex corresponds to an oligomerization of the malic enzyme holoenzyme that has been observed in vitro and is thought to have regulatory consequences [78]. NAD-malic enzyme is a ubiquitous plant enzyme that represents an alternative metabolic route to pyruvate kinase for pyruvate formation. The presence of a high molecular weight malic enzyme complex may suggest that the enzyme is predominantly in its most active form in mitochondria from rice seedlings.

Clarification of the composition of the large protein complexes of the mitochondrial respiratory chain has also been possible, largely as a result of the use of blue-native gel electrophoresis to separate native proteins according to size [34, 77, 79–81]. In particular, complex I, which in eukaryotes is a huge complex of some 30–40 component proteins, has been studied in more detail [80]. Blue-native proteomics revealed 30 different complex I proteins in Arabidopsis and 24 in rice. A number of these proteins are highly conserved and are present in other eukaryotes. However, the study revealed a number of plant-specific proteins of complex I, including a series of ferricychelin-binding proteins as well as a number of small proteins of unknown function. Careful optimization of the extraction conditions used prior to blue-native gel electrophoresis has also revealed that there is a higher order of structural organization to the mitochondrial respiratory chain [23, 82].
Using mitochondria from a number of plant species, it was discovered that complex I (NADH dehydrogenase) and complex III (cytochrome c reductase) form a super complex with a variety of different stoichiometries. Further studies revealed that a super complex consisting of complex I, III and also complex IV (cytochrome c oxidase) exists in potato mitochondria in lower abundance. These complexes have been termed respirasomes. The fact that the component respiratory complexes can associate together with different stoichiometries suggests that the formation of super complexes could be an important mechanism that regulates the flow of electrons through mitochondrial respiratory chain.

The mitochondrial proteome has also revealed aspects of mitochondrial metabolism that were not previously well understood. For example, a study of pea leaf mitochondria noted the remarkable abundance of aldehyde dehydrogenases [83]. Some nine different aldehyde dehydrogenase proteins were observed, representing 7.5% of the total soluble mitochondrial protein. Aldehyde dehydrogenase can oxidize a broad range of aldehydes and could be involved in diverse functions from detoxification of acetaldehyde produced during fermentation [84] to the catabolism of amino acids [85]. These enzymes may also be important for normal pollen formation [86]. Another example of an underappreciated metabolic pathway that has been highlighted by proteomics is the GABA (γ-amino butyric acid) shunt, which allows the citric acid cycle to be by-passed from 2-oxoglutarate to succinate. Most of the enzymes that make up this pathway have now been identified [40, 68] and recently mutations in one of the enzymes have revealed the importance of the pathway for normal growth and development [87]. Proteomics has also proved to be useful in clarifying the exact distribution of isozymes between compartments. For example, the ascorbate-glutathione cycle has long been recognized as an important antioxidant pathway in chloroplasts and the nuclear genes encoding the chloroplast-targeted proteins have been identified [88]. However, despite biochemical evidence for the existence of the same enzymes in mitochondria [89], the genes that encode the mitochondrial isozymes have proved difficult to pin down. Mitochondrial proteomics provided a clue as to the identity of these genes by revealing that two enzymes of the ascorbate-glutathione cycle that were present in the mitochondrion were the same gene products as those present in chloroplasts [40]. Subsequent experiments demonstrated that the entire ascorbate-glutathione cycle is in fact dual-targeted between chloroplast and mitochondrion [90].

The proteome of the chloroplast has been just as intensively studied as that of the mitochondrion [75] and as is the case for the mitochondrion there are relatively few metabolic surprises. Investigations of the chloroplast proteome have paid more attention to the suborganellar compartmentation within the chloroplast and a series of papers have been published that focus on the proteomes of either the chloroplast envelope membrane [91–93] or the thylakoid (lumen or membrane-associated) [94–97]. Since most of the primary metabolic pathways of the chloroplast occur in the stroma, these studies reveal relatively little about metabolic control, although some new metabolic aspects are revealed. For example, a proteomic study of integral envelope membrane proteins identified a new phosphate (Pi)/proton transporter that was previously thought to be located in the plasma membrane [93].
The textbook version of chloroplast Pi stoichiometry has Pi entering the chloroplast in exchange for triose-phosphate via the triose-phosphate translocator. The identification of a Pi carrier that could lead to net uptake of Pi into the chloroplast driven by the envelope electrochemical potential provides new insight into the mechanisms used to maintain the stromal Pi concentration for ATP synthesis. A different study of the chloroplast envelope membrane proteome used a variety of extraction procedures to maximize proteome coverage [92]. This study identified several proteins involved in fatty acid metabolism and points to a more general involvement of envelope membrane proteins in lipid metabolism than had perhaps been previously recognized.

A recent study of the chloroplast proteome made no attempt to fractionate the different subcellular compartments of the chloroplast, but instead used a multidimensional chromatographic approach to fractionate a complete chloroplast protein extract [98]. Since this approach was unbiased in its coverage, it recovered proteins for each of the subcellular compartments including the stroma and is therefore more informative about a range of metabolic pathways. For example, the study established that a key enzyme of purine synthesis is located in the chloroplast and strongly supports a plastidic location for the synthesis of purines. Because of the depth of the coverage in this study and the reliable detection of the vast majority of known abundant proteins (such as the enzymes of the Calvin cycle) the authors argued that a failure to detect proteins suggests that they are present in very low abundance. This line of reasoning is used to identify the main metabolic activities of the chloroplast. Thus, it is argued that detection of all the enzymes of the Calvin cycle except for a ribose epimerase suggests that the main route for the regeneration of ribulose 5-phosphate is via sedoheptulose 1,7-bisphosphate and not via xylulose 5-phosphate (see Figure 2.3). Similarly, the failure to detect enzymes involved in aromatic amino acid synthesis leads the authors to suggest that the synthesis of aromatic amino acids is down-regulated in the light. While such arguments are beguiling, there is an important caveat to consider. Low abundance is one reason for a failure to detect a protein in a proteomic study of this kind, but there are several other factors that could contribute. For example, small proteins tend to be underrepresented in proteomic studies as they produce relatively few tryptic digestion products. In addition, some peptides do not ionize with high efficiency (and therefore are underrepresented in the mass spectrum) or produce low levels of ion fragments that are used to identify proteins in the MS/MS method. Therefore, the failure to identify a protein using MS/MS cannot unequivocally be attributed to low abundance.

Chloroplasts are, of course, just one of many types of plastids that occur in plants and the proteomes of other plastid types (amyloplast, chromoplast and leucoplast) have been almost entirely neglected. There is but one study in which the amyloplast proteome of wheat has been characterized [99]. Some 171 proteins were identified, either soluble or membrane-associated and the list included the expected enzymes of starch synthesis as well as a number of storage proteins such as glutenin and gliadin. However, the presence of a significant number of mitochondrial proteins highlights the well-known difficulties of obtaining amyloplasts that are uncontaminated by other organelles.
2.3.4 Other subcellular proteomes

Although mitochondria and chloroplasts dominate the organellar proteome landscape, a number of studies have focused on other organelles and subcellular compartments. The peroxisome is a ubiquitous eukaryotic organelle and deserves extra attention in plants because of a diversification in its functional specialization. In addition to well-known roles in photorespiration and lipid mobilization, plant peroxisomes also have significant roles in nitrogen metabolism in root nodules [100], amino acid degradation [101] and synthesis of plant hormones such as jasmonic acid and auxin [102]. The extent of metabolic activity in plant peroxisomes is reflected by the large number of proteins that make up its proteome in comparison to peroxisomes from other eukaryotes [103]. In germinating oilseed cotyledons, the main function of peroxisomes is to catalyze the gluconeogenic mobilization of lipids to sugar via β-oxidation and glyoxylate cycle activity. Because of their functional specialization, such peroxisomes are known as glyoxysomes. An analysis of the proteome of glyoxysomes from etiolated Arabidopsis cotyledons identified the expected enzymes of β-oxidation as well as glyoxylate cycle enzymes such as malate synthase and isocitrate lyase [104]. More interestingly, however, the study also identified a NADP-specific isoform of isocitrate dehydrogenase. β-oxidation of fatty acids is dependent upon NADPH as a cofactor (the enzyme 2,4-dioenoyl CoA reductase requires stoichiometric amounts of NADPH for β-oxidation of
fatty acids with double bonds at even positions [103]). Because the peroxisomal membrane is impermeable to NADPH, intraperoxisomal NADPH has to be generated using an aspartate/malate metabolite shuttle. The NADPH can be released from the reduced equivalent (malate) via conversion to isocitrate and then through the action of NADP-isocitrate dehydrogenase. The proteomic study clarifies exactly which member of the isocitrate dehydrogenase gene family in Arabidopsis encodes the peroxisomal targeted protein (At1g54340) and improves our understanding of the NADPH generating system of the peroxisome.

The nucleus is another organelle that has been investigated at the proteome level [105, 106]. The majority of the proteins identified were unsurprisingly involved in maintenance and expression of nuclear DNA. However, besides these expected proteins the nuclear proteome contains some less obvious members, including a number of enzymes such as the glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. The nuclear localization of certain glycolytic enzymes has also been observed in other eukaryotes [107] and has been previously observed in plants [108]. It is likely that rather than fulfilling a metabolic function, these proteins are performing secondary functions related to nuclear genome maintenance and expression [109–111]. The fact that the abundance of nuclear-localized glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase increases in response to cold-stress may suggest a rapid regulatory mechanism of gene expression that involves translocation of glycolytic proteins from the cytosol to the nucleus [105, 107].

Another subcellular location that has been investigated using proteomics is the plant cell wall [27, 112]. Besides the expected proteins involved in cell wall structure, biosynthesis and degradation, these studies identified a large number of cytosolic or mitochondrial enzymes of primary carbon metabolism (such as glyceraldehyde-3-phosphate dehydrogenase, enolase, PEP carboxykinase, lactate dehydrogenase and citrate synthase). There are two views as to the presence of these cytosolic proteins in the cell wall proteome. One is that many cytoplasmic proteins bind with high affinity to the polysaccharide-rich cell wall residue during extraction and the presence of these protein should therefore be considered an artifact [22]. Alternatively, based on corroborating immunocytological data for some of these proteins (e.g. glyceraldehyde-3-phosphate dehydrogenase), the presence of these proteins can be viewed as another example of ‘moonlighting’ by enzymes of central metabolism. Additional experimentation is required to resolve this issue.

Finally, several studies have investigated the proteome of the tonoplast and the vacuole [113–115]. The identified proteins reveal the major metabolic activities of the vacuole from protein processing and degradation to ion transport and storage and antioxidant metabolism.

2.3.5 A stamp of authenticity for the subcellular protein postcode?

The case of the presence of unexpected proteins in an Arabidopsis cell wall fraction raises an important dilemma. Given the specter of contamination that haunts
proteomic studies based on subcellular fractionation, how confident can we be of the localization of proteins, particularly in cases where proteins are known to localize to other subcellular addresses? The issue is complicated by the fact that some organelles are more difficult to isolate to a high degree of purity than others and so the extent of contamination varies greatly between different studies. Furthermore, many proteins are legitimately localized in more than one subcellular compartment [90]. It is clear that to be more certain of the localization of a protein highlighted in a proteomic study, additional corroborating evidence is required. A good example of this is the unexpected discovery of the enzymes of glycolysis in the mitochondrial proteome of both plants [116] and animals [35]. The presence of these enzymes in the mitochondrial proteome was given credibility by additional experimentation in the plant system in which yellow-fluorescent protein tags were utilized to verify the mitochondrial localization \textit{in vivo} [116]. Furthermore, protease-protection experiments indicated that the glycolytic enzymes were located on the outer face of the outer mitochondrial membrane [116]. This type of ‘microcompartmentation’ of enzymes could represent an important regulatory mechanism to control competing parallel demands on central metabolic pathways such as glycolysis: mitochondrially associated glycolysis could function exclusively to provide pyruvate for respiration, while cytosolic glycolysis could operate as a more branched pathway supplying carbon skeletons for amino acid biosynthesis and exchanging metabolites with the oxidative pentose-phosphate pathway.

An exemplary study of the yeast mitochondrial proteome points to the direction that the plant proteomic community could take to improve confidence in subcellular localization of proteins [117]. Besides conventional proteomic information, the study also drew on information from systematic screening of deletion mutants, mRNA abundance profiling, localization of tagged proteins, protein–protein interactions and computational predictions. These complementary approaches allowed the authors to identify an estimated 75\% of the known yeast mitochondrial proteome. Furthermore, based on the number of pieces of corroborating evidence (and factors such as their specificity and coverage), each protein was given a score that provides a quantitative indication of the confidence of the localization.

2.4 Quantitative analyses of the proteome

The total set of expressed proteins is highly conditional – the proteome is dynamically regulated such that it is tailored to meet the physiological and biochemical demands placed on the system by different environmental and developmental variables. The extent to which the proteome is adapted to given conditions is emphasized by the extent to which the proteome varies in different ecotypes of Arabidopsis [118]. Understanding the relationship between changes in protein abundance and the metabolic status of the cell provides a valuable insight into the way in which metabolic networks are controlled. Control of the amount of an enzyme can be
viewed as the first level of the regulatory hierarchy [119] with higher order levels consisting of post-translation regulatory changes and protein–protein interactions. Protein abundance is the result of a combination of gene expression, protein synthesis and protein turnover. The combined output of these regulatory mechanisms can be captured as changes in the abundance of proteins by making quantitative comparisons of the proteome as metabolism moves from one steady state to another. However, the experimental and technical demands required to execute such quantitative proteomics (see Section 2.2) have meant that relatively few quantitative proteomic studies have been attempted to date. Nevertheless, some quantitative proteomic studies are emerging and these demonstrate the value of this approach in terms of providing insight into metabolic control.

2.4.1 Examples of quantitative proteomics

One of the earliest attempts to map quantitative changes in the proteome investigated seed germination and priming in Arabidopsis [120]. Some 1300 seed proteins were resolved and quantified using 2DGE and 74 of these proteins were observed to significantly change in relative abundance (more than twofold) during seed imbibition and subsequent radicle protrusion. Some of these proteins were identified by mass spectrometry. Among the identified proteins were a number of enzymes of primary metabolism. It was found that PEP carboxylase and aconitase increased in abundance during imbibition whereas other citric acid cycle and glycolytic enzymes (citrate synthase, triose-phosphate isomerase, phosphoglycerate kinase, aldolase) remained unchanged. Given the importance of mitochondrial respiration for the germination process [121], these data may point to a key role for aconitase in the control of the citric acid cycle.

Proteomics has also been used to monitor changes in the pea leaf proteome during development [122]. In particular, the authors of this study were interested in relating proteomic changes to leaf nitrogen mobilization. The mobilization of leaf nitrogen occurs to support seed development and as a result total leaf nitrogen declines during leaf development. The work confirmed the importance of Rubisco as a nitrogen store in leaves: the amount of Rubisco (relative to total protein) decreased by as much as 60% during nitrogen mobilization and Rubisco degradation products were observed. A variety of other proteins were also reported to be increased in relative abundance. However, this observation should be treated with caution. Since Rubisco accounts for such a large proportion of leaf protein, a decrease in Rubisco will inevitably lead to an apparent increase in the relative abundance of other proteins without the absolute amounts of these proteins necessarily changing. Indeed, when calculated on a per-fresh-weight basis, these other proteins were constant in amount during leaf development.

One of the most rigorous quantitative proteomics studies conducted to date used greening maize as a system to study proteome changes during plastid biogenesis [123]. Plastids were isolated from five different developmental time points and four replicate sets of extracted protein were separated by 2DGE. Protein spots were automatically identified and quantified and gels assembled into match sets.
using proprietary software (PDQuest, Bio-Rad Laboratories). Normalized spot quantity across match sets was analyzed using a variety of hierarchical and non-hierarchical statistical methods to detect patterns of protein abundance profile during plastid development. One of the key findings from this study is that members of a given functional class of protein are generally coordinately regulated in expression. For example, changes in the abundance of enzymes of photosynthetic carbon assimilation were coordinated, showing a trend to increase during early development. However, the picture is not quite that simple because later in development different enzymes of carbon assimilation showed divergent abundance patterns.

Other quantitative studies of plant proteomes have concentrated not on development, but on the response to stress conditions. For example, 37 mitochondrial proteins were identified that changed in abundance in Arabidopsis cells exposed to oxidative stress [124]. These proteins fell into three classes. Nine proteins increased in abundance and represent potential candidates for components of mitochondrial antioxidant defenses. Twelve proteins were found to decrease in abundance, while 16 proteins that increased in abundance were found to be degradation products of smaller proteins. The identity of these latter two groups of proteins revealed the main proteins that are sensitive to oxidative damage as a result of the accumulation of reactive oxygen species. Enzymes of the citric acid cycle and respiratory chain complexes appear to be particularly vulnerable to oxidative damage and therefore mitochondrial oxidative stress will have an impact across the cell due to a limitation of ATP synthesis.

Quantitative proteomics has also been used to investigate the adaptive responses of plants to oxygen deficiency. A lack of oxygen inhibits mitochondrial ATP production and instead ATP is generated by fermentative pathways. Fermentation is fundamentally less efficient in producing ATP than mitochondrial oxidative phosphorylation. Furthermore, fermentation interferes with cytoplasmic pH regulation which can lead to a lethal acidification of the cytoplasm [125]. To survive oxygen deficiency, plants must therefore maintain tight control over cytoplasmic pH as well as marshal their metabolic pathways to be able to cope with a reduced supply of cellular ATP. An identification of the proteins that are present/increase in abundance during exposure to oxygen deficiency might therefore provide insight into the mechanisms by which plants survive this environmental stress condition. One such study identified 48 proteins that increased in abundance during a hypoxia pretreatment of maize roots that enhances tolerance of subsequent anoxia [126]. Besides proteins of the glycolytic and fermentative pathways involved in energy production during oxygen deficiency, proteins were identified across a wide range of functional categories including specific proteins associated with mRNA translation. A similar study looked at the response of the rice proteome to oxygen deprivation [127]. Two different types (cultivars?) of rice were used that were flooding-tolerant or flooding-intolerant (flooding leads to oxygen deprivation of submerged plant tissues). A number of enzymes involved in sugar mobilization and glycolysis were identified as key components of tolerance of oxygen deprivation due to flooding.
2.4.2 The use of high-throughput measurements of enzyme activity as a proxy for quantitative proteomics

When using a proteomic approach to investigate metabolism, ideally one would want to restrict the investigation to just those proteins (enzymes) involved in the metabolic pathways under consideration. However, by its very nature, proteomics is an unbiased approach and the proteins that will be identified and quantified will represent the full spectrum of protein classes in the plant cell. Although many enzymes are contained within the current proteome sets, there is no way to guarantee that all the enzymes of a given pathway are present [98]. Mark Stitt and colleagues [128] suggest an alternative approach that specifically targets enzymes. The idea is to use measurements of maximum catalytic activity of enzymes as a proxy for the metabolic proteome, assuming that there is a direct relationship between enzyme activity and protein abundance (although, clearly, enzyme kinetic properties can also be a factor). To enable enzyme activities to be measured on a sufficiently high-throughput to make the approach feasible, enzyme assay is automated using a robotic pipetting system. Furthermore, enzymes are assayed using extremely sensitive cycling assays. These assays require only small quantities of plant material and therefore maximize the number of enzymes that can be measured in a given sample.

Stitt and colleaguesexploited this approach to investigate the relationship between the abundance of enzymes and their corresponding transcripts. Two biological scenarios in which transcript abundance and enzyme activity vary were assessed: first, changes were monitored during the diurnal cycle and second, during sugar starvation induced either by holding the plants in an extended dark period or by mutation of plastidic phosphoglucomutase. Some important findings were reported [128] and are summarized here. First, it is clear that there is a poor quantitative correlation with transcript abundance and the corresponding enzyme protein amount. Generally, the changes in protein are much smaller than the respective changes in transcript abundance. On average, protein abundance changes are damped by a factor of twofold or greater. Second, and more obviously, there is a time delay between changes in transcript abundance and corresponding enzymes. This reflects the fact that the processes of protein synthesis and turnover that regulate protein abundance are relatively slow in comparison to gene transcription. This fact is well appreciated and the time lag between transcript and protein abundance changes has been incorporated into recent mathematical models of bacterial metabolism [129]. One interpretation of the slow and damped response of protein abundance to transcript abundance changes is that it confers a combination of robustness and flexibility to the metabolic network. Robustness in that enzyme abundance only changes if there is a prolonged change in transcript. This ensures in a leaf, for example, in which changes in light, water potential and metabolite content occur on a regular, diurnal basis, excessive energy is not wasted in an inefficient process of repeated enzyme synthesis and turnover. Instead, post-transcriptional control of enzyme activity can balance the metabolic network against these changes in physiological status [130]. However, the regulatory network remains sufficiently flexible for the
plant to be able to respond to its environment. Thus, while transcript abundance changes during the diurnal cycle have only a modest effect on enzyme amount within a single day, they do lead to marked changes in enzyme amount if the diurnal period is modified for several days.

2.5 The use of proteomics to investigate post-translational modification of proteins

Proteins, particularly enzymes, are extensively post-translationally modified to bring about rapid changes in their properties and localization. Post-translational modifications of enzymes that affect their kinetic properties are recognized to be one of the major mechanisms by which metabolic pathway flux is controlled. For example, the binding of effector molecules to allosteric sites allows feed-back and feed-forward regulatory mechanisms to operate that help maintain metabolic steady state. Alternatively, PTMs such as phosphorylation or the alteration of redox state of critical residues allow metabolic pathway flux to be modulated in response to environmental and biochemical stimuli. The presence of PTMs is apparent in most published 2DGE studies: multiple protein spots that are the product of the same gene are often observed. One explanation for the presence of these multiple spots is that they represent the products of alternatively spliced transcripts. However, usually the difference in apparent charge/size is sufficiently small that the presence of different PTMs is a more likely explanation. Despite the prevalence of post-translationally modified proteins and their demonstrable biological relevance, only in a very small number of cases have additional experiments been done to provide evidence for the presence of specific PTMs at specific amino acid residues [131]. Nevertheless, efforts are gathering pace to exploit the power of proteomics to begin to systematically map PTMs. There are two ways of tackling the systematic identification of PTMs. First, methods can be employed to visualize proteins that carry specific PTMs following gel electrophoresis. Although this method is within the technical reach of most laboratories, caution has to be exercised since gel electrophoresis can introduce artificial protein modifications such as oxidation of methionine and modification of cysteine by acrylamide radicals [132] that could potentially mask in vivo PTMs [133]. The second approach uses mass spectrometry to identify the presence of specific PTMs at specific sites. This method is based on the observation of additional mass added to the amino acid by the PTM which can be pinpointed by allowing for variable mass additions during analysis of peptide fragment spectra. There are considerable technical challenges inherent in this approach, not least of which is the fact that many PTMs are not stable during mass spectrometry and trypsin digestion of proteins does not give coverage of the entire protein (because some tryptic peptides do not ‘fly’ well in the mass spectrometer).

To date, much of the systematic analysis of PTMs has focused on cataloging the ‘phosphoproteome’, although many other PTMs are accessible [38].
2.5.1 Systematic identification of phosphorylated proteins

Although the presence on two-dimensional-gels (2D-gels) of multiple proteins that are the product of a single gene is indicative of PTMs, it gives no information as to the nature of the PTM. However, various methods exist to allow specific visualization of different PTMs. In the case of phosphorylation, a simple approach is to supply plant cells with $[^{32}\text{P}]\text{ATP}$. The radioactive ^{32}Pi isotope is incorporated into proteins during post-translational phosphorylation and can be visualized by autoradiography. This approach has been used to identify 14 phosphoproteins that are present in Arabidopsis mitochondria [134]. Prior to this study, the only mitochondrial protein that was known to be controlled by phosphorylation was the α-subunit of the pyruvate dehydrogenase complex and only a handful of other mitochondrial proteins had been shown to be phosphorylated. The majority of new mitochondrial phosphoproteins identified using the proteomic approach were either from the TCA cycle or the respiratory electron transport chain. In addition, several heat shock proteins were also shown to be phosphorylated as well as the mitochondrial antioxidant enzyme, superoxide dismutase. Further mass-spectrometric investigations pinpointed the phosphorylated residues within two phosphoproteins in potato mitochondria: pyruvate dehydrogenase complex and formate dehydrogenase [135].

An analogous approach to radio-labeling is to use antibodies or specific phosphoprotein stains to visualize phosphoproteins following gel electrophoresis. Both are now commercially available. However, at the time of writing, there are no documented uses of these approaches to study plant phosphoproteomes.

One of the potential problems with specific visualization of phosphoproteins following gel electrophoresis (be it by radio-labeling, antibodies or specific stains) is that the phosphoprotein display has to be related to proteins visible after staining the gel for total protein (so that the phosphorylated protein can be excised from the gel and identified by mass spectrometry). This can lead to difficulties if a low-abundance protein is strongly phosphorylated (i.e., at multiple sites). In extreme cases this can lead to a failure in finding a corresponding spot/band in the gel stained for total protein. Worse still, the low-abundance protein could be obscured by a nonphosphorylated high-abundance protein, leading to an erroneous assignment of phosphoprotein identity. To overcome these problems, an alternative approach first selects only those proteins that contain phosphorylated residues prior to fractionation and display using gel electrophoresis [136]. The approach uses an affinity chromatography step that exploits the interaction between Pi groups and metal ions immobilized on a chromatographic support. The method is known as immobilized metal-ion affinity chromatography (IMAC). The approach can be considered as one that enriches for phosphoproteins (since other negatively charged residues may also chelate metal ions) and therefore verification of the presence of phosphorylated residues by mass spectrometry is required. The IMAC method has been used to undertake the most comprehensive description of plant phosphoproteins to date [137]. The study focused on plasma membrane proteins from Arabidopsis and identified some 200 phosphoproteins. Proteins were identified using
tandem MS/MS which also allowed identification of the precise sites of phosphorylation. The authors used this information to identify putative sequence motifs around phosphorylation sites that may help to predict the presence of phosphorylation sites in other proteins. The complete dataset has been made available as a searchable database (http://plantsp.sdsc.edu). From a metabolism point of view, it is interesting that several metabolite transporters were identified as phosphoproteins, raising the possibility that phosphorylation could regulate passage of metabolites across membrane boundaries. Ultimately, for a complete understanding of phosphorylation-based signal transduction cascades, protein phosphorylation needs to be observed on a time-dependent basis. In a landmark publication that demonstrates the full sophistication of the proteomic approach, Mann and colleagues used a combination of phosphotyrosine affinity purification and differential isotope labeling/quantitative mass spectrometry to undertake a comprehensive analysis of temporal changes in phosphorylation of proteins in human cells following treatment with a growth hormone (EGF) [138]. This study successfully captured the dynamics of not only all the previously known targets of the EGF receptor but also 81 signalling proteins and 31 novel effectors. This technical tour de force is an impressive demonstration of the power of proteomics to interrogate post-translational signalling pathways and lays down methods that could be adopted by the plant community to address similar issues in plant systems.

2.5.2 Systematic identification of protein redox modifications

Redox modifications of proteins have long been appreciated as an important mechanism by which enzyme activity is controlled (see Chapter 6 for further details). In redox-active subcellular compartments such as the mitochondrion and chloroplast, redox changes of regulatory residues link enzyme activity to electron transport processes. These redox changes are mediated by thioredoxin, a large family of thiol-containing proteins to which new members are still being added [139–141]. The control of the Calvin cycle by thioredoxin in response to electron transport in the thylakoid is one of the classic examples of post-translational redox control. However, recent proteomic studies have demonstrated that a whole host of other chloroplast enzymes are likely controlled by thioredoxin.

Two different approaches have been used to investigate novel thioredoxin protein targets in plant cells. In the first, the active site of thioredoxin is mutated such that the normally transient binding of the target protein is stabilized [142]. This means that the modified thioredoxin can be used as a capture agent in affinity chromatography and thioredoxin target proteins isolated in this way can be identified by mass spectrometry. Alternatively, purified thioredoxin/thioredoxin reductase can be used to reduce cellular proteins in vitro. Treated proteins are then separated by gel electrophoresis and stained with a fluorophore that is specific for reduced thiols [143]. Proteins that show evidence of having been reduced by thioredoxin can then be excised from the gel and identified by mass spectrometry. Using one or other of these two approaches, new targets for thioredoxins have been identified in the chloroplast [142, 144–146], mitochondrion [147] and other subcellular locations.
In addition, affinity proteomics has also been used to identify proteins that contain accessible thiols (but are not necessarily targets of thioredoxin) [28]. More details about the proteomic investigations into thioredoxin targets and their significance for redox control of metabolism can be found in Chapter 6.

In addition to changes in the redox state of protein thiols, a variety of other oxidative modifications can occur. Oxidative modifications can occur to most amino acids but among the most common are carbonylation of amine side groups, oxidation of methionine sulfur and oxidation of tryptophan [150]. Most of these modifications occur during oxidative stress conditions and can be seen as detrimental to normal protein function. There is a great deal of interest in mapping the precise effects of reactive oxygen species as well as identifying reliable molecular markers for oxidative damage. A proteomic approach that exploits the availability of antibodies to several of the known oxidized forms of amino acids could help to fulfill these objectives. Currently, little has been published on this aspect of plant proteomics but a number of studies have been initiated. For example, carbonyl groups can be identified by derivatization with dinitrophenyl hydrazine and detection of the conjugated dinitrophenyl group with specific antibodies. A preliminary study using this technique identified a number of proteins of rice leaf mitochondria that appear to be particularly sensitive to carbonyl group formation during mild oxidative stress conditions [151]. These include subunits of glycine decarboxylase, a photorespiratory enzyme that is known to be inactivated during stress conditions [152].

At this point, it is worth adding an important caveat for all proteomic analyses of PTMs: identification of a site of modification does not necessarily mean that modification at that site has a regulatory function. Additional experiments must be done to demonstrate that the PTM actually affects the functional properties of the protein in some way and can, therefore, be said to have biological relevance. While proteomics can rapidly generate lists of proteins that carry PTMs, this is only a prelude to the real task of identifying the regulatory significance of these changes.

2.6 The use of proteomics to investigate protein–protein interactions

In the context of metabolism, interactions between proteins have long been recognized as an important element of enzyme function. At the most basic level, proteins form stable interactions to build multisubunit holoenzymes. However, protein–protein interactions can also be more dynamic and have a regulatory element [10]. For example, the oligomeric state of some enzymes affects their activity [153]. Moreover, it is now widely accepted that sequential enzymes in a pathway may be physically associated with one another to form a metabolon [154]. Not only does this have the benefit of facilitating substrate channeling with associated kinetic advantages, but it also has a regulatory element. In complex, highly branched pathways, the formation of one endpoint metabolite over another can be gated by interaction of the appropriate enzymes to make a metabolon module [155]. This is
known to occur in phenylpropanoid metabolism in plants and seems to be a mechanism that allows specification of one of a myriad of possible end products [156].

Besides these rather specific types of interaction, it is becoming apparent that interaction between proteins is a widespread phenomenon in eukaryotic cells and represents a major layer in the regulatory and signalling hierarchy. Several technologies have emerged in recent years that have the potential to put the protein ‘interactome’ within reach. These are yeast two-hybrid, tandem affinity purification (TAP) tags and use of fluorescent markers of interaction (either through fluorescence resonance energy transfer (FRET) or by the bringing together of a fluorophore split into two nonfluorescent modules).

Yeast two-hybrid has been around for many years and exploits the fact that activators of bacterial gene expression are modular (consisting of a DNA-binding domain and a gene expression activation domain). Constructs are made in which proteins to be tested are expressed with one of these two domains. If the two proteins interact, the domains are brought together and drive the expression of a reporter gene. The technique has the advantage of being scalable to address protein–protein interactions at the whole-proteome level. However, yeast two-hybrid is burdened by two main disadvantages: false positives are common and not all eukaryotic proteins that interact in situ will necessarily do so in the environment of the yeast nucleus [2].

Because of relatively high proportion of false positives and false negatives within the yeast two-hybrid approach, it is advisable to confirm any interaction with an alternative method. Ideally, this method should also be operable on a proteomic scale to provide an alternative systematic interactome set to the yeast two-hybrid, allowing for overlap in the two datasets to be identified [157]. Affinity chromatography is one method of assessing interactions: a bait protein is captured on an affinity resin and interacting proteins copurify. The problem in terms of scaling up this approach is the need to generate a specific affinity agent (either an antibody or the purified protein itself). However, the development of TAP tags has provided a generic protein domain that allows any tagged protein and its interacting partners to be purified using two serial affinity steps [158]. A variety of affinity domains have been used that are recognized by specific commercially available antibodies, allowing rapid affinity purification. Genome-scale analyses of protein–protein interactions in yeast have already begun in earnest and interactome sets based on affinity tags have been published [159, 160]. As of yet, relatively few examples exist in which TAP tags have been used to study protein–protein interactions in plants. However, the technique has been demonstrated to be feasible in plants [161] and several groups are currently using TAP tags to identify interacting proteins in plants.

The TAP tag method relies upon the ability of proteins to interact being maintained in vitro. Not only may this potentially lead to some interactions being missed, but it also presents a rather static picture. This overlooks crucial information. Protein–protein interactions are thought to be highly dynamic and it is the ability to bring proteins transiently together that confers the regulatory aspect of protein–protein interaction. Thus, the ideal method of studying protein–protein
interactions would allow interactions to be investigated as they occur: in vivo and on a time-resolved basis. Methods using fluorescent tags are now emerging that satisfy these criteria. One method utilizes the phenomenon of FRET between compatible fluorophores. Essentially, if the two fluorophores are sufficiently close to one another, emission energy from one is transferred to excite the second. Thus, if blue fluorescent protein (BFP) and GFP are in sufficient proximity to one another, excitation of BFP will lead to green, not blue fluorescence due to FRET. Thus, fluorescent FRET pairs can be used to tag proteins and allow protein–protein interactions to be monitored using confocal microscopy in vivo and in real time. The disadvantage with the FRET approach is that it is technically demanding and simpler alternatives may be preferable. For example, fluorescent proteins can be split into two nonfluorescent modules. If these modules are used as protein tags, then interacting proteins will bring the two modules together and restore fluorescence. This technique, using a split yellow fluorescent protein (YFP), has been demonstrated to be feasible in plants [162]. Such techniques will undoubtedly become the method of choice for detecting protein–protein interactions between pairs of target proteins and have the potential to be scaled up to enable a systematic catalog of protein–protein interactions to be defined. However, the pairwise nature of the approach is a major disadvantage given that most protein complexes involve more than two component proteins [159]. Therefore, the ideal workflow would be to recognize all components of a complex using TAP tagging and then study interactions between component proteins in vivo using fluorescent tags.

2.7 Future perspectives

In this chapter, the various ways in which the proteomic approach can be utilized to study plant metabolism and metabolic control have been outlined. The ability of proteomics to address all aspects of the metabolic control architecture – from protein abundance, to protein localization (in specific tissues/cell types or at the subcellular level), to regulatory post-translational modifications to the composition of protein complexes – makes it an invaluable tool for attempts to reach a more comprehensive understanding of control of metabolic networks. However, despite its obvious potential, the ability of proteomics to make real inroads into our understanding of metabolic control is hamstrung by technical limitations.

The most obvious of these is the abundance threshold of proteomics. Whichever method is used to fractionate and identify proteins, current proteomic techniques have a clear bias toward more abundant proteins [15, 98]. Not only does this limit the scope of proteomics, but it may also lead a distorted view of the importance of a particular protein or group of proteins. For example, a characterization of different post-translational modifications (phosphorylation, oxidation and redox modification by thioredoxin) within the mitochondrial proteome reveals a similar set of proteins for each modification [74]. While there is no reason that proteins should not carry multiple post-translational modifications, it is interesting that what unites the proteins in this case is the fact that they are all abundant proteins and dominate
the mitochondrial proteome. It is entirely possible that the reason that these partic-
ular proteins are the ones identified is because they are easy to visualize and iden-
tify because of their abundance. Thus, one should be wary of assuming that heat shock proteins are the most highly regulated proteins in the mitochondrial proteome just because they turn up in all the lists of proteins carrying PTMs.

There are two areas of development that address the abundance-threshold of proteomics. The first is the increasing sensitivity of mass spectrometers and the second is more reliable, routine methods to prefractionate and enrich protein samples. In combination, these two advances are moving us toward a point of being able to tackle smaller subcellular proteomes (such as those of the mitochondrion and chloroplast) in their entirety. The composite subcellular proteome modules could then be combined to give a complete cellular proteome. One remaining problem in this scenario is the lack of a cytosolic proteome. The cytosol presents a unique problem in that it is difficult to isolate a cytosolic fraction without contamination from proteins that are released from organelles ruptured during cell extraction. The cytosol may also have escaped a proteomic interrogation because it is perceived to be a less interesting compartment than the organelles. Whatever the reason, the lack of a plant cytosol proteome means that when analyzing gene families, cytosolic localization of the gene products has to be inferred by absence from organellar proteomes and the lack of a targeting presequence [48].

While improvements in mass spectrometry platforms and more sophisticated protein fractionation technologies will go a long way in improving the reach of proteomics, the capital investment required to establish such resources is high. Moreover, mass spectrometers capable of automated protein detection and identification require specialist knowledge to operate. Logistically, these issues can be solved by establishing centralized proteome resources that provide a service to users. Nevertheless, this dependence on capital expenditure and specialist knowledge limits the extent to which proteomics can become a standard part of the modern biologist’s experimental arsenal. What ultimately is required is a simple platform to monitor the proteome that is analogous to microarray technology used to monitor the transcriptome. Indeed, it is the lack of an equivalent hybridization-based capture technology that has limited the development of proteomics. That said, the concept of a ‘protein chip’ is entirely feasible using either antibodies or aptamers (DNA or RNA molecules that have been selected from random pools based on their ability to bind to other molecules) as the affinity capture agent [163]. The main hurdles are the time and cost factors required to manufacture the required antibodies and aptamers. Nevertheless, it is clear that eventually protein chips will be commercialized and may provide a (relatively) cheap and simple alternative to the mass spectrometry-based approach. Moreover, although whole proteome chips may never be realized, the approach does at least offer a practical solution to the problem of how to monitor the abundance of defined groups of proteins [164]. From a metabolism standpoint, one could envisage a targeted protein chip on which are arrayed antibodies to the enzymes of primary carbon metabolism, for example. Protein arrays are also ideally suited to the task of systematically identifying protein binding partners [165].
While there remains much scope for improvement, it is clear that proteomics has become an essential tool to investigate the control of metabolism and promises to dramatically speed up the pace of progress over the next few years. We can look forward to a new era of metabolism in which the challenge will be to bring all the post-genomic information together in the form of testable models of the entire metabolic network of plant cells.

References

25. V. Santoni, T. Rabilloud, P. Doumas et al. (1999) Towards the recovery of hydrophobic proteins
532–541.
electrophoresis of proteins for antibody production: antibodies against proteins whose synthesis
31. W. Wang, M. Scali, R. Vignani et al. (2003) Protein extraction for two-dimensional electrophore-
sis from olive leaf, a plant tissue containing high levels of interfering compounds. *Electrophoresis*
24, 2369–2375.
formation in poplar: identification, characterization, and seasonal variation of xylem proteins. *Planta*
210, 589–598.
Cell Biology* **65**, 231–244.
34. W. Werhahn and H.P. Braun (2002) Biochemical dissection of the mitochondrial proteome from
36. V. Neuhoff, N. Arold, D. Taube and W. Ehrhardt (1988) Improved staining of proteins in poly-
acrylamide gels including isoelectric focusing gels with clear background at nanogram sensitiv-
37. F. Chevalier, V. Rofidal, P. Vanova, A. Bergoin and M. Rossignol (2004) Proteomic capacity of
Experimental analysis of the Arabidopsis mitochondrial proteome highlights signalling and
regulatory components, provides assessment of targeting prediction programs, and indicates
41. J.P. Whitelegge (2002) Plant proteomics: BLASTing out of a MudPIT. *Proceedings of the
44. Y. Lu, P. Bottari, F. Turecek, R. Aebersold and M.H. Gelb (2004) Absolute quantification of
specific proteins in complex mixtures using visible isotope-coded affinity tags. *Analytical Chemistry*
76, 4104–4111.
45. S.E. Ong, B. Blagoev, I. Kratchmarova et al. (2002) Stable isotope labeling by amino acids in
cell culture, SILAC, as a simple and accurate approach to expression proteomics. *Molecular and
Cellular Proteomics* **1**, 376–386.
54

CONTROL OF PRIMARY METABOLISM IN PLANTS

3 Study of metabolic control in plants by metabolomics

Oliver Fiehn

3.1 Introduction

3.1.1 What is metabolomics?

The idea of ‘metabolomics’ has been coined and developed in the last decade to comprehensively study metabolism under genetic and environmental perturbations [1, 2]. However, the first papers involving metabolite profiling techniques were published well over 30 years ago, with the aim, at that time, of rapid medical diagnostics [3]. The underlying idea behind the use of metabolomics in plant biology today is to detect metabolic effects of genetic or environmental perturbation which may only distantly relate to known or presumed primary (enzymatic) alterations. Metabolomics, therefore, seeks to detect ‘unexpected’ events on a comprehensive scale, and it widely acknowledges the presence of novel metabolites with unknown chemical structure or biological function.

In this respect, it differs from classical control theory that has been applied more frequently to select well-known pathways or regulatory circuits with the objective to understand these pathways in a mathematical manner using well-defined models and assumptions. Usually, mathematical control models need to be supported by high level metabolite measurements such as flux data. Although some efforts have been reported to derive larger metabolic models from isotope calculations of protein hydrolysates, we are still far away from reaching the goal universal and global ‘fluxome’ [4] analysis, especially with regard to plant research. Metabolomics does not try to reach this goal. Its use in studying metabolism has so far been more of an observatory and confirmatory role. It aims less at directly deriving insights into the cellular organization of metabolism. Due to its power to detect broad classes of metabolites, including unknowns, metabolomics is best used for studying system properties (such as networks) and changes (control) of metabolite levels in disparate parts of metabolism.

In many studies involving genetic or environmental perturbations it appears that certain metabolic modules are in counter balance with others, such as sugars and amino acids (C/N balance), whereas other large modules such as lipid metabolism are less affected (or more tightly regulated) under these conditions. Hence, metabolomics may be best suited to identify which broader parts of metabolism are influenced in response to developmental, genetic or environmental changes. Data can then be used to generate novel hypotheses about potential cellular causes (changes in enzymatic or transport activities) that are responsible for such changes.
Therefore, metabolomics will frequently generate more questions than answers, a concept that still needs to be embraced by classical hypothesis-driven research.

A general outline of this idea is depicted as Figure 3.1, which gives a flowchart of the way data are generated, annotated, transformed, structured and interpreted to gain novel hypotheses, before more experiments may verify these hypotheses. Starting from thoughts on system properties of metabolic networks, this chapter focuses on this flowchart, and specifically the problems associated with generating and annotating valid metabolite data. It adds a compilation of recent work in plant metabolomics to give an overview about the breadth and scope for which this technique is used in trying to understand plant metabolism.

3.1.2 Systemic properties in metabolic networks

Control and regulation are often used as synonyms, but this is actually not the case. As David Fell has pointed out in his famous book Control of Metabolism (1997 [5]), these two terms point to biochemical properties that are rather different in their respective meanings. Regulation is the ability of a complex system to maintain its basic properties (e.g. metabolite levels) independent of external factors that continuously try to push the system out of balance. A plant cell is exposed in short time intervals to many stochastic factors such as wind, light intensity differences, physical interferences or influx deviations of external transport metabolites. The system would become very unstable if each of these short-term pulses required immediate responses. There are a number of regulatory steps that inhibit metabolic overreactions, but instead introduce response lag times by using threshold systems, active transport steps, or reversibility of reactions. In total, these delay steps render the system to become ‘robust’ which is an important property to maintain.
the system at a given steady state. Complementary to such robust regulation of steady state levels is the necessity to alter metabolite levels depending on certain stress conditions or developmental needs. The responsible general system property is called ‘flexibility’. System flexibility is a prerequisite of the capability to ‘control’ or alter defined steady states without affecting other parts of the system, depending on external or internal stimuli. Any system needs capabilities to react in a fast and coordinated manner on immediate needs and threats, even if the triggering signals for such needs are of low abundance and transient in nature. Examples might be heat shock, wounding responses or herbivore attacks. The glucosinolate–myrosinase system commonly found in plants of the order Brassicales is one such example: myrosinases are thioglucosidases capable of hydrolyzing glucosinolates upon nonspecific generalist herbivore attack, which leads to a release of a suite of compounds with cytotoxic or feeding deterrent effects. Other examples of ‘control’ can be found in classic physiology. In physiological terms, cold acclimation (by increased values in carbohydrates) or leaf senescence (altered ratios of catabolism versus anabolism) are examples of ‘control’ or ‘system flexibility’, whereas the tendency to keep metabolic fluxes in a narrow range under a given set of environmental parameters (the steady state) is an example for metabolic ‘regulation’ or system ‘robustness’.

3.2 Metabolomic methods

3.2.1 Historic perspective of plant metabolite analysis

How do plant systems manage to keep these two fundamental properties in balance? In principle, the global nature of metabolomic surveys should be directly suitable to answer this question. Metabolomics aims at quantification and identification of all metabolites of a given biological system under defined conditions. Metabolomic data may thus be used to assess network properties such as metabolite connectivities, or changes in metabolic ratios, individual metabolite levels and pathways. When stable isotope tracers are applied, even changes in fluxes or flux ratios can be assessed up to a certain extent [6]. However, it is still a methodological challenge to acquire comprehensive metabolic data, given the large differences in metabolite size, lipophilicity, volatility, charge state and other physicochemical properties.

Classically, analytical chemistry and plant physiology have focused on analyses of a limited number of select metabolite targets. The history of such target analyses tells us how introducing new instruments or methods has opened windows of research opportunities and how methodological advances have changed the view of plant metabolite functions and diversity.

Analyzing metabolite levels for plant physiological (or clinical) purposes has proceeded over the last 230 years, at least. At the end of the 18th century, Scheele and Vanquelin examined single primary plant metabolites such as citric, malic, oxalic, gallic and tartaric acid. Around the same time, microscopy was introduced
which enabled Markgraf to discover sucrose in sugar beet. In the 19th century, an array of analytical instruments was developed that fostered metabolite analysis, both for quantitative and qualitative purposes, including colorimeters, polarimeters, volumetric devices and photometers [7]. In that period, over 40 isolated plant metabolites were characterized by Berzelius. However, it was only during the last century that new techniques allowed the detection of the true richness of plant metabolomes, especially the so-called secondary metabolites.

The technological breakthrough did not come by a novel detection system but by better separation of metabolites. In 1906, the Russian botanist Mikhail Tswett invented chromatography by separating plant leaf extracts over powdered calcium carbonate and found chlorophyll pigments to be separated in several visible bonds [8]. The technique was eventually adopted and refined by Kuhn and Lederer in the 1930s who used it for carotenoid separations and purification of a large number of vitamins. This novel separation system boosted the number of compounds detected, particularly in combination with novel detectors which were based on a number of physical principles such as fluorescence emission, amperometry, light diffusion or light absorption in the visible and ultraviolet range. After the Second World War, the use of visible or UV absorbance, in particular, was widely adopted and allowed compound identification and comparison between laboratories based on spectral libraries [9].

3.2.2 Modern instrumentation in metabolite analysis

Today, virtually all these analytical methods are applied in physiological or medical research to separate, purify, detect and characterize compounds. However, it seems that for true metabolomics, only a select combination of methods is suitable. In general, a metabolomic method must be capable of detecting unambiguously, identifying and quantifying a large number of individual metabolites in a given sample. This requirement calls for high analytical resolution, universality (to detect metabolites irrespective of chemical substructures), selectivity (to acquire an analytical signal that is specific for a given metabolite), high dynamic range (to detect metabolites both at high and very low concentration), high precision (quantitative reproducibility), good accuracy (quantitative correctness) and high throughput (considering the need for statistically valid statements for a set of biological experiments). Metabolome number estimates range from about 500 (for prokaryotes) to many thousands of analytes (for vascular plants). There is no single method that can fulfil all the above mentioned requirements for so many analytes.

For this reason, the technology for true metabolomic approaches has only been enabled by breakthroughs in two areas, namely computer power and instrument engineering. This duo has fostered applications of the two dominant detection systems, nuclear magnetic resonance (NMR) and mass spectrometry (MS). An advantage of NMR is the linearity of quantitative responses on increasing metabolite concentrations, almost irrespective of the chemical compound class. Large signals in NMR can directly be interpreted as high level concentrations, whereas in MS,
quantitative responses strongly rely on the ionization potential of each metabolite. Therefore, quantitation in MS is limited to relative abundances of a given metabolite between samples, or requires calibration curves if absolute comparisons of different metabolites are needed. Nevertheless, MS is generally more favored than NMR due to four reasons: (i) MS is advantageous with respect to the capability to resolve complex mixtures of compounds, (ii) for most compounds, MS is far more sensitive than NMR, (iii) due to the need for high end magnets, NMR instruments are usually far more expensive than most MS instruments and (iv) coupling of NMR to separation techniques such as liquid chromatography is far from straightforward. This leads to the main use of NMR as a tool for ‘metabolite fingerprinting’ in which complex, unresolved spectra are compared from tens to hundreds of samples. This allows the classification of differences in the global control of metabolite levels according to the underlying experimental design. Correspondingly, even experienced research consortia rarely identify more than 30 individual metabolites per NMR spectra of plant extracts [10, 11], whereas the use of chromatography-coupled MS leads to routine identifications of up to 150 metabolites per sample [16].

3.2.3 Sample preparation for metabolomics

There is no optimal way to prepare comprehensive plant extracts. Some compounds such as ADP/ATP have such high turnover rates that anything beyond freeze clamping may just be too slow to efficiently stop any of the residual postharvest enzyme activity. Other compounds such as plant hormones may have low turnover rates but are of such low abundance (in whole organs) that large plant biomasses need to be prepared. These two cases mark the opposite and contradictory ends of the range of extraction prerequisites. Another conflicting constraint is the ranges of lipophilicity versus hydrophilicity. For example, leaf waxes need very nonpolar solvents (such as hexane), whereas sugars can only be extracted with solvents of high polarity (such as water). The solubilization power of a given solvent mixture may be altered by additional modifications such as application of heat, microwaves, pressure or ultrasonication. However, the general problem remains of the contradiction between metabolome-wide comprehensiveness and quantitative completeness (recovery) of the extraction method. Arabidopsis thaliana leaves have been shown to serve as an example of how to systematically maximize comprehensiveness and reproducibility in sample preparation procedures [12]. However, this study was restricted to primary metabolites that are detectable by gas chromatography-based methods.

In general, therefore, there are only two possible solutions for unbiased and comprehensive metabolomics. Either extractions are performed with sequential steps of solvent polarity (which may cause miscibility and precipitation problems when combining the resultant extracts) or compromises are accepted. The general notion is that it is unavoidable to take compromises in metabolomics. Even if these are accepted, it is mandatory to test and report the limits of the chosen method of sample preparation. For example, many protocols suggest the use of methanol during extraction. However, even slight amounts of methanol at ambient temperature
and physiological pH cause chlorophyll to decompose by autoxidation, demetallation and methylation [13, 14]. Consequently, if methanol extraction is performed, a range of porphyrins and other chlorophyll allomerization products are unavoidable and are detected by LC/MS. Other metabolites can potentially get altered in analogous reactions under comparably mild conditions. Apart from autoxidation, there are a number of other factors contributing to the formation of artifacts or loss of compounds. For example, thawing of biomass must be carefully avoided as long as proteins are not fully precipitated (for complete enzyme inactivation). Some enzymes such as hydrolases or phosphatases are still active even in methanolic solutions at ambient temperatures.

The large losses in compounds that have been observed have been compared in a direct comparison of two published plant extraction methods: the 70°C hot MeOH:H₂O (4:1 v/v) protocol [15] and the −15°C cold CHCl₃:MeOH:H₂O (2:5:2, v/v/v) strategy [16]; see Figure 3.2. Glucose-6-phosphate and other compounds with high turnover rates were barely detectable using the hot enzyme inactivation/extraction method, whereas recovery was high using the cold protein precipitation method. A likely reason for this striking difference is that frozen plant material might not reach 70°C in the first seconds after addition of the methanolic mixture, and needs time to heat up. This time frame needed for heating the extraction slurry of ground-frozen Arabidopsis leaves and methanolic solvent may then last long enough to reduce the already low abundance levels of hexose phosphates

![Figure 3.2](image-url) Principle component analysis of a direct comparison of the +70°C (hot) and the −15°C cold methanolic extraction method (cold) (unpublished results). Each method was applied 15 times on identical homogenized, deep frozen Arabidopsis leaf material. For each replicate, 20 mg FW material was taken. Data acquisition was performed by GC-TOF mass spectrometry. Principle component vector 1 separated the two methods, explaining 87% of the total variance of the data set. Investigation of the vector loading scores and t-test analysis resulted in identification of phosphorylated intermediates as most important discriminatory metabolites with clearly less being recovered from the +70°C (hot) extracts.
and other phosphorylated intermediates to below the detection limit. Conversely, during cold extraction, enzymes are kept inactive at all times and in addition, the simultaneous presence of chloroform ensures immediate protein precipitation. Some protocols favor lyophilization instead of using fresh (frozen) plant material. However, even this procedure bears risks as many ligands directly interact with proteins or are tightly attached to cell walls or membranes. The degree of this interaction may be even higher in lyophilized material, which may cause losses in extraction of subsequent certain caged metabolites. Unfortunately, no comprehensive study has yet been published that compares these protocols.

Other physicochemical factors pose even larger risks in reducing metabolite recovery. Catecholamines, which are genuine metabolites in potato leaves, decompose when exposed to light for longer than 15–30 min [17]. Even more severe is the effect of oxygen that may be dissolved in the extraction solutions. Minute amounts of O₂ will suffice to oxidize cysteine, glutathione, tocopherol or ascorbate. Correspondingly, all extraction solvents and storage containers must be carefully degassed with argon or other noble gases.

Another important step that potentially leads to metabolite losses is solvent volume reduction. Concentration of solvents to complete dryness will inevitably cause losses of volatile and semivolatile components (such as terpenes). In addition, other compounds, such as complex lipids, may face reduced recoveries. For example, lipids may precipitate on surfaces during sample preparation or fractionation, with limited potential to get resolubilized (depending on the actual solvents and conditions). To conclude, therefore, published reports about the number of ‘detected metabolites’ in metabolomics need to be taken with caution, particularly if reports do not specify (a) the precise extraction method, sample preparation conditions and comparisons to method blank controls and (b) the number and names of unambiguously identified compounds and how confidence in metabolite annotation was achieved.

3.2.4 Metabolome coverage

3.2.4.1 The quest for combining sensitivity and selectivity

There are many challenges and open questions in plant metabolome analysis. For example, the simple question as to how large a plant metabolome is for a given species in a set of typical environments is still unanswered. There is growing evidence that the size of metabolomes cannot simply be computed using reconstructed pathways from genome annotations. On the one hand, many genes (and enzymes) as yet lack clear functional annotation, but on the other hand, enzymes may be far less specific than classically anticipated [18]. For example, deletion of a single amino acid residue may already lead to different enzyme substrate specificity and lead to new products [19]. Therefore, gene annotations may easily be misled by the sole reliance on gene sequence homology or the degree of amino acid identity.

The alternative possibility of using instrumental analytics to tackle metabolome size is equally difficult. An important reason for this is that both NMR and MS still lack the resolution, sensitivity or universality necessary to detect and identify all
components of a given sample. Developments for improved resolution may remedy this problem, for example, by exploiting more than one physicochemical property for separation prior to detection. An obvious possibility is to utilize gas phase ion mobility [20] in addition to classical chromatography. However, this technique has not yet been applied to plant samples. Other choices may include combining different chromatographic techniques such as coupling liquid chromatography to capillary zone electrophoresis (LC × CE; lipophilicity versus charge) or using gas chromatography with different column polarities (GC × GC, volatility versus lipophilicity) [21]. Even classical high pressure liquid chromatography (HPLC) (LC in short) has undergone dramatic improvements in performance, from the 4.6 mm i.d. columns that were used in the 1980s, to the 0.2 mm i.d. capillary columns used in the 1990s, to today’s monolithic columns [27] (Figure 3.3) or ultrahigh pressure HPLC that leads to increased chromatographic resolution with over 100000 theoretical plates.

Other advances in instrumentation to try to improve universality includes ionization for MS, which is achieved by introducing coupled interfaces (ESI × APCI,

![Figure 3.3](image)

Figure 3.3 Chromatographic resolution in LC/MS. Upper panel: injection of 100 μl *Arabidopsis thaliana* leaf extract (i-propanol:water 2:1) onto a classical 4.6 mm C18 reverse phase column (20 000 theoretical plates/m, 1 ml/min flow rate.) Lower panel: injection of 0.2 μl of the same Arabidopsis extract onto a monolithic capillary C18 column (100 000 theoretical plates/m, 0.01 ml/min flow rate).
electrospray and chemical ionization) or characteristics of different types of mass spectrometers (linear ion trap, capable of tandem mass spectrometry ‘in time’ and ‘in space’). However, it seems obvious that improvements in resolution for a single method will not cause a quantum leap in metabolome coverage. To date, uses of COSY and TOCSY two-dimensional NMR methods [22] have not succeeded in significantly increasing the number of identified compounds in metabolomic surveys. Approaches to use high-end Fourier-transform ion cyclotron mass spectrometers (FT-MS) are equally limited in the potential to target full metabolome surveys [59]. Despite this ultimate mass spectrometric resolution of $R > 500,000$, isomeric compounds (such as glucose and fructose) cannot be distinguished due to their identical elemental composition, and even mass accuracy in FT-MS of <1 ppm does not allow unambiguous calculation of elemental compositions above approximately 400–500 Da without additional information [23, 24]. In addition, each metabolite subjected to electrospray/mass spectrometry usually gives rise to 3–5 further signals apart from isotopic ions. This is typically caused by adduct formation or in-source fragmentation ions. Therefore, the number of detected ions (mass signals or m/z values) must not be mistaken with the number of detected metabolites. Consequently, publications that report hundreds to thousands of mass signals based on MS-based metabolite fingerprinting [25] or LC/MS profiles [26, 27] do not give a reasonable estimate of metabolome size or coverage. Many of these ions certainly will account for novel and unknown compounds; however, others may simply be catabolic products which have been produced during postharvest biological processes or chemical by-products that occurred during sample preparation (or simply chemical artifacts due to impurities in solvents and plastic ware).

3.2.4.2 Cellular and subcellular metabolomics

A further reason why the complement of all metabolites present for a given plant, say Arabidopsis or rice, is not known is the lack of spatial resolution. It is a truism that a plant consists of many organs, and that each organ may include many tissue types and each tissue type may comprise various cell types. All published reports so far support the notion that different tissue types comprise varying metabolomes. Different biological roles of individual cell types support the further expectation of detecting striking differences on the low-level spatial resolution, e.g. between trichome and epidermis cells, or between parenchyma and bundle sheath cells. Lastly, intracellular organization of metabolism is also highly structured into compartments, each of which serves specific functions that lead to large metabolic differences. One example is a report of metabolite profiling of isolated chloroplasts and subfractions including the envelope, the stroma and the thylakoids in a study on the activity of three 13-lipoxygenases under stress conditions [28]. In this study, barley leaves treated with methyl jasmonate resulted in a remarkable increase of linolenic acid, free 9- and 13-hydroperoxy linolenic acid and the corresponding hydroxy- and aldehyde derivatives. The subcellular fractionation confirmed that these compounds were preferentially accumulated in the envelope and the stroma, therefore directly
linking the localization of the products and substrates with the corresponding lipoxygenases.

Apart from lack of spatial resolution, the number and concentrations of metabolites are controlled in response to plant development and environmental stimuli. On the other hand, the very nature of this flexible and unsteady metabolome state may serve as a valuable source of information of the physiological condition and the underlying regulatory network if carefully designed physiological (and genetic) plant experiments are carried out. Unfortunately, given the challenges of spatial and temporal resolution, today’s analytical methods still seem to be inadequate with respect to acquiring the full complement of metabolites at the required sensitivity and for multiple biological snapshots.

3.2.4.3 Compound identification
In order to come closer to high metabolomic coverage, there are basically two approaches. One is to work toward a comprehensive analysis of all known and previously described metabolites by combining and unifying extraction, fractionation and improved detection methods. The metabolome coverage would increase in a stepwise manner by building blocks of certain compound classes until large overview analyses have been achieved. The advantage of this approach is that exact quantifications would enable comparison of results across experiments and databases. A clear disadvantage is that most known metabolites are simply not commercially available. As an example, from the general metabolite list given in the LIGAND database in KEGG [29], only about 1000 compounds can be purchased. Furthermore, this approach would always be biased by past knowledge and disregard the potential importance and impact of novel metabolites. The alternative approach is to embark on comprehensive structural elucidation by de novo analysis of (NMR and MS) spectra, called dereplication [30]. In the past 10–15 years, some progress has been made in computational methods and the establishment of metabolite spectra databases. However, many (secondary) metabolites are structurally so complicated that current methods are incapable of performing an automatic structural dereplication. Instead, detailed interpretations by experienced natural product chemists are needed. On-line acquisition of UV, NMR and MS spectra after separation of compounds by liquid chromatography enables rapid gathering of the necessary structural information which potentially leads to a partial or a complete online de novo structure determination of natural products [31]. However, there is always a lesser level of confidence in metabolite annotations if these are based on spectral interpretation rather than comparison with authentic standards. It is hardly imaginable that dereplication reaches the level of acceptance like gene sequencing or peptide mapping. Consequently, an increase in metabolome coverage can only be achieved by running both approaches simultaneously, i.e. building blocks of metabolite profiles of known standards, and de novo compound identification. It is mandatory to specify in metabolomic reports how exact a given metabolite annotation is. For example, whether or not the applied method is able to distinguish isobaric and/or isomeric compounds, or if even higher confidence levels are reached.
that allow distinguishing chiral compounds such as D/L-isomers, allomers, enantiomers or diastereomers.

In addition, the choice of the data acquisition method is dictated by the biological question, as unbiased metabolomics is inadequate for many research projects. If, for example, biological hypotheses are narrowed to selected pathways or a small number of metabolic elementary modes, there is no need to use metabolomics. Instead, ‘metabolite profiling’ methods (that look for a limited set of pre-defined analytes) or classical target analyses can be applied. Conversely, target methods are unsuitable to answer questions about systemic control of network properties for which metabolomics is appropriate. In comparison to metabolomics, the focus on a selection of ‘known’ metabolites by metabolite profiling or target analysis disables an unbiased search for novel phytochemicals which may bear important physiological relevance (for example, as signalling molecules).

3.2.5 Quality control

Once a certain protocol for plant metabolomics has been developed, and is established for a research project, it is a prerequisite to monitor the quality of metabolite identification and quantification over the whole project period, preferentially over years. This is essentially the difference between method development and method validation. Developing a protocol basically means a proof-of-principle that a certain analytical objective can be fulfilled. However, a method is only validated if these objectives are strictly defined, and if the exact parameters and conditions are given as to how to achieve and monitor these results, e.g. by quality control charts. In metabolomics, this is relevant to both quantification and compound identification. For example, for each method the relative standard deviations need to be given, and it also needs to be specified how these limits are controlled and monitored on a routine (daily) basis. In addition to validation by relative error ranges, some compounds may be quantified in absolute concentrations using reference compounds and comparison to control methods to give quantification accuracies. Use of absolute instead of relative quantification refers to the question under study. For example, for some biological studies, determination of nanomolar concentrations may be essential for calculating turnover rates or crop nutritional quality. For other studies, such as functional genomics, assessment of metabolic control by x-fold values may be sufficient.

Once the validation criteria are clearly laid out, metabolomic protocols become ‘standard operating procedures’ (SOPs). SOPs are commonly seen for industrial processes including agro-biotechnology companies, but for academic laboratories, combining larger genomic programs with exploratory metabolomics, such SOPs are becoming more and more essential. In any case, high quality reports on metabolomics or metabolite profiling should always include detail as to how many of the claimed metabolite signals were detectable in all the samples of a given biological experiment, what level of variance was found for these variables within the experiment and how method blanks were used to ensure that detected peaks were not artificially formed.
during the process. Without such specifications, the reported results and sometimes even the biological interpretations may become questionable.

3.3 Metabolomic databases

Publishing metabolite data is straightforward in classical target analysis. The experimental sections in peer-reviewed scientific journals usually refer to established and widely accepted methods, and data can be presented as average values or even as individual results for each sample, when appropriate. For metabolomics, publishing data is not so straightforward. Metabolomic results are usually data-rich, but poor in information. If only x-fold changes of metabolites are published with respect to the controls, then the data may contain only limited information for comparison with other experiments or conditions. Instead, metabolite levels must be deposited in a publicly accessible way that allows reusing the data under different aspects by giving the SOPs of sample preparation, data acquisition, data processing and the corresponding results. In 2004, a variety of reports have highlighted the importance of providing such information, among them being a general architecture for metabolomic databases ArMet \[32\] and considerations about the minimal information of a metabolomic experiment, MIAMet \[33\]. These considerations have only partially materialized in publicly available plant metabolomic databases \[34\]. For a range of compounds, agro-biotechnology companies have published validated metabolite data of crop nutritional value \[35\]. However, for fundamental research, no equivalent is known that is as comprehensive and validated. The basic reason for this lack is that there are very many aspects and parameters that need to be associated with ‘metabolite levels’ in order to turn these into informative and interpretable patterns that are useful for external researchers. Biochemical properties and cellular relationships can be mapped onto software platforms that can be interrogated in order to enhance the interpretability of data \[36\], but the very details of biological experiments and data acquisition are hard to capture in a standardized way. Some progress can be reviewed in a public forum that originated from a biomedical, pharmaceutical and toxicological background, Standard Metabolic Reporting Structures (SMRS) led by the Imperial College, London, UK \[37\]. Some of the associated problems are common for all databases that are reporting metabolite levels. The metabolites need to be named by unique identifiers in a consistent and traceable way to allow data exchange between different databases, for example, for system biology applications. Astonishingly enough, there are no such (publicly accessible) repositories of unique metabolite names.

The most comprehensive repository may be CAS, the Chemical Abstracts Service of the American Chemical Society, that includes information about millions of compounds, among them being biogenic metabolites. However, this service comes with high charges and it does not contain links to genomic databases. Furthermore, some compound identifiers in CAS have been changed or erased over time, and some components have multiple entries. Despite widespread popularity among (plant) biologists, databases such as Goto’s LIGAND repository \[29\] cannot serve
as the authoritative resource for metabolite identifiers because many compounds, especially lipids, are not well covered. Efforts have been launched recently to compile comprehensive metabolite lists such as MetaCyc [38] and INCHI [39], and it is therefore very likely that the problem of consistent metabolite annotations will soon be solved.

In addition, the underlying plant biology experiments need to be described in detail to allow reuse of the metabolite results. This is a serious problem that seems to be very hard to tackle in an appropriate way. For publishing experiments in a peer-reviewed plant journal, it is expected to explain experimental details in both the ‘materials and methods’ section and the flow text. However, publication of data in database repositories cannot follow the same path. Any unstructured flow text description of biological study designs is insufficient. The concept of publicly available databases is that results can be queried and downloaded for comparative studies. This concept requires, therefore, a logical and consistent structure of entering information about the underlying experimental design and details. So far, unfortunately, there is no consensus in the plant community on vocabularies and items that are mandatory for describing a given experiment. One reason is that experimental designs are at the heart of a study and are therefore very different and hard to describe, and to capture in a fixed database structure. The other reason is that, so far, the biological community has relied on the peer-review system to ensure that sufficient information is given to enable reuse of data or the repeat of a study. However, there is usually no peer-review system associated with database entries. Metabolomics research groups may learn from Web-based entry forms that have been developed for describing transcript microarray data using a study annotator [40] that supports quantitative data with a structured ontology on the relationships and properties of various study designs and experimental details.

For general acceptance of metabolomic databases, a consensus needs to be sought how to name and structure plant biological experiments with respect to terms, structural hierarchies, ontologies and controlled vocabularies. Related efforts have resulted in compulsory repositories such as for naming species (in NCBI [41], for Arabidopsis germplasm in the Arabidopsis information resource TAIR [42] or for naming plant organs in Plantontology.org [43]). In the meantime, metabolomic databases need to describe, but not prescribe, which experimental details need to be given.

3.4 Pathways, clusters and networks: applications of plant metabolomics

Recent studies in plant biology involving the four different types of metabolite analysis (target analysis, metabolite profiling, metabolomics, metabolite fingerprinting) may be classified into five broad research areas, some of which are overlapping: confirming the effects of bioengineering plant metabolic enzymes (Section 3.4.1), studying plant biochemistry including the connectivity of pathways (Section 3.4.2), observing and cataloguing physiological effects during developmental or
3.4.1 Bioengineering of metabolism

In bioengineering, metabolite analysis is typically restricted to only a few target compounds or select pathways are profiled to conclude the effectiveness of a certain treatment. An example here is the selection of plant lines with high secondary metabolite levels, such as ginsenosides, for which 993 EMS mutant lines were tested by LC/MS and LC/UV [44]. If metabolite profiling or target analysis is used, hundreds of lines involving thousands of analyses can easily be scrutinized to guide the bioengineering efforts because both sample purification and instrumental methods can easily be optimized for this task. Sometimes more directed efforts in bioengineering are put forth by overexpressing novel genes into plant systems, such as for formation of ketocarotenoids in tomato and tobacco [45]. Metabolite profiling can then demonstrate the effectiveness of this transformation, and in addition, the level of formation of side products or substrates and catabolites of the primary products (such as hydroxylated intermediates). An example of how
metabolite profiling may unravel unexpected effects of plant bioengineering is the transformation of stilbene synthase genes from grape to tomato plants [46]. This transgenic overexpression resulted in accumulation of trans-resveratrol and trans-resveratrol-glucopyranoside, but also of soluble antioxidants such as ascorbate and glutathione. In contrast, membrane-bound antioxidants such as tocopherol and lycopene were not affected.

Another important field of research is geared toward more complex traits such as protein content or optimized carbon partitioning and fluxes. Metabolite profiling of transgenic bean plants which expressed a Corynebacterium glutamicum phosphoenolpyruvate carboxylase (PEPC) in a seed-specific manner [47] showed that metabolic fluxes shifted from sugars and starch into organic acids and free amino acids. This ultimately led to a gain of 20% more protein per gram seed dry weight and an increase of total seed dry weight of more than 20%. This report also shows that there is some overlap between bioengineering (complex) traits, efforts toward the biochemical relationships and the use of metabolite profiling to verify these. Consequently, a major use of metabolomics is found in plant biochemistry.

3.4.2 Plant biochemistry

3.4.2.1 Pathway analysis

Interestingly, potentially conflicting data on the biological role of PEPC were reported for Arabidopsis lines with up to 75% reduced PEPC activity [48]. In this report, it was found by 1H-NMR fingerprinting that levels of various primary metabolites were indeed affected by reduced PEPC activity but without having an impact on overall plant growth. The authors concluded that this finding supported the idea that PEPC had little impact on anplerotic carbon fluxes and was just the opposite to what was found with C. glutamicum PEPC in transgenic beans [47]. These reports may serve to illustrate that even major conclusions may differ depending on the experimental setup (e.g. underexpression of an endogenous enzyme-coding gene vs overexpression of a transgene) and, obviously, on the plant species that is being investigated.

A particularly nice example for a successful plant biochemical study involving metabolomics is a report on malate synthase involved in Arabidopsis seedling growth [49]. In this report, it was shown that this glyoxylate shunt enzyme is partially dispensable for lipid utilization and gluconeogenesis, in contrast to bacteria. This study may also serve as an example that each enzyme needs to be studied individually to determine its functions and biological roles, in vivo, and that homology searches and comparisons alone carry high risks of misleading conclusions. Another excellent study compared the effects of inducible activation of cytosolic yeast invertase with constitutive gene overexpression in growing potato tubers [50]. By this approach, the primary effects of increased sucrose mobilization caused by overexpression could be distinguished from pleiotropic effects such as a switch from starch synthesis to respiration. This switch was only observed to occur in constitutive gene overexpression during plant development, but not in short-term
inducible overexpression. Such experiments are extremely important to better understand the control of metabolism in vivo, and to distinguish causes from mere observations of end-point effects.

Other studies have focused on secondary plant biochemistry [51]. In this research field, an elegant study reported the metabolic and transcriptional characterization of phenylpropanoid biosynthesis in Arabidopsis. Metabolomic approaches could show that despite absence of phenotypic alterations, specific functions of the Arabidopsis phenylalanine lyases PAL1 and PAL2 were elaborated [52]. The authors showed that PAL1 is the primary factor involved in the formation of phenylpropanoids, as well as more complex and less understood alterations in other metabolic modules.

Further reports apply plant metabolomics by integrating classical methods such as isotope labeling or by extending data mining toward network analysis. Isotope labeling with 13C tracers is particularly useful for 13C-NMR analysis. Consequently, this technique has been used for plant biochemistry. A study on rice coleoptiles under anaerobic conditions revealed that glutamine and malate pools were generated from multiple turns of the TCA cycle and that there was a high contribution of the glyoxylate shunt toward malate formation under these conditions [53]. Primary metabolism was also the focus of a study investigating potato plants with underexpression of sucrose synthase II that was found to be primarily localized in vascular tissues [54]. Largely different effects of underexpression of this enzyme isoform were found for source and sink tissues, with major effects on control of sugar alcohol metabolism in leaves and of control of amino acid metabolism in tubers. Besides classical and multivariate statistics, these effects were revealed by directly ranking differences in metabolic network connectivities.

Comparative correlation analysis has also been used to study control of primary metabolism responding to elicitation by methyl jasmonate, yeast elicitor or UV light [55]. In this study, glycine, serine and threonine pathways were found to be perturbed and induction of threonine aldolase activity was suggested from these data.

3.4.2.2 Flux measurements

The result of metabolomic analyses is a series of measurements of metabolite levels, that is, snapshots of metabolism. However, this is just one way to study the control of metabolism. Metabolic snapshot data are usually not sufficient to directly derive enzyme activities and hierarchical structures of pathways and, even more importantly, the dynamics of carbon partitioning between the different organs or the different metabolic cycles. A range of possible scenarios may explain a finding of altered metabolite levels: anabolic reactions might be faster, the catabolic fate might be different or transport activities may have been changed. Conversely, even if metabolite levels remain unchanged in an experiment, the underlying enzyme activities may still be different. If, for example, both anabolic and catabolic reactions are altered in the same way and intensity, the steady state levels of a given metabolite should not change (although fluxes are increased). Therefore, metabolite snapshot data should be complemented by flux data.
Theoretically, it should be possible to derive fluxes from snapshot measurements if we had the ability to measure true concentrations of all substrates and products at faster time intervals, assuming we would know the total network structure. However, all these constraints are not fulfilled at the current state of metabolomic practice, as outlined above. Even if snapshots were taken in a time series, and even if all substrates and products of a ‘pathway’ were covered, today we are still unable to detect the flow of products back into the pathway (either by reversible reactions or via other routes through the metabolic network) or find potential new side fluxes out of (or into) the pathway by unforeseen additional enzymatic activities. Here, the use of labeled compounds is most appropriate, either by radioactive labeling or by stable isotope tracers (e.g. isotopomer analysis). These techniques, however, are also restricted in use by the need to feed in labeled substrates which (a) may not be taken up quickly enough and (b) are then quickly diluted through the metabolic network. Therefore, only short distances or small parts of the total metabolic network can be imputed that have reasonably high metabolic turnover rates or that lead to and from strong carbon sinks such as starch. A global view on all metabolic fluxes (a ‘fluxome’ [4]) is still out of reach by current techniques, even if fluxes are inferred from other metabolic sinks such as proteins. For vascular plants, a highly suitable way to analyze fluxes is to use NMR-based techniques [56]. Using current methods, a combination of metabolomic snapshot data at high number of biological replicates (to get the breadth of metabolic networks at high statistical significance levels) and flux measurements (on select and important pathways [57]) therefore seems to be the most practical solution to reach a more complete picture of metabolic control and regulation.

3.4.3 Physiological studies

Physiological adaptation to environmental stress has been the focus of several studies on Arabidopsis plants. By comparing Ws-2 and Cvi-1 ecotypes to Arabidopsis lines overexpressing CBF transcription factor genes, it has been shown that CBF overexpression configured the metabolome of Arabidopsis in a way that resembles cold acclimation treatments [58], proving the major contribution of this gene family in the cold response pathway. Two other studies compared plants under sulfur stress. By using both mass-spectrometry-based metabolite fingerprints and gene transcription levels [59], it was confirmed that an immediate response on sulfur starvation is a decrease in glucosinolate biosynthesis. Another report combined data from GC/MS and LC/MS measurements upon sulfur deprivation [60] and found that the metabolic system was rebalancing not only sulfur metabolism but also partitioning of carbon and nitrogen in a time dependent manner. This occurred mainly by accumulation along the O-acetylserine-serine-glycine pathway which led to storage of nitrogen in glutamine and allantoin pools. Apart from nitrogen shuffling, further effects were found in lipid catabolism, purine metabolism and enhanced photorespiration.

Other reports have focused on metabolic effects upon environmental perturbations. For example, responses to heat stress, drought stress and a combination of
heat and drought stress were compared in Arabidopsis by metabolite profiling [61]. It was suggested that sucrose and other sugars replace proline as the major osmoprotectant under combined drought and heat stress, whereas proline levels were controlled in response to drought stress alone. Another important area of very active research has been the study of metabolic responses to pests and pathogens. Interestingly, an infestation of tomato plants with spider mites \textit{(Tetranychus urticae)} caused a delay of 4 days between increased levels of terpene biosynthetic transcripts and the emission of volatile terpenoids [62]. This work sheds light on the time-decoupling of control layers in metabolic responses, which also questions the validity of approaches using direct transcript–metabolite correlations for generating hypothesis on the functional annotation of metabolic genes [63].

In order to distinguish cause and effects, most reports involve studying the time dependence of metabolic responses instead of mere data associations or multivariate clustering. A good example of studying the hormonal effects on control of metabolism was an investigation of a 48-day time course upon elicitation of Arabidopsis roots with salicylic acid, jasmonic acid, chitosan and two fungal cell wall elicitors [64]. Upon treatment, 289 secondary metabolite peaks were profiled by LC/MS of which 10 peaks were confirmed by NMR structural elucidation to be compounds exhibiting antimicrobial activity at concentrations detected in the root exudates. Investigating metabolic relationships has been the focus of a physiological study on sink–source transitions in developing aspen leaves [65]. Besides confirming anticipated changes in sugar and amino acid metabolism, the study also revealed that control of nitrogen storage (determined by altered asparagine concentrations) was sequestered by changes in malate concentration and transaminase activity in this developmental time course.

3.4.4 Plant metabolomic methods

Novel insights into the control of metabolism go hand in hand with improved methods. For this reason, various research groups validated the usefulness of novel methods or improved protocols by using model plant experiments. Among these methods is the use of vapor phase extraction for phytohormone analysis upon pathogen infection of Arabidopsis plants [66], fractionation methods applied to rice plants to reduce metabolite complexity prior to instrumental analysis [67], or application of capillary electrophoresis coupled to mass spectrometry for rice leaf analysis [68], a method that was primarily used previously for microbial metabolomics. Volatile compounds responding to infection with pathogens are best monitored by gas chromatography/mass spectrometry, for example using head space sampling [69]. For example, when applied to onion bulbs that were inoculated with \textit{Erwinia carotovora ssp. carotovora}, \textit{Fusarium oxysporum} or \textit{Botrytis allii} [70], 259 compounds were detectable in the headspace of which 25 were found to be specific to one or more pathogens. For phytohormones, an elegant and simple novel extraction procedure has been proposed [71]: plant tissues were extracted in mixtures of n-propanol and dichloromethane followed by methylation using trimethylsilylclobutane. The reaction products were heated, collected on a
polymeric absorbent and analyzed by GC/NCI-MS. This approach has been applied to Arabidopsis, tobacco and tomato plants, enabling to quantify signalling crosstalk interactions at the level of synthesis and accumulation of phytohormones.

Most methods used for studying metabolic control involve invasive techniques. A new idea has recently been proposed to enable detecting metabolites in vivo and in real time at subcellular resolution by using protein-based nanosensors based on FRET fluorescence-based microscopy. The prototypes of these sensors have been shown to work in yeast and in mammalian cell cultures [72, 73]. An extension to multiple metabolites and detection in plant cells would offer extreme versatility and direct insights into metabolic control, e.g. following time courses after glucose pulses or inhibition of specific enzymes. Analyzing time-related metabolomic data has also been the focus of a study of growth related gradients in poplar trees by magic angle spinning NMR analysis [74]. When investigating trees with underexpression of the PttMYB76 gene involved in the phenylpropanoid and lignification pathways, growth-related metabolic gradients were detected in the plant internode direction. Factors affecting NMR spectra have been investigated for potato and tomato samples [75]. This study emphasizes that, as with any method, great care must be taken to control method parameters in order to allow robust assessments of metabolite levels over hundreds of samples.

Methods based on gas chromatography/mass spectrometry have evolved in two directions. Two methods have been published that avoid detailing individual metabolites, but rather compare full spectra sections in order to align and compare hundreds of chromatograms, followed by multivariate analysis and retrospective investigation of differences related to the plant experimental designs [76, 77]. However, apart from looking at differences in the control of metabolism, it is equally interesting to note which metabolites are tightly regulated at a defined steady state level. That is, which metabolites are not altered between experiments. Hence, it seems a favorable option to quantify levels for each individual compound that is detectable in the metabolomic experiment. For GC/MS, LC/MS or CE/MS approaches, this involves individual peak detection with subsequent mass spectral deconvolution of overlapping peaks (Figure 3.5) and peak alignment by retention indices, in order to be able to compare data between experiments, laboratories or metabolomic databases. Examples for this strategy is the compilation of known and unknown metabolites from *Lotus japonicus* nodules, roots, leaves and flowers [78] or the investigation of metabolites from Arabidopsis leaves [16].

3.4.5 Food science

The last typical field of application of metabolomics in control of metabolism is food science. Food quality is easily and rapidly deteriorated by a number of different pests, and therefore it must be tightly monitored to prevent major losses. One typical report on such efforts is the use of GC/MS to profile volatile metabolites in apple to diagnose fungal infections [79]. In this report, four different fungi were applied to infect apples and the responses to these infections were classified by 20 significant biomarkers out of a total of 498 detected different volatile metabolite peaks. Such methods enable a
rapid survey during food storage by observing metabolic effects for disease diagnostics rather than trying to understand the biochemical or physiological control mechanisms. A more recent but important branch of research tries to improve nutritional quality or metabolic traits in foods by genetic breeding using the analysis of quantitative trait loci (QTL). Metabolic effects were assessed as a result of the introgression of a 9 cM region of the wild tomato species, *Lycopersicon pennelli*, into a cultivated tomato line (*Lycopersicon esculentum* IL9-2-5) [80]. Metabolite contents in ripe fruits were found to have increased sucrose and glucose levels that were due to altered kinetic properties of a fruit apoplastic invertase. A few other metabolic perturbations were found, including aspartate and alanine biosynthesis.

In food quality control, concerns have arisen that genetic modifications may result in potentially harmful or undesirable metabolite alterations. In order to study the substantial equivalence of genetically modified (GM) potato tubers to classical cultivars, 40 GM lines, modified in primary carbon metabolism, glycoprotein processing or polyamine and ethylene metabolism, were analyzed by NMR and LC-UV [81]. Differences in average metabolite levels were less than threefold, which was

Figure 3.5 Deconvolution of overlapping peak analysis of an Arabidopsis leaf extract by GC-TOF. Left panel: primary plant metabolites are separated within 1300 s. Due to the complexity of metabolomic extracts, co-elution of compounds is inevitable. Right panels: Mass spectra of d6-cholesterol (A) and cholesterol (B) are deconvoluted by automatic algorithms (ChromaTOF 3.0), enabling unambiguous metabolite annotations.
found to be negligible when compared with the natural variability within each cultivated tuber population.

3.5 Outlook

Most of the published work in plant metabolite analysis is, so far, either classical hypothesis-driven target analysis or multitarget metabolite profiling, that is restricted to usually below 100 identified compounds. Although considerable hypothesis-driven research can be undertaken using these methods, the prospects of using truly unbiased metabolomics are alluring. Two major bottlenecks need to be tackled. The first is that too many metabolic peaks remain unidentified. This raises concerns that many of these may not genuinely reflect control of metabolic states but rather arise from insignificant enzymatic side reactions, or, even worse, are indeed chemical artifacts produced during sample preparation. In principle, this argument is hard to rebut, especially as long as there are no consistent metabolomic databases and no major efforts for rapid identification *de novo* of unknown compounds. Various metabolomic databases are or will be made public in the near future. However, it is doubtful how many known metabolites these databases will include. The second major drawback is a gap in the interpretation of metabolic snapshot data. Very often, the general finding of metabolomic studies is that a large number of compounds have been altered in response to a given experimental treatment. Such observations remain mere physiological descriptions if other levels of information are not integrated to result in a comprehensive picture of plant biology (for example, spatial and temporal resolution of such metabolic snapshot data). A further way to improve the interpretation of snapshot data is to refer these to a ‘plant physiology and plant biochemistry knowledge database’ that may be inferred from both theoretical considerations (such as metabolic control analysis) and text mining approaches. The ultimate aim of all these efforts must remain an understanding of events and effects in plant physiology, which can be tested by constructing data models and predict metabolic alterations under (genotype x environment) conditions that were not tested before [82]. This level of understanding of plant metabolism is still out of reach, but with modern methods in dissecting plants on the molecular and cellular levels it is not impossible anymore!

References

4 Metabolite transporters in the control of plant primary metabolism
Mechthild Tegeder and Andreas P. M. Weber

4.1 Introduction

A fundamental process in the physiology of plants is the selective partitioning of organic metabolites among different organelles, cells, tissues and organs. Various transport mechanisms exist to accommodate the vectorial transport of metabolites, and these mechanisms are coordinated and regulated at different levels to achieve normal physiological functions in the whole plant. Transporters are involved in basic metabolic pathways, partitioning of metabolites within and between cells, and intermediate and long-distance transport between tissues and organs, respectively. While at the most basic level, plants assimilate inorganic carbon and nitrogen into reduced compounds required for plant growth, at the molecular level the variety of produced metabolites is large and the pathways that they feed into are complex and interconnected. These pathways are also often partitioned between organelles, cells or even tissues and organs. Thus, transporters are critical for sustaining the complexity of biosynthesis/catabolism and growth, and through their potential to affect the availability of substrates or products they are in a position to regulate metabolism and growth. An understanding of the types of transporters present in plants, their location and kinetic properties are necessary in describing metabolic fluxes and their control, as well as basic partitioning of nutrients between growth and storage.

Plant cells are highly compartmentalized, which is a reflection of how metabolic pathways have evolved and are partitioned at the sub-cellular level. The compartmentation of metabolic pathways augments options for control, permits the simultaneous operation of pathways that compete for the same substrates and helps avoid futile cycles. Metabolite transporters play critical roles in connecting the parallel and interdependent biosynthetic and catabolic pathways and thus represent the integrating elements in these metabolic networks, similar to interchanges in road networks. In addition, in vascular plants, long-distance transport is critical for the allocation of organic carbon and nitrogen compounds from their location of synthesis in so-called ‘source’ organs to developing or reproductive plant organs (‘sinks’) that rely heavily on import of the organic compounds for growth and development. This chapter will provide a brief overview of carbon and nitrogen assimilation and then focus on intracellular transport processes in plant cells. In addition, the characteristics of source and sink organs and principles of source to sink translocation of assimilates will be discussed. Particular emphasis will be given on recent insights derived from forward and reverse genetic approaches and in vitro studies of transporter function.
4.2 Photoassimilation and assimilate transport in source cells

Chloroplasts are the sole sites of photosynthetic carbon assimilation and the predominant sites of nitrogen assimilation in plant cells. Triose phosphates (TPs), the net products of carbon assimilation by the reductive pentose-phosphate pathway (RPPP), serve as the principle precursor for all other biosynthetic reactions in plants. For example, recently assimilated carbon can be allocated to starch and sucrose biosynthesis, nitrogen and sulfur metabolism, fatty acid biosynthesis, cell wall biosynthesis, secondary metabolism and a plethora of other metabolic pathways. Carbon allocation to these pathways is controlled at multiple levels, such as transcription, translation and post-translational and allosteric control of enzyme activity, subcellular compartmentation and the distribution of specific pathways between different plant tissues. In addition, environmental factors such as temperature, light intensity and water supply need to be integrated with developmental programs, nutrient status, effects of a variety of biotic and abiotic stresses and source–sink interactions.

4.2.1 Carbon assimilation by the reductive pentose-phosphate pathway (Calvin cycle)

Inorganic carbon dioxide is assimilated into organic C compounds in the chloroplast stroma by the reductive pentose-phosphate pathway (Calvin cycle). As outlined by Gontero et al. (Chapter 7), the carbon dioxide acceptor molecule ribulose 1,5-bisphosphate (RubP) is carboxylated by ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), yielding an unstable C6 intermediate that rapidly hydrolyzes into two molecules of 3-phosphoglyceric acid (3-PGA). 3-PGA represents the first stable intermediate of carbon fixation and is reduced to glyceraldehyde-3-phosphate (GAP) by the consecutive actions of phosphoglycerate kinase and NADPH-dependent glyceraldehyde-phosphate dehydrogenase. One ATP and one NADPH are consumed during the reduction of one 3-PGA. Hence, the carboxylation of one RubP and the subsequent reduction of the resulting two 3-PGA to GAP requires two ATP and two NADPH. GAP is freely interconvertible with dihydroxyacetone 3-phosphate (DAP) by the activity of triose-phosphate isomerase. GAP and DAP represent the actual end products of the reducing phase of the reductive pentose-phosphate pathway (RPPP). One out of six synthesized triose phosphates can be withdrawn from the Calvin cycle for sucrose or starch biosynthesis whereas five out of six TPs have to enter the regenerative phase of the RPPP to produce the CO₂ acceptor RubP.

4.2.2 The plastidic triose-phosphate pool – a metabolic crossway

The triose phosphates that are not required for the regeneration of RubP represent substrates for the first metabolic ‘crossroad’ in the allocation of recently assimilated CO₂ to different metabolic fates. TPs can either be retained inside the chloroplast to enter plastid-localized pathways, or they can be exported to the cytosol. Because chloroplasts are bound by a double membrane system (the chloroplast envelope),
solute transporters that reside in the inner chloroplast envelope membrane [1, 2]. These transporter proteins catalyze the specific exchange of solutes between plastid and cytosol. The export of the triose phosphates GAP and DAP to the cytosol is mediated by the triose phosphate/phosphate translocator (TPT) [3]. This transporter catalyzes the strict counter-exchange of phosphorylated C3 compounds such as triose phosphates and 3-PGA with plastidic phosphate (Pi), but does not accept phosphoenolpyruvate (PEP), pentose phosphates or hexose phosphates (see [2, 4, 5] for recent reviews on the Pi translocator family). The strict one-to-one stoichiometry of the counter-exchange is important for the maintenance of Pi homeostasis in the stroma because Pi is required for the biosynthesis of ATP from ADP and Pi in the light reaction of photosynthesis [6]. If export of Pi from the plastid stroma in the form of TPs would not be balanced by counter-exchange with Pi (or phosphorylated carbon compounds), this would cause a depletion of the plastidial Pi pool that would eventually lead to inhibition of photosynthetic electron transport [7] and ultimately to damage of the photosynthetic machinery. As outlined in the next section, the coupling of TP export to the cytosol to the import of Pi is also important for governing the allocation of TPs to either plastidial or cytosolic metabolism.

4.2.2.1 Communication between the starch and sucrose biosynthetic pathways via TPT

At the end of the dark period, when the transitory starch pool has been depleted and no net photosynthesis occurs, foliar soluble sugar levels are low, as is the carbon status of sink tissues. Upon onset of light, carbon assimilation by the RPPP sets in and triose phosphates are produced. The two predominant metabolic fates of recently produced TPs are starch biosynthesis in the plastid stroma and sucrose biosynthesis in the cytosol (Figure 4.1) – a mechanism is required that regulates the partitioning of carbon between these competing pathways in response to the metabolic needs of the plant. During the early part of the photoperiod, the demand of sink tissues for carbon is high. Driven by a relatively high TP-to-Pi ratio in the stroma and a reverse ratio in the cytosol early in the light phase, the predominant portion of TPs is exported to the cytosol, thus fueling sucrose biosynthesis in source tissues and its export to the sinks. Pi bound in TPs is released during sucrose biosynthesis and thus becomes available as counter-exchange substrate for the export of additional TPs from the stroma (Figure 4.1). Hence, as long as the rate of sucrose biosynthesis keeps up with the rate of CO₂ assimilation, there will be sufficient Pi available in the cytosol to ensure the efficient export of TP from the stroma. However, sink demand decreases later during the day, causing a drop in the rate of sucrose export and, in response, also of its biosynthesis (see below for a more detailed discussion of the concept of ‘sink strength’). Consequently, the release of Pi from TPs slows down, and more and more Pi becomes ‘trapped’ in organic compounds, which depletes the free Pi pool. Under such conditions, Pi is no longer available in the cytosol to drive the export of TPs from the
stroma and the concomitant Pi-depletion of the stroma impedes photophosphorylation because of substrate limitation. The resulting decrease of ATP levels in the stroma slows down the conversion of 3-PGA to TPs, leading to an increase of the steady-state 3-PGA pool. In summary, a reduced cytosolic consumption of TPs by sucrose-biosynthesis is communicated to the plastid via the TPT as a decrease in the Pi and an increase in the 3-PGA levels. This change in stromal metabolite levels relieves the Pi inhibition of ADP-glucose pyrophosphorylase (AGPase), the first committed step of starch biosynthesis, and, at the same time, allosterically activates this enzyme [8, 9]. In addition to allosteric control, AGPase is post-translationally activated by redox modification via the thioredoxin system [10], potentially in response to redox or carbon-status signals (see Chapters 6 and 10 for additional details). The onset of starch biosynthesis releases Pi from the plastidic organic-phosphate pool and fuels photophosphorylation with fresh substrate, thus partially uncoupling the plastid stroma from Pi supply from the cytosol.

Figure 4.1 Simplified schematic representation of the connection between cytosolic sucrose and plastidic starch metabolism, emphasizing the central role of the triose-phosphate pool and the plastid envelope membrane triose-phosphate/phosphate translocator (TPT). Triose phosphates are the end products of CO2 assimilation by the Calvin cycle. They can be either exported to the cytosol in counter-exchange with Pi by TPT, or they can be allocated to biosynthesis of transitory starch. Please note that for the sake of simplicity exact stoichiometries and the complete set of enzymes involved in both pathways are not given and the regeneration of UTP from UDP and Pi is abbreviated. Abbreviations: Fru 1,6-bP, fructose 1,6-bisphosphate; Fru 6-P, fructose 6-phosphate; FbPase, fructose 1,6-bisphosphate phosphatase; SPP, sucrose-phosphate phosphatase; Glc 1-P, glucose 1-phosphate; Glc 6-P, glucose 6-phosphate; PGI, phosphoglucoisomerase; PGM, phosphoglucomutase; Pi, ortho-phosphate; PPi, pyrophosphate; SPS, sucrose-phosphate synthase; TP, triose phosphates; Suc-P, sucrose phosphate; TPT, triose-phosphate/phosphate translocator; UGPase, UDP-glucose pyrophosphorylase.
The central role of TPT as the communication pathway between sucrose and starch biosynthesis was emphasized by transgenic plants in which TPT expression was either knocked down by antisense repression or knocked out by a T-DNA insertion [11–17]. Antisense repression of the TPT transcript in transgenic potato plants to almost undetectable levels and a corresponding reduction of TPT activity by more than 30% showed that a decreased TPT transport capacity could be compensated by increased allocation of recently assimilated carbon into the transitory starch pool and a corresponding decrease in soluble sugar levels during the light period. However, during the following dark period, starch breakdown and sucrose export from leaves was significantly higher than in wild type plants. Reduced TPT activity thus resulted in an altered carbon partitioning between the plastidic starch and cytosolic sucrose pools during the photoperiod (more starch, less sucrose) and shifting the export of reduced carbon from source to sink tissues partially to the dark phase [15].

Similar to the above-described transgenic potato lines, tobacco plants in which TPT activity was reduced by approximately 70% using antisense also showed an increased rate of starch biosynthesis during the day. However, the actual starch accumulation was similar to the wild type [11]. This discrepancy could be explained by an induction of starch breakdown in the light, leading to soluble sugar and starch levels that were similar to the wild type. Obviously, recently assimilated carbon, instead of being exported to the cytosol in the form of triose phosphates, initially enters the transitory starch pool, from which it is rapidly released, most likely in the form of maltose and glucose (Glc) that are subsequently exported to the cytosol by specific transporters [1, 18–21]. The bottleneck in the ‘day path’ of carbon export from chloroplasts generated by reduced TPT activity is thus bypassed by increased flux of carbon through the starch pool, thereby converting TP into Glc and maltose that can leave the stroma independent of TPT. Further studies using these antisense plants and TPT overexpression lines showed that TPT activity does not limit photosynthetic carbon dioxide assimilation under ambient conditions; however, maximal rates of carbon dioxide assimilation at saturating CO₂ and light conditions are severely limited by TPT capacity in the wild type and increased assimilation rates under saturating conditions can be achieved by overexpression of TPT [12, 13].

The phenotype of Arabidopsis T-DNA insertion mutants in the TPT gene (tpt-1) is similar to that of the transgenic tobacco plants described above. The lack in TPT activity in tpt-1 was compensated by an increased flux of recently assimilated carbon through the starch pool (i.e., simultaneous biosynthesis and degradation) in the light. However, simultaneous inhibition of starch biosynthesis in tpt-1 by a genetic cross to a mutant deficient in AGPase activity caused a dramatic dwarfed phenotype of the resulting double mutant. This demonstrates the importance of starch biosynthesis as the major salvage pathway for compensating a defective TPT [14]. It is important to note that simultaneous biosynthesis and degradation of starch in the light does not occur in wild type plants under standard growth conditions [22]. The release of carbon from the transitory starch pool in the light seemingly represents a stress response, possibly triggered by metabolic signals, which arise as a result of Pi limitation of photosynthesis [17].
The regulatory network consisting of TP, 3-PGA, Pi, AGPase and TPT presented here is simplified because it does not include, for example, the intricate control of carbon flux in the cytosol by allosteric regulation of fructose 1,6-bisphosphatase (FbPase) and PPI-dependent phosphofructokinase by fructose 2,6-bisphosphate (F2,6bP) levels [23], and the allosteric and post-translational control of sucrose-phosphate synthase [24, 25]. In a discussion of the role of transporters in the control of primary metabolic pathways in photosynthetic source cells, however, it is important to emphasize the critical role of the chloroplast envelope membrane in separating the plastidic and cytosolic hexose-phosphate pools. If these pools were connected by a hexose-phosphate transporter in the envelope (i.e., a glucose 6-phosphate translocator), the control over the flux of TPs into the hexose-phosphate pool that is exerted by cytosolic FbPase could be bypassed by plastidic FbPase, which is not subject to control by F2,6bP, thus ‘short circuiting’ a central control point in cytosolic carbon metabolism. In addition, during the dark period, a possibility for direct exchange of hexose-phosphates across the chloroplast envelope membrane could potentially lead to futile cycling between sucrose biosynthesis from starch breakdown products in the cytosol and the oxidative pentose-phosphate pathway in the plastid stroma. As further discussed below, recent work from Flügge’s laboratory has provided convincing in vivo evidence for the absence of significant hexose-phosphate transporter activity in photosynthetic tissues of Arabidopsis [26]. Transgenic plants overexpressing the plastidic glucose 6-phosphate/phosphate translocator (GPT) in photosynthetic tissues would represent an interesting tool to further dissect the control of carbon flux and partitioning in photosynthetic cells.

4.2.3 Allocation of recently assimilated carbon to other pathways

Although starch and sucrose biosynthesis represent the major sink for recently assimilated carbon dioxide, a significant portion of reduced carbon is required as precursor for a large number of other primary and secondary metabolic pathways. Reduced carbon can either be directly withdrawn from the regenerative phase of the Calvin cycle, for example in the form of erythrose 4-phosphate (E4P) to fuel the plastid-localized shikimic acid pathway, or it is exported to the cytosol as TP to be converted by, for example, the glycolytic pathway to phosphoenolpyruvate or pyruvate that serve as precursors for mitochondrial respiration as well as the biosynthesis of organic acids, amino acids, etc. Owing to space constraints, a comprehensive treatise of all possible interactions between the various metabolic pathways in multiple cellular compartments is not possible in this review. We will, therefore, illustrate the principles of interaction between pathways in different compartments with selected examples from amino acid, isoprenoid and nitrogen metabolism.

4.3 Nitrogen assimilation

The assimilation of inorganic nitrogen into organic compounds such as glutamate is an essential biochemical pathway in plant cells. The principle form of nitrogen that
is converted into organic N-containing compounds is ammonia. Ammonia can be either taken up directly from the soil, supplied to the plant by symbiotic, nitrogen-fixing microorganisms or it can be generated by reduction of nitrate (see Plate 4). Nitrate is reduced to nitrite in the cytosol by assimilatory NADH-dependent nitrate reductase. Nitrite is then imported into the plastid stroma, either by diffusion or by an active transport process, where it is reduced to ammonia by nitrite reductase. Ammonia is assimilated into the organic form by the joint action of glutamine synthetase (GS) and ferredoxin or NADH-dependent glutamate synthase (Fd/NADH-GOGAT). This process consumes two electrons and one molecule of ATP. The major pathway for ammonia assimilation is the plastid located GS/GOGAT reaction cycle [27–29].

The reaction can be summarized as follows:

\[
\text{2-oxoglutarate} + \text{glutamate} + \text{ATP} + 2 \text{Fd}_{\text{red}} + \text{NH}_4^+ \rightarrow 2 \text{glutamate} + \text{ADP} + \text{P}_i + 2 \text{Fd}_{\text{ox}}
\]

One glutamate can be withdrawn from the reaction cycle to serve as the principal amino group donor in plant metabolism, whereas the second molecule reenters the cycle to serve as an acceptor for ammonia in the GS-catalyzed reaction. In summary, the net reaction of the GS/GOGAT cycle produces one molecule of glutamate from one molecule of each of 2-oxoglutarate (2-OG) and ammonia.

As shown in Figure 4.2, de novo glutamate biosynthesis by GS and GOGAT requires the precursor 2-oxoglutarate. 2-OG is synthesized from isocitrate by isocitrate

![Figure 4.2](image-url)

Figure 4.2 Connection of plastidic ammonia assimilation with cytosolic carbon metabolism by the two-translocator system for the transport of dicarboxylic acids and glutamate in the plastid envelope membrane. 2-OG cannot be synthesized inside the plastid stroma and therefore needs to be imported from the cytosol by DiT1. The end product of ammonia assimilation, Glu, is exported to the cytosol by DiT2. Malate cycles across both transporters, thus connecting them to a two-translocator system. The pathway for nitrite transport into plastids is unknown. Abbreviations: DiT1, 2-oxoglutarate/malate translocator; DiT2, glutamate/malate translocator; Glu, glutamate; Gln, glutamine; GOGAT, glutamine:oxoglutarate aminotransferase (glutamate synthase); GS, glutamine synthetase; NiR, nitrite reductase; NR, nitrate reductase; 2-OG, 2-oxoglutarate.
dehydrogenase (IDH). Although a plastidic IDH isozyme has been reported [30], it is generally accepted that 2-OG is synthesized in the cytosol and/or the mitochondria [31–33]. Hence, 2-OG has to be imported into the stroma from the cytosol. The uptake of 2-OG into the plastid stroma is catalyzed by a two-translocator system that is located in the inner plastid envelope membrane [34]. 2-OG is imported in counter-exchange with malate by a 2-oxoglutarate/malate translocator (DiT1). After conversion of 2-OG into glutamate by GS/GOGAT, glutamate is exported to the cytosol in counter-exchange with malate by a glutamate/malate translocator (DiT2). In summary, 2-OG is exchanged for glutamate by two malate-coupled translocators without net malate transport (Figure 4.2). DiT1 was the first component of the two-translocator system that was identified at the molecular level [35, 36], and recently also DiT2 from Arabidopsis [37] and other plant species [35, 38, 39] was reported. Similar to the coupling of plastidic starch metabolism with cytosolic sucrose metabolism by the triose-phosphate/phosphate translocator [40], plastidic dicarboxylate translocators couple plastidic and cytosolic C and N metabolism [35].

Surprisingly, it was recently found that reconstituted DiT1 was able to catalyze the counter-exchange of oxaloacetate (OAA) with malate in vitro [38, 41], raising the question of whether DiT1 might also have the function of an OAA/malate exchanger, which is an essential component of the redox shuttle (malate valve) between the plastid stroma and the cytosol [42–44]. It seems unlikely that DiT1 acts as OAA/malate exchanger in vivo because OAA-transport by DiT1 is strongly inhibited by malate [38]. The malate-sensitivity of OAA transport by DiT1 explains the need for a specific OAA/malate exchanger that was previously reported by Hatch et al. in isolated chloroplasts of spinach and maize [45]. Importantly, the OAA/malate exchanger is competitively inhibited by relatively low concentrations of 2-OG ($K_i = 0.42$ mM; [45]), raising the question whether the rate of OAA import into the chloroplast by the OAA/malate exchanger might be regulated by cytosolic 2-OG levels, thus coupling the export of reducing equivalents to the cytosol via the malate valve to the rate of 2-OG consumption by plastidic ammonia assimilation [46].

Nitrogen assimilation requires the interaction of three cellular compartments: plastid stroma, cytosol and mitochondria. The conversion of TP to 2-OG involves the glycolytic pathway (conversion of two molecules of TP to: (i) one molecule of PEP (by phosphoglycerate kinase, phosphoglycerate mutase and enolase) and (ii) one molecule of pyruvate (by above mentioned enzymes and pyruvate kinase), respectively), carboxylation of PEP to OAA by PEP-carboxylase and conversion of pyruvate to acetyl-CoA by mitochondrial pyruvate dehydrogenase (PDH). The subsequent reduction of OAA to malate and its conversion to 2-OG requires a partial tricarboxylic acid cycle and hence mitochondrial metabolism (see Chapter 12 as well as refs. [1, 2, 5, 35] and [47] for recent reviews). In leaves of C$_3$-type plants, approximately 90% of the capacity of the ammonia assimilatory machinery is used for reassimilation of ammonia that is released from the photorespiratory carbon cycle [48, 49]. During photorespiration, ammonia is generated in the mitochondrial matrix by glycine decarboxylase (GDC) [50, 51] and it was previously assumed that the plastidial isozyme of glutamine synthetase 2 (GS2) represents the major
pathway for reassimilation of photorespiratory ammonia [52, 53]. The recent surprising discovery of dual targeting of glutamine synthetase 2 (GS2) to chloroplasts and mitochondria [54] opens the possibility of ammonia assimilation by GS in the mitochondrial matrix, directly at the site of ammonia generation by GDC. However, to maintain the nitrogen stoichiometry of the photorespiratory pathway, glutamine needs to be converted to glutamate, which serves as amino donor for the peroxisome-localized glyoxylate amino transferase reaction. The conversion of glutamine and 2-OG to glutamate is catalyzed by Fd-GOGAT (see above) and the current understanding is that Fd-GOGAT (and NADH-GOGAT) is exclusively localized in the plastid stroma [55, 56]. Hence, glutamine needs to be shuttled back to chloroplasts by a yet uncharacterized transport mechanism. Potentially, a glutamate/glutamine shuttle could operate between mitochondria and plastids. A glutamine/glutamate antiporter has been purified from rat liver mitochondria [57] and a similar transport system was also described in isolated chloroplasts [58]. The corresponding genes, however, are unknown. Overall, the photorespiratory pathway is highly compartmentalized, involving plastids, cytosol, peroxisomes and mitochondria. Metabolite transporters are critical to maintain the high net fluxes between these organelles [47]; however, to date only one transporter involved in this pathway, the plastidial glutamate/malate transporter DiT2, has been identified at the molecular level [38].

4.4 Amino acid and isoprenoid metabolism

Chloroplasts are the major intracellular site of amino acid biosynthesis in plants. For example, the minor amino acids Val, Arg, Ile, His, Leu, Trp, Tyr, Met, Phe, Cys and Lys and the major amino acid Glu are predominantly or exclusively synthesized in the plastid stroma. Enzymes involved in Thr biosynthesis carry plastid-targeting signals and are thus also likely to be localized in plastids [59, 60]. In addition, chloroplasts are the sole site of de novo glutamate biosynthesis from 2-OG by the various GS and GOGAT isozymes [49]. Asp, Gln, Ser and Gly can be synthesized in multiple compartments, whereas asparagine synthase, at least in Arabidopsis, seems to be confined to the cytosol [61]. The sole or predominant localization of some amino acid biosynthetic pathways in the plastid stroma requires (i) import systems for carbon precursors and cofactors of amino acid biosynthetic pathways and (ii) export systems for amino acids that are required in other cellular compartments for protein biosynthesis or as amino group donors for other biosynthetic pathways. In addition, amino uptake systems are needed for those amino acids that are not synthesized inside the plastid (i.e., proline) but are necessary for protein biosynthesis in the plastid stroma. Similarly, mitochondria also rely on amino acid uptake systems to provide mitochondrial protein biosynthesis with precursors. With the exception of the plastidic glutamate/malate transporter DiT2, which serves as the major Glu export pathway from plastids [38], none of the plastidic amino acid transporters has been unequivocally identified at the molecular level, whereas a mitochondrial arginine/ornithine transporter has been reported recently [62]. A comprehensive
treatise of amino acid metabolism, its control and its compartmentation is beyond the scope of this chapter and the reader is referred to several excellent reviews covering this topic [49, 63–70]. We will focus here on recent findings relating to the compartmentation of amino acid biosynthesis and their metabolism in plant cells.

4.4.1 Methionine and S-adenosylmethionine metabolism

Although the Arabidopsis genome encodes three isozymes of methionine synthase that have different subcellular localizations, including cytosol and plastids [71], the de novo biosynthesis of the methionine precursor homocysteine from cysteine by cystathionine synthetase and cystathionine lyase is confined to the plastid stroma [72]; hence plastids are the unique site of de novo methionine biosynthesis in plant cells [71]. Importantly, Met not only serves as building block for protein biosynthesis, but is also a component of the activated methyl donor S-adenosylmethionine (SAM). SAM is the sole methyl donor in metabolism that is required in a wide range of transmethylation reactions by SAM-dependent methyltransferases such as the chlorophyll, tocopherol, plastoquinone, lipid and nucleic acid biosyntheses. SAM is synthesized from Met by SAM synthetase, an enzyme that is exclusively localized in the cytosol of plant cells [72, 73]. The end product of the methylation reaction, S-adenosyl homocysteine is recycled to Met via Hyc by AdoHyc hydrolase, methionine synthase and SAM synthase. Since SAM is required as a methyl donor in biosynthetic reactions in both mitochondria and chloroplasts, uptake systems for SAM are needed in both organelles. Such SAM transport systems have been recently described in yeast and human mitochondria [74, 75] and a transport system with similar kinetic properties and substrate specificity was identified in isolated spinach chloroplasts [71]. Both, mitochondria and chloroplasts take up SAM from the cytosol and export AdoHyc for regeneration to SAM in the cytosol. The corresponding carriers seem to catalyze both SAM uniport and SAM/AdoHyc counter-exchange.

4.4.2 Shikimic acid pathway and aromatic amino acid biosynthesis

The aromatic amino acids Trp, Tyr and Phe are derived from the shikimic acid pathway that is confined to the plastid stroma [76]. Chloroplasts, unlike most nongreen plastids, lack the activities of enolase and/or phosphoglyceromutase [77–79]; hence triose phosphates cannot be converted to PEP in the plastid stroma. Therefore, chloroplasts (and likely also other plastid subtypes) require a transporter for the import of PEP into the plastid stroma. A plastid envelope membrane transporter that catalyzes the counter-exchange of PEP with Pi, but that does not accept TPs or hexose phosphates as substrates (phosphoenolpyruvate/phosphate translocator, PPT) was recently identified from cauliflower, maize and Arabidopsis [80, 81]. The Arabidopsis genome harbors two PPT genes (PPT1, PPT2) that both encode functional PPT proteins [82]. A knockout mutant in PPT1, cue1, displays a reticulate phenotype in which interveinal regions of the leaves are visibly pale, whereas paraveinal regions are green. This phenotype is
accompanied by aberrantly shaped mesophyll cells containing abnormal chloroplasts, but bundle sheath cells and chloroplasts appear like the wild type [80]. It was hypothesized that the phenotype is due to reduced import of PEP into plastids, causing substrate limitation of the shikimate pathway, and possibly also of isopenentyl biosynthesis. This hypothesis was supported by metabolic analysis, demonstrating that metabolites derived from the shikimate pathway, such as phenylpropanoids, were severely reduced in cue1 [80, 83]. In addition, constitutive overexpression of pyruvate:phosphate dikinase (PPDK) in the stroma of cue1 abrogated the reticulate phenotype of mutant [83]. PPDK can generate PEP from pyruvate that can still be taken up from the cytosol, thereby bypassing the defective PPT1 and generating an alternative source for PEP in the plastid stroma. This approach also indicates that Arabidopsis mesophyll chloroplasts have a substantial capacity for pyruvate transport across the envelope membrane. However, the overexpression of PPDK did not alleviate all aspects of the cue1 phenotype, indicating that the phenotype cannot exclusively be attributed to a reduction in PEP transport capacity [83].

The second precursor required in addition to PEP for the shikimate pathway is E4P, which can be withdrawn from the pentose-phosphate cycle. E4P is produced together with xylulose 5-phosphate (Xul 5P) from fructose 6-phosphate (F6P) and GAP in a reversible reaction catalyzed by transketolase (TK). Hence TK represents an important branch point in metabolism: the substrate F6P is the precursor for starch biosynthesis, GAP can be exported to the cytosol by TPT, E4P can serve as precursor for the shikimate pathway but also for the production of Xul 5P. TK is thus also critical for the regeneration of the CO2 acceptor RubP and thus for the continued operation of the Calvin cycle.

The important role of TK in both photosynthetic and phenylpropanoid metabolism was demonstrated by antisense repression of TK in transgenic tobacco plants [84]. A relatively small decrease of TK activity (20–40%) inhibited the regeneration of RubP and carbon assimilation and caused marked changes in the partitioning of recently assimilated carbon between sucrose and starch biosynthesis. Reduced TK activity also caused pronounced decreases in aromatic amino acids, intermediates and end products of phenylpropanoid metabolism such as Tyr, Phe, Trp, caffeic acid, tocopherol and hydroxycinnamic acids [84]. In addition, a massive decrease in lignin content was observed if TK activity was reduced by 40% or more.

The shikimate pathway represents a striking example of coordination and interaction between plastidic and cytosolic metabolism and the role of solute transporters in this process. In photosynthetic tissues, carbon precursors are derived from the Calvin cycle. Whereas E4P can be directly withdrawn from the RPPP, PEP is synthesized in the cytosol from TP that has been exported from the chloroplast by TPT, and is then imported into the plastid by PPT. This ‘detour’ through parts of the cytosolic glycolytic pathway couples the production and use of PEP in the cytosol to its metabolism in plastids. Since multiple metabolic routes ‘draw’ from and ‘feed’ into the PEP pool, the connection between pathways in multiple cellular
compartments at the level of a central metabolite is essential for cross-pathway and cross-compartment control of metabolism.

4.4.3 Isoprenoid synthesis via the deoxy-xylulose 5-phosphate pathway

Another example for a plastidic pathway that requires interaction of cytosolic and plastidial metabolism is the deoxy-xylulose 5-phosphate (DOXP) pathway for the biosynthesis of isopentenyldiphosphate (IPP), also known as the 2-methylenytritol-4-phosphate pathway [85, 86]. Most if not all plastid-synthesized isoprenoids such as carotenoids, tocopherol, isoprene and the phytol side chain of chlorophyll are derived from the DOXP pathway and not, as previously assumed, via the mevalonate (MVA) pathway. The MVA pathway is localized in the cytosol and uses acetyl-CoA as a precursor for the biosynthesis of the isoprenoid precursor IPP, whereas the plastidic DOXP pathway is fueled by pyruvate and GAP [86]. Whereas GAP can be withdrawn from the RPPP, either pyruvate or PEP has to be imported from the cytosol because photosynthetic plastids lack the glycolytic sequence from GAP to PEP [77–79]. Pyruvate transporters have been characterized in a number of C₄ [87, 88] and C₃ [89] plants. Additional evidence for efficient uptake of pyruvate into chloroplasts from C₃ plants comes from the observation that isolated spinach chloroplasts are able to synthesize pyruvate-derived amino acids upon external supply of pyruvate [90]. Moreover, as outlined above, the PPT-deficient mutant cue1 could be complemented by overexpression of plastidic PPDK, demonstrating that pyruvate uptake into chloroplasts also occurs in vivo [91]. Another possible route for pyruvate import into chloroplast is uptake of PEP and conversion of PEP and ADP to pyruvate and ATP by pyruvate kinase.

The compartmental separation of the DOXP and MVA pathways for IPP biosynthesis is not absolute; considerable evidence suggests crosstalk between both pathways [92]. A recent study, in fact, demonstrated that intermediates of the DOXP and MVA pathways such as DOXP and IPP could be exchanged between the chloroplast stroma and the cytosol [93]. DOXP can be exchanged with Pi and 3-PGA, but not with glucose 6-phosphate and is actively accumulated in the plastid stroma. The transport of DOXP is preferentially mediated by the xylulose 5-phosphate/phosphate translocator (XPT) that was previously shown to accept triose phosphates, Xul 5-P, Ru 5-P and Ery 4-P as counter-exchange substrates for inorganic phosphate, whereas Rib 5-P and hexose phosphates are not transported by this carrier [94]. IPP is taken up into isolated chloroplasts at a lower rate than DOXP and it is not actively accumulated. IPP is transported by a transport system that is distinct from the plastidic Pi translocators – neither reconstituted recombinants GPT, TPT or XPT were able to catalyze the uptake of IPP into proteoliposomes. However, when total chloroplast envelopes were reconstituted into liposomes preloaded with Pi or phosphorylated carbon compounds, uptake of radiolabeled IPP was observed. Using back-exchange experiments, it was further shown that IPP transport by reconstituted chloroplast envelope membranes occurs unidirectionally, most likely by facilitated diffusion, but presence of phosphorylated compounds or Pi on the trans-side of the membrane is required as activators or positive regulators of the IPP transporter [94].
4.5 Sucrose and amino acid loading into the phloem for long-distance transport

In most plant species amino acids and sucrose represent the major transport form of organic nitrogen and carbon, respectively, and the overview on mechanisms of source to sink translocation of metabolites will focus on these.

Long-distance transport of amino acids between organs occurs generally via the phloem pathway and the xylem in the transpiration stream (Plate 4). Translocation of amino acids from photosynthetically active organs and storage sources to sinks is primarily by the phloem, though phloem–xylem exchange of amino acids can occur in both directions [95–97]. In contrast, sucrose, and some other sugars and sugar alcohols are translocated between source and sink only by the phloem [98–102]. In source leaves, following assimilation of CO₂ and inorganic nitrogen, and transient storage of organic carbon and nitrogen compounds, sucrose and amino acids are loaded into the phloem of the minor veins for long-distance transport to developing sink organs [102–104]. To accommodate the phloem translocation mechanism, sucrose and amino acids must be concentrated in the sieve tube sap, which provides an efficient means for transport of large amounts of sucrose and amino nitrogen to sinks such as apices, newly developing tissues and particularly strong sinks such as reproductive organs and seeds and vegetative storage organs that accumulate large amounts of protein, starch, or lipids [95, 105–107]. Plasma membrane localized transporters are key components of this translocation process both at the source and sink ends of the system (Plate 4).

4.5.1 Mobilization of stored carbon and nitrogen

Accumulation or transport of assimilates are dynamic processes that can respond rapidly to changing environmental, physiological and developmental conditions. These processes are equally applicable to green leaves and storage organs such as rhizomes, tubers and bulbs, which function as vegetative reproductive propagules, and seeds, where remobilization of starch, lipid, or protein reserves fuels growth of new shoots or plants. In many plant species large pools of starch can accumulate in the plastids of green leaves when conditions are optimal for photoassimilation of CO₂ and sucrose synthesis exceeds its export from the source leaf [108, 109]. During darkness or with increasing sink demand the starch can be converted to sucrose to be loaded into the phloem for long-distance transport [109], thus maintaining growth. In a similar manner, controlled proteolysis is essential in allowing plants to change their protein content during development, to adapt to new environmental conditions, to reutilize amino acids that would otherwise be lost during senescence of an organ [110–112] and during regrowth from vegetative propagules. Studies on a wide range of organisms showed that protein turnover is common to all plants and leaf protein degradation has a large number of functions in physiology and development. Leaf proteins are degraded when carbon and nitrogen are required to support growth of sink organs, and this process increases during leaf development from mature, green leaves to senescent leaves. In green cells most of the protein is
located in chloroplasts, so these organelles are the major source of the organic nitrogen salvaged from senescing tissues. The most abundant of these proteins is Rubisco, located in the stroma of the chloroplast. In leaves of many leguminous plants nitrogen is also accumulated as vegetative storage protein in paraveinal mesophyll cell vacuoles whose amount is directly related to source–sink dynamics [113–115]. Several studies have demonstrated that the process of leaf senescence measured either as yellowing or declining rates of photosynthesis is broadly correlated with decreases in the amounts of Rubisco and other proteins involved in photosynthetic carbon reduction. The enzymes responsible for degradation of proteins during senescence have not been fully identified yet. However, senescence associated genes (SAGs) such as SAG12 from Arabidopsis encoding for cysteine proteases are suggested to play a central role in the degradation of leaf proteins [112, 116, 117]. The resulting amino acids (and peptides) are available for long-distance transport to sink tissues.

4.5.2 Mechanisms of phloem loading and involvement of transporter proteins

For long-distance transport sucrose and amino acids have to be exported out of mature and the senescing leaf chlorenchyma cells and loaded into the phloem. In principle, there are two basic mechanisms by which the phloem can be loaded with assimilates. The first is referred to as the symplasmic path, which relies on direct movement between cells via plasmodesmata. Plasmodesmata are intercellular structures providing a potential symplasmic continuity between adjacent cells [118]. In the symplasmic loading mechanism, plasmodesmata connect the mesophyll cells and elements of the phloem such as bundle sheath cells, phloem parenchyma cells, companion cells and sieve elements (see Plate 4). The second mechanism is referred to as apoplastic phloem loading, in which sugars and amino acids are first exported into the phloem apoplast from nonphloem cells by an unknown process. The organic N and C compounds are then taken up into the sieve element/companion cell complex of the phloem by an energy-requiring plasma membrane transport step. Plasmodesmata are essentially absent between companion cell/sieve element complex and the mesophyll for this system, or when present, they might be ‘closed’ [119, 120]. Recent studies by Turgeon and Medville [121] suggest that only plants that transport oligosaccharides larger than sucrose are symplasmic loaders, and all other plant species follow phloem loading via the apoplast independent of the frequency of plasmodesmata.

Both apoplastic and symplasmic loading result in an increase of solutes in the sieve element, which is important for generating the driving force for phloem translocation [122]. Our current understanding of the mechanism that drives transport of sucrose and amino acids in the phloem is based on the osmotic pressure-flow hypothesis of Münch [122] and the pioneering molecular model of Giaquinta [123, 124] for sucrose uptake and translocation. It is well established that sucrose loading occurs via plasma membrane sucrose/proton symporters energized by proton pumping ATPases [98–100, 102, 103, 125, 126] transporting
Sucrose against a concentration gradient into the sieve element/companion cell complex (SE/CC). In a similar mechanistic fashion, recent studies indicate amino acid loading into the phloem is mediated by H⁺-coupled amino acid symporters [101, 104, 127–129].

For sugar transport, many plants accumulate and translocate primarily sucrose, which requires high affinity and possible additional low affinity transporters. In contrast the amino acids are a heterogeneous chemical group and their transport is likely more complicated than that for sucrose. The relative concentrations of some specific amino acids in the phloem and the mesophyll cytosol of spinach and barley were shown to be similar, suggesting passive diffusion of amino acid into the phloem [130, 131]. However, studies with the same and other plant species also show that some amino acids are in higher concentrations in the phloem than in the cytosol of mesophyll cells, thus indicating that certain amino acids must be actively loaded into the SE/CC [130–133]. It has also been shown that a concentration gradient of amino acid can be found between the apoplast and the phloem [132], which indicates that transport systems are involved in the uptake of various amino acids from the apoplast into the phloem. This is supported by physiological studies with plasma membrane vesicles isolated from mature leaf tissue that have demonstrated the existence of proton-coupled (symport) amino acid transporters [134–138]. However, transport studies with membrane vesicles also give evidence that low-level facilitated diffusion mechanisms might coexist with the symporter-mediated accumulation [139]. In addition, similar composition of amino acids in the phloem and the mesophyll cells points to an uptake system which might not be highly selective. Physiological studies with leaf membrane vesicles support the hypothesis of a low selective uptake system for amino acids [135]. Nevertheless, more selective, high affinity systems for phloem loading of specific amino acids cannot be excluded.

4.5.3 **Sucrose transporters**

Sucrose transporters are among the most studied transport systems in plants and are thus the best characterized at the physiological and molecular levels. In many plants organic carbon is preferentially translocated in the form of sucrose, though some plants may transport large amounts of polyols and raffinose series sugars as well [100, 121]. It is well established that for long-distance translocation sucrose is taken up from the leaf apoplast and imported into the sieve element/companion cell complex of the phloem by H⁺-coupled symporters (see Plate 4). So-called SUT/SUC transporters have been found to be responsible for this import step [101]. The physiology, expression, localization and function of the sucrose transporters have been extensively studied and a number of comprehensive reviews have been published [99, 101–103, 107, 140–143]. However, there is still much to be learned about these transporters. For example, with respect to phloem loading mechanisms differences have been found in localization of sucrose transporters from Arabidopsis (SUC2, [144]) and solanaceous species (SUT1, [145, 146]). While SUC2 was localized to the CC plasma membrane of Arabidopsis, SUT1 of tobacco and potato
were detected in the SE membrane of leaves, petioles and stem and hypothesized to function in CC or SE loading, respectively. This might be interpreted as species differences in phloem loading systems but additional, undiscovered or uncharacterized SUT/SUC transporters might be present as indicated by recent studies with Plantago major [147] which may expand our concepts of the role of sucrose transporters in distinct cell types of the phloem.

4.5.4 Amino acid transporters

Considering the number of different amino acids and their analogs that might potentially be transported, one might hypothesize that a range of amino acid transporters with differing affinities must exist. In fact, the reality lies somewhere in between, with specific, selective and broad-spectrum transporters having been identified. Molecular studies on amino acid transport have mostly concentrated on Arabidopsis, where a minimum of 53 amino acid transporters are predicted to be present based on DNA sequences in the genome [148]. The AtAAPs (amino acid permeases) with eight members are the most extensively investigated amino acid transporters. They were characterized to be broad specificity proton symporters and to transport mainly neutral (and acidic) amino acids with low affinity [149]. Northern-blot analysis and promoter-reporter gene fusion studies revealed that the AAPs have distinct expression patterns, are developmentally regulated and are expressed in specific tissues indicating that the various transporters fulfill specific functions within the plant [104, 150–152]. Other transporters include the AtProTs, transporters for compatible solutes including the amino acid proline [153–155], AtANT1, an aromatic-neutral amino acid transporter [156], AtCATs, cationic amino acid transporters [157, 158] and AtLHTs. AtLHT1 was characterized to be a lysine and histidine transporter [159]. However, when analyzing the substrate specificity of another member of the family, AtLHT2, it was found that this protein transports uncharged and negatively charged amino acids with high affinity [160]. There is still little known about the actual cellular location of most of these transporters. While some of the transporters might be located in the plasma membrane where they are involved in import of amino acids into the cell, others could play a role in metabolite transfer processes across organelle membranes. Promoter-GUS studies in Arabidopsis, tobacco and oil seed rape have localized AAP transporters to the vasculature and vascular parenchyma [151, 161] and in the case of AtAAP2 and AtAAP3 to the phloem, suggesting a role in apoplastic phloem loading of amino acids [150, 151]. Additional studies and strategies such as employment of green fluorescent protein (GFP) reporter or development of viable transporter-specific antibodies will help resolve some of these questions. Unfortunately, while immunolocalization can be definitive, developing antibodies to membrane bound transporters is known to be notoriously difficult.

4.5.5 Genetic modification of phloem loading with assimilates

Antisense and reverse genetic studies have provided direct evidence that leaf phloem sucrose transporters are critical to sucrose accumulation by the phloem and
that their presence is required for normal plant growth and development and for reproductive success [162–164]. These experiments showed that SUT1/SUC2 T-DNA insertion mutants and transgenic plants were characterized by accumulation of leaf carbohydrates and reduced export of sucrose out of the source leaf, with a concomitant adverse effect on sink development. In another study, overexpression of SUT1 under control of the constitutive CaMV 35S promoter in potato led to a reduced level of sucrose in source leaves and increased amounts in tubers, respectively [165]. However, little change was observed in photosynthetic rate in leaves and starch content in tubers. This lack of effects on metabolism could be dependent on the suitability of the promoter used but could also indicate that in some cases both metabolic and transport activities might need to be altered to drive processes downstream of translocation in sink tissue.

The relative contribution of an individual amino acid transporter to physiological parameters of amino acid translocation is less understood. As reviewed above, a number of putative plant amino acid transporters with varying properties have been identified; however, only one study directly demonstrates a physiological role for such a transporter in the plant [166]. Using potato plants, it was found that antisense inhibition of a leaf specific amino acid permease (StAAP1) under control of the constitutive CaMV 35S promoter leads to the reduction of the pool of free amino acids in potato tubers. These experiments prove a function of amino acid permeases in long-distance transport and also confirm that amino acid transport to, and accumulation in, sink organs can be manipulated by molecular genetic engineering in principal, and in particular at the source end. Studies on overexpression, knock-out or knockdown of specific amino acid transporters in various organs will help to dissect the role of the members of the different amino acid transporter families in the physiology of the plant.

4.6 Phloem unloading in sinks and assimilate transport to developing seeds

Uptake, transport and partitioning of organic carbon and nitrogen between different plant parts depend on developmental and physiological status of the plant as well as on more complex concepts of ‘sink strength’. Sink strength as a measurable term has been discussed controversially, since activity and sink size are dependent on photosynthesis, competition between sinks, the transport pathways and the demand by the rest of the plant [167, 168]. In addition, expression and control of transporters are important factors. Transport and transfer processes contributing to nitrogen and carbon flow from source to sink do not function independently, but are highly regulated and integrated events, both at the physiological and molecular levels [109, 169–171]. The availability of powerful molecular techniques and molecular genetic information on an increasing number of plant species provides the tools that have allowed us to make progress on identifying transporters involved in transport and transfer processes at the cellular, tissue and whole plant levels.
With respect to source to sink transport, the amount of organic nitrogen or carbon in sinks depends on the amounts of assimilates translocated in the phloem sap, indicating that phloem loading in source leaves is a key factor in the distribution process. Sucrose has been identified as an important signal molecule that influences carbon and nitrogen partitioning [172–174]. Similarly, the regulatory effect of nitrogen was shown by Crafts-Brandner et al. [175] who found that N deficiency enhanced the rate of leaf senescence and leads to a decline in amounts of protein in the leaf and probably to changes in amino acid transport activities. Leaf protein degradation can also be repressed by removal of developing sink organs (fruits, pods) indicating that sinks might be involved in the signalling process [111]. A well-studied example of this dynamic is depodded soybean, where it was shown that in old leaves Rubisco is still degraded but the mobilized N is apparently refixed in the paraveinal mesophyll as vegetative storage protein resulting in little change in total leaf protein [176, 177]. Thus, sink limitation can affect transport properties of the leaf [114, 178, 179].

4.6.1 Assimilate distribution and transport in seed coats

Seeds represent strong sinks for sugars and amino-N, and large amounts of organic carbon and nitrogen are translocated in support of metabolism and storage of proteins and starch or lipids in seed sinks [128, 180]. Transport and accumulation of sugars and nitrogen involves coordination of a set of separate processes in the maternal (seed coat) and filial (embryo/endosperm) seed tissues, because the developing embryo and endosperm are symplasmically isolated from the surrounding maternal tissue (see Plate 4). Thus, there is a requirement for membrane passage of imported sucrose and amino acids at the interface between these two tissues [181]. Phloem unloading of the organic compounds in the seed coats is considered to be symplasmic [102, 182–185]. Following symplasmic passage via the seed coat parenchyma cells, assimilates are exported into the apoplastic cavity from where they are subsequently absorbed by the growing embryo. While a number of experiments demonstrated that large amounts of amino acids and sugars are released into the apoplastic space between seed coat and embryo, the mechanism by which they are released is not understood. de Jong and Wolswinkel [186] proposed that release of amino acids from pea seed coats occurs by a facilitated membrane transport mechanism, probably through nonselective pores [187]. A similar system was postulated for efflux of sucrose from pea seed coats [188]. This is in contrast to studies done on Vicia faba and Phaseolus vulgaris [189, 190] where efflux experiments have demonstrated that sucrose/H\(^+\) antiport is responsible for release of sucrose from the seed coat into the apoplast prior to loading into the developing cotyledons by a symporter. In these systems, sucrose release from the seed coat seems to be regulated by cell turgor that directly acts on activity of a sucrose/H\(^+\) antiporter [191].

4.6.2 Uptake of sucrose and amino acids by the developing embryo

After export from the seed coat to the apoplastic cavity, assimilates are absorbed by the growing embryo. Besides sucrose, a mixture of 20 amino acids was found in the
seed apoplast [192–194]. Glutamine, asparagine, alanine and threonine were the predominant amino acids, although this was dependent on seed developmental stage. The basic mechanisms of sucrose and amino acid absorption by the embryo have been studied extensively with leguminous seeds such as pea and soybean [188, 195, 196]. For amino acids these studies have demonstrated the presence of two different transport systems, a saturable and a nonsaturable one. The nonsaturable system appears to be of primary importance during early seed development. In soybean an additional saturable system is present but its activity is low compared to the nonsaturable system and its contribution to amino acid uptake is insignificant during the early developmental stage. However, it is interesting to note that the soybean saturable system can be derepressed by N and C starvation, a mechanism that probably involves synthesis of new carriers [196]. Studies on valine absorption by pea cotyledons have shown similar results [195]. Uptake of valine during early cotyledon development was strictly dependent on the external amino acid concentration over the whole concentration range, indicating a diffusion-like mechanism. As seed development progresses, the passive transport pathway is supplemented by a saturable, and probably active, transport system. This saturable system appeared to operate as an H+/symporter, and its activity increased rapidly up to the latest stage of seed development and was only slightly reduced by low osmolarity [195].

4.6.3 Specialized sites of import

In some plant species and tissues so-called transfer cells are located in strategic positions where they promote high membrane fluxes of solute between the apoplast and symplasm. Transfer cells have a specialized wall-membrane apparatus comprising an invaginated secondary ingrowth wall and an associated plasma membrane enriched in proteins that support solute exchange [183, 197]. In the seeds of many grain legumes, including pea, transfer cells develop at the interface between maternal and filial tissue. More specifically, transfer cells line the inner surface of the seed coat and the juxtaposed outer surface of the enclosed cotyledons [198–200]. For example in faba bean and pea cotyledons import and accumulation of solutes is facilitated by the development of a transfer cell complex at their outer epidermis surface [198, 199, 201, 202]. Within the epidermal transfer cells, wall ingrowths are polarized to the outer walls that face the seed coat, which release the assimilate into the apoplast for import into the cotyledons [183, 198, 199]. It is only recently that the existence and function of proton-coupled co-transport within transfer cells was demonstrated [199, 201, 203–206].

4.6.4 Sucrose and amino acid import into developing embryos/cotyledons

Sucrose transporters have been identified in a number of sink tissues including flowers and seeds of dicot and some monocot plant species [99, 101, 102]. Most of the studies have concentrated on sucrose import into legume seeds [199, 201, 203–209]. SUT protein and RNA have been localized to the epidermal transfer cell layers of Pisum sativum and V. faba cotyledons, where they are responsible for the
high rates of uptake of sucrose from the seed apoplast [204–206]. In addition, some of the apoplastic sucrose might be cleaved by a plasma membrane bound invertase followed by import of fructose and glucose via monosaccharide transporters [99, 101, 206]. While expression of SUT transporters within the storage parenchyma has been found, they are suggested to play a function in retrieving sucrose leaking into apoplast from these storage cells, which are active in starch synthesis [199].

We have a poor understanding of the role of amino acid transporters in seed development compared to better-studied sucrose transporters. So far only a few genes coding for amino acid transporters have been shown to be expressed in seeds of Arabidopsis [210, 211], *P. sativum* [212] and *V. faba* [213–215]. All these transporters belong to the AAP family. Promoter-GUS analysis in Arabidopsis revealed *AtAAP1* and *AtAAP8* expression in seed coat and developing embryo. RNA in situ hybridization studies demonstrated that the legume AAPs were located in the storage parenchyma of pea and faba bean cotyledons, respectively, indicating a function in amino acid retrieval from the apoplast for protein synthesis and accumulation [213–216] (see Plate 4). However, *PsAAP1* is also highly expressed in the abaxial epidermal transfer cells of pea cotyledons [216] where it is hypothesized to import neutral and acidic amino acid from the apoplastic cavity of the seed.

4.6.5 Genetic modification of assimilate transport in seeds

Given the differing affinities of members of the amino acid transporter families, there is the possibility of targeting accumulation of a specific class of amino acids or overall amino acids through molecular genetic techniques. While there are no published studies on manipulation of amino acid transport processes aimed at effects on seeds, the potential importance of such manipulations is indicated by work with a sucrose transporter. It was demonstrated that SUT activity can be functionally overexpressed in storage parenchyma of developing pea cotyledons by using the pea vicilin promoter [217]. Heterologous expression of *StSUT1* in this tissue could significantly enhance the sucrose uptake capacity of the storage parenchyma cells and also increased cotyledon growth rate. However, influx in whole cotyledons through the outer surface of the epidermal transfer cell layer was only increased by ca 20%. From these results we might conclude that cellular location of transporter activity is probably a key determinant in genetic manipulation of import processes into seeds. Use of a promoter that targets transporter expression and function to the outer cell layer of developing embryos/cotyledons might help in enhancing metabolite uptake and lead to increased accumulation of storage compounds.

4.7 Assimilate transport and metabolism in sink cells

Storage sinks receive carbon precursors from source tissues that are then converted to and stored as starch, oil and proteins that accumulate in specific compartments of sink cells. Fatty acid, amino acid and starch biosynthesis are all associated with plastids; hence we will emphasize the role of plastids in sink
cell metabolism. Carbon transport into nongreen plastids has been recently reviewed [218]; therefore, we will focus on recent developments since this last review.

4.7.1 The role of hexose-phosphate import into nongreen plastids

Glc 6-P is the sole precursor for starch biosynthesis in Arabidopsis (and likely also in other plant species). This was demonstrated by the starch-free phenotype of a mutant in the plastidic isozyme of phosphoglucomutase (PGM; conversion of Glc 6-P to Glc 1-P). Since Glc 1-P and Glc 6-P are freely interconvertible in the cytosol of plant cells due to the activity of cytosolic PGM, the cytosol contains both Glc 1-P and Glc 6-P. If Glc 1-P could be taken up into chloroplasts, a deficiency in the plastidic PGM isozyme should not lead to a starch-free phenotype because the defect would be bypassed by uptake of Glc 1-P. Hence, the starch-free phenotype of the plastidic PGM mutant unequivocally demonstrates that no pathway exists for the uptake of Glc 1-P into plastids [219, 220]. A mutant in the plastidic isozyme of phosphoglucoisomerase (conversion of Fru 6-P to Glu 6-P) contains starch in nongreen tissues whereas photosynthetically active tissues are starch free [221]. This finding indicates that mesophyll chloroplasts do not have significant Glc 6-P transport capacity that could bypass the interrupted link between the Calvin cycle and starch biosynthesis, whereas nongreen plastids are able to take up Glc 6-P from the cytosol and are thus not dependent on plastidic PGI activity. Glc 6-P is taken up into nongreen plastids by the GPT [222]. GPT has the broadest substrate specificity within the plastidic Pi translocator family [223]. It is able to exchange Pi for TPs, Glc 6-P, the pentose phosphates ribulose 5-phosphate, ribose 5-phosphate and xylulose 5-phosphate, as well as PEP, 3-PGA and E4P. The genome of Arabidopsis harbors two paralogous GPT genes, \textit{AtGPT1} and \textit{AtGPT2} [4]. Expression of the corresponding cDNAs in yeast cells and reconstitution into liposomes demonstrated that both genes encode functional Glc 6-P translocators [26]. Constitutive expression of either gene under control of the CaMV 35S promoter in an Arabidopsis mutant deficient in plastidic phosphoglucomutase [221] rescued the low-starch phenotype in photosynthetic tissues of this mutant, demonstrating that: (i) both transporters function as Glc 6-P translocators in intact plants and that (ii) Glc 6-P transport across the envelope membrane of Arabidopsis plants with wild type expression levels of GPTs is insignificant [26]. Homozygous knockout mutants in \textit{GPT2} did not display an obvious phenotype, whereas homozygous knockout mutants in \textit{GPT1} could not be obtained [26]. Arabidopsis plants hemizygous for T-DNA insertions in \textit{GPT1} showed a distorted segregation ratio, reduced male and female transmission efficiency and an arrest in pollen and ovule development, indicating a critical role of \textit{GPT1} during gametogenesis [26]. The female gametophyte development in the mutant was arrested at a stage before the polar nuclei fuse and pollen development was associated with less lipid body formation and a disintegration of the membrane system. In addition, an effect on the developing sporophyte was indicated by the complete lack of homozygous adult mutant plants and the occasional occurrence of aborted embryos [26]. Because of this severe phenotype, the physiological role of \textit{GPT1} in intact plants is difficult to assess. It will require inducible RNAi repression
or inducible expression of \textit{GPT1} in a \textit{gpt1} background to obtain further insight. The situation becomes even more complex, taking into account the recent identification of a novel plastidic (i.e., stroma-localized) hexokinase in tobacco [224] and of similar proteins in \textit{Physcomitrella patens} [225, 226] and Arabidopsis (I. Krassovskaya and A.P.M. Weber, unpublished). Hexokinase activity has also been detected in the plastid stroma of developing castor bean seeds [227]. Since plastids are able to take up glucose [21, 228, 229] and ATP [230, 231] from the cytosol, they should, in theory, be independent of glucose 6-phosphate import from the cytosol. Obviously, this is not the case, as indicated by the severe phenotype of \textit{gpt1}. A possible answer to this problem is nonoverlapping gene expression patterns and nonredundant functions of both pathways for supplying plastids with glucose 6-phosphate. Detailed studies of the tissue-specific and developmental expression patterns will be required to address this problem.

4.7.2 The role of ATP-transport into nongreen plastids

The adenine nucleotide translocator (NTT) was the first plastidic metabolite translocator that was identified in isolated chloroplasts, using a silicon–oil filtration–centrifugation technique [230]. The corresponding cDNA was identified by Neuhaus’s group [231, 232]. Since nongreen plastids cannot produce ATP by photophosphorylation, it was proposed that NTT is required to supply nonphotosynthetic plastids (and also chloroplasts during the dark) with ATP to drive biosynthetic reactions such as protein, RNA, starch and fatty acid biosynthesis. Alternatively, ATP could be generated in nongreen plastids by glycolytic kinases (3-PGA kinase and pyruvate kinase) via substrate level phosphorylation.

4.7.3 Knockout of NTTs in Arabidopsis

The Arabidopsis genome encodes two plastidic ATP/ADP translocators, \textit{AtNTT1} and \textit{AtNTT2} [233]. Neuhaus’s group has recently reported T-DNA knockout mutants and RNAi knockdown lines for both NTTs in Arabidopsis [234]. Surprisingly, it was found that NTTs are not required for a complete life cycle of Arabidopsis plants (i.e., a double-knockout was viable and able to produce seed). Nevertheless, the plants showed retarded development, a reduced ability to generate primary roots and delayed chlorophyll accumulation in seedlings. The phenotype was more severe under short-day conditions and alleviated under long-day conditions, indicating a substantial role of NTT in supplying chloroplasts with ATP at night. Seed weight and lipid contents were reduced in \textit{AtNTT2} but not in \textit{AtNTT1} knockout lines. Obviously, Arabidopsis embryo plastids are able to generate ATP from endogenous sources, possibly substrate-level phosphorylation of ADP by phosphoglycerate kinase and/or pyruvate kinase [234]. Hence, other metabolic routes can at least partially compensate the block in ATP import due to the knockout of NTT activity.

4.7.4 Antisense repression and overexpression of NTTs in potato

Transgenic potato plants showing antisense repression of the endogenous \textit{NTT} and constitutive overexpression of \textit{AtNTT1} have been analyzed in detail [235, 236].
Tuber size was massively decreased and tuber morphology was severely altered in antisense lines. The total amount of tuber starch was reduced and its composition changed, showing a reduced amylose to amylopectin ratio. Free sugar levels, UDP-Glc and hexose phosphates were increased in tubers from antisense plants, whereas PEP, isocitrate, adenine and uridine nucleotides, and inorganic pyrophosphate levels were slightly decreased. Potato plants overexpressing AtNTT1 showed a marked increase in starch content, and the amylose to amylopectin ratio was higher than in the wild type [235]. Adenine and uridine nucleotides, and inorganic pyrophosphate levels were elevated in tubers from sense plants, whereas soluble sugars remained unaltered. The ADP-Glc content was reduced by 50% in antisense tubers, whereas its content was increased up to twofold in sense tubers. These results suggested a close interaction between plastidial adenylate transport and starch biosynthesis, indicating that ADP-Glc pyrophosphorylase (and thus starch biosynthesis) is ATP-limited in wild type potato plants [236].

4.7.5 A novel role for Rubisco in developing oilseeds

Oil is a major reserve material in many plant seeds. The major source for seed oil biosynthesis is sucrose, which is imported from source tissues via the phloem and is converted to the fatty acid precursor acetyl-CoA by glycolysis and pyruvate dehydrogenase. The C3 compound pyruvate is converted by PDH into the C2 compound acetyl-CoA and one molecule of CO₂. Hence, for every two carbon atoms converted to acetyl-CoA, one carbon atom (i.e., one-third of the carbon) would be lost as CO₂, therefore fatty acid biosynthesis was thought to be a quite wasteful process. Using metabolic flux and elementary flux mode analysis, Schwender et al. [237] recently demonstrated that oil production in Brassica seeds is significantly more efficient than predicted from the paper biochemistry—a loss of only one carbon atom per three carbon atoms converted to oil is reported (i.e., 40% less loss than previously assumed). Key to this unexpected finding is a previously undescribed role of Rubisco in the conversion of carbohydrates to oil. In this metabolic route, Rubisco does not act in the self-regenerating Calvin cycle, but it carboxylates ribulose 1,5-bisphosphate that is synthesized de novo from F6P and TPs using CO₂ that is produced by the PDH reaction, thus recovering part of the CO₂ previously believed to be lost in the process (see [237] and supplementary data for a discussion of the role of PEPC in reassimilation of CO₂ produced by PDH). In contrast to the Calvin cycle, the resulting 3-PGA is converted to pyruvate (and subsequently to acetyl-CoA) and not used to regenerate the CO₂ acceptor. Part of the ATP required for the activation of ribose 1-phosphate (Rib 1P) to RubP by phosphoribulokinase is generated by the light reaction in green seeds of Brassica. Likely, this metabolic scheme applies to most other ‘green’ seeds but not to oilseeds that do not have functional photosystems, such as sunflower seeds [237, 238]. The generation of ATP by photophosphorylation in green seeds may also explain the relatively small effect of a knockout in plastidic ATP/ADP translocators as outlined above.
4.8 Concluding remarks

The localization of biochemical and catabolic pathways has been resolved for many organic compounds, and it is clear that these pathways often involve or require transfer of intermediates between various compartments. Similarly, end products used as major organic nutrients for growth and reproduction need to be transported from cells, which synthesize them, to cells at sites of long-distance transport, and then into cells at sites of utilization. Membrane bound transporters are required in these processes and given the number of transported substrates, it is likely that a large and diverse population of transporters is operating in a tissue or even an individual cell in support of the normal physiology of a plant. Information on some transporters involved in short-, intermediate- and long-distance transport has become available within the last 15 years, but a very large number of transporters are yet to be characterized. Similarly, while a few specific transporters connecting metabolic pathways within a cell have been identified, many more must exist and their identification and characterization are critical to understanding the control of metabolic fluxes. In recent years much progress has been made on identification and characterization of metabolite transporters using plant genome information and heterologous expression systems such as *Saccharomyces cerevisiae* and *Xenopus* oocytes. However, for most of these transport proteins, especially the amino acid transporters, the location of activity, the control of expression and their physiological function are still unknown. While localization of expression of a transporter in a particular cell or tissue provides a sound basis for predicting an important function within that site, it does not provide the type of information needed to assess the overall physiological contribution to metabolite transport and transfer processes. This requires a combination of physiological and molecular genetic approaches. Identification of transporters with specific transport function (and their promoters) at critical points of metabolite distribution and partitioning is also needed for targeted manipulation of transport processes for various aspects of crop improvement, such as nutrient content, enhanced partitioning to harvestable products, manipulation of growth dynamics, etc. Identification of transporters and characterization of their kinetic parameters will be invaluable to our basic understanding of plant function and to attempts to modify specific aspects where such transporters are key regulators.

Acknowledgements

This work was supported by grants IOB 0135344, IOB 0448506 (M.T.) and MCB 0348074 (A.P.M.W.) from the National Science Foundation, grant 2001-35318-10990 (M.T.) from the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service and the Nation and grant DE-FG02-04ER15562 (A.P.M.W) from the U.S. Department of Energy, which is greatly appreciated. We are grateful to Jörg Schwender for critical reading of the chapters on ATP transport into plastids and the novel role of Rubisco in seeds.
References

5 Role of protein kinases, phosphatases and 14-3-3 proteins in the control of primary plant metabolism
Greg B. G. Moorhead, George W. Templeton and Hue T. Tran

5.1 Introduction

The covalent modification of proteins is a fundamental regulatory event in cells, controlling essentially every cellular process examined. It is known that proteins can be modified on particular amino acids by a wide array of novel functional groups. A few of these modifications include acetylation, hydroxylation, methylation, farnesylation, ubiquitination, adenylylation, uridylylation and sumolyation, but it is thought that protein phosphorylation is the most prevalent means of protein covalent modification [1]. Early work on mammalian cells demonstrated that approximately one of every three proteins is modified by phosphorylation on serine, threonine and tyrosine residues, and this value is believed to be true for other eukaryotic organisms as well. This biochemical observation is now supported by genomic information that has revealed that the protein kinases, the enzymes responsible for the addition of phosphate to proteins, constitute one of the largest gene families of eukaryotes. They encode for more than 1.7%, 2.1%, 2.2% and 4.0% of the human, *Saccharomyces cerevisiae*, *Caenorhabditis elegans* and Arabidopsis genes, respectively [2–5]. These numbers are based on the ‘eukaryotic protein kinases’ (ePKs) that likely all evolved from a single catalytic domain and include serine/threonine and tyrosine kinases. A number of ‘atypical protein kinases’ also exist and these likely evolved independently from the ePKs [4]. The phosphoinositide-3-kinase-like kinase (PIKK) family of enzymes also phosphorylates serine and threonine residues. This is a relatively small group of enzymes, most of which function in DNA-damage sensing and repair. This family of enzymes is also conserved in plants and will be discussed. The protein phosphatase catalytic subunits are responsible for the enzymatic removal of phosphate from proteins. They constitute a smaller group of genes compared to the protein kinases, but are likely as prevalent as holoenzymes because certain catalytic subunits (such as protein phosphatase one) complex with a large number of other proteins to form many catalytic and regulatory subunit complexes. It is believed that only a small population of protein phosphatase regulatory subunits has thus far been identified in any organism.

The history of protein phosphorylation is long, being intimately linked with the story of modern biochemistry, particularly the study of mammalian glycogen metabolism. This research field can be traced to the late 1930s when Carl and Gerty
Cori demonstrated that glycogen phosphorylase resided in mammalian cells as two distinct forms with differing properties. These two forms were interconvertible and designated phosphorylase a and b. Nearly 20 years later, Edmond Fischer and Edwin Krebs were able to show that the interconversion of phosphorylase b and a was a protein phosphorylation event [6]. Fischer and Krebs were awarded the Nobel Prize in Medicine and Physiology in 1992 in recognition of their lifetime of work in protein phosphorylation. Since most of the early studies of protein phosphorylation were linked to metabolic enzymes, it was thought that the phosphorylation of proteins was primarily an event that caused conformational changes in enzymes and this regulated enzymatic activity and substrate specificity. It is now known that the phosphorylation of proteins controls not only enzymatic activity, but also can generate specific docking sites for other proteins, controls the shuttling of proteins between cellular compartments and regulates proteolytic degradation [1]. In fact, the generation of specific phosphorylation-dependent docking or interaction sites may be the most common function of protein phosphorylation.

5.2 Protein kinases

Protein kinases catalyze the transfer of the γ-phosphate of ATP to the serine, threonine, tyrosine or histidine residue of a substrate protein. The ePKs all share a conserved catalytic domain of approximately 280 amino acids. This domain is divided into 12 subdomains that are highly conserved with less conserved regions in between. The region between subdomains VII and VIII contains the signature sequences DFG and APE. These are the hallmark residues of the activation or T-loop. Phosphorylation of a serine, threonine or tyrosine in this loop positions the two lobes of the kinase to allow substrate binding and phosphate transfer [3]. Detailed studies of individual protein kinases have shown that substrates are selected, in part, based on the amino acids surrounding the phosphorylatable residue, thus small peptides are generally excellent substrates for protein kinases. The use of oriented peptide libraries has been utilized to define the preferred substrate motif for several protein kinases [7].

Genomics has told us in a humbling fashion that plants, with about 1019 ePKs (in this case, Arabidopsis), have about twice as many protein kinases as humans (518 ePKs). Cataloguing the protein kinase complement of a number of model organisms has also provided some interesting knowledge regarding plant protein kinases. First, nearly two-thirds of plant protein kinases are predicted to be serine/threonine receptor kinases [3]. Of particular interest, it is now known that the calcium-dependent protein kinases (CDPKs) are unique to plants and a particular subgroup of protists, while the phosphoenolpyruvate carboxylase (PEPC) kinases and the PEPC kinase-related kinases are unique to plants. There are 2 PEPC kinases, two PEPC kinase-related kinases, 34 CDPKs, 8 CDPK-related kinases and 38 members of the sucrose-nonfermenting related kinase group in the Arabidopsis genome [5, 8]. As mentioned above, most protein kinases are activated by phosphorylation of their activation or T-loops. Most of the CDPKs and all of the
CDPK-related kinases have an aspartate or glutamate at this position, which will partially mimic a phosphorylated residue. This suggests that these kinases do not get activated by an upstream protein kinase and may respond solely to calcium signals (but perhaps other signals as well). The PEPC kinases and PEPC kinase-related kinases have a glycine at this amino acid position.

Phosphorylation on tyrosine residues comprises only a small proportion of the total cellular protein phosphorylation and is utilized primarily in multicellular eukaryotes (protein tyrosine phosphorylation does occur to some extent in prokaryotes and single cell eukaryotes). Although only a small percentage of the phosphoproteome resides on tyrosine residues (for instance in mammals), it does not mean that the roles played by tyrosine-phosphorylated proteins are any less important than those played by serine/threonine phospho-proteins. The number of studies of tyrosine kinases is proportionally much greater than that of tyrosine phosphatases and this is most likely for historical reasons. The first tyrosine kinase (mammalian) was sequenced in 1980, and we now know there are 90 protein tyrosine kinases in the human genome. Arabidopsis has 53 protein-tyrosine kinases with few described functions. The phospho-tyrosine binding domain Src homology two (SH2) is prevalent in mammals where tyrosine phosphorylation is also relatively common. It is interesting that three SH2 domains containing proteins with no known function have been identified in plants [9] and comparison to other SH2 domains shows that all the critical residues for binding phospho-tyrosine are present. We should also note that plant phytochromes have serine/threonine protein kinase activity, but will not be discussed here. We refer readers to recent articles [10].

5.2.1 Phosphoinositide 3-kinase-like kinases

The PIKK family of enzymes is intimately linked with regulation in response to a wide variety of stress conditions, such as nutrient deprivation and DNA damaging conditions. The PIKK family is made up exclusively of extremely large proteins, ranging from 2500 to 3900 amino acids in length, but are relatively simple in design. These proteins are, as the name suggests, characterized by the similarity of their catalytic domain to that of the phosphoinositide kinases, though no PIKK member has ever been shown to have catalytic activity toward lipids. Other identifiable features of these proteins include their FAT and FATC domains (named for three members of the family, FRAP, ATM and TRRAP), which are essential for activity and are believed to be responsible for exposing the catalytic domain [11]. The rest of these large proteins consist of HEAT repeats (90–95%), which take the form of antiparallel α-helices that stack on top of one another, forming a large surface thought to be responsible for protein–protein interactions [12, 13]. Arabidopsis has close homologs to three of the five known catalytically active members of the PIKK family, ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and RAD3 related) and TOR (target of rapamycin). ATM and ATR are known to be involved in DNA damage, repair, translation and cell cycle progression in mammals and yeast, while TOR has been shown to be involved with nutrient and hormone signalling in several organisms including plants [14, 15].
5.3 Protein phosphatases

The recognition that mammalian glycogen phosphorylase was converted to the active a form by the ATP-dependent addition of a phosphate group immediately implied the existence of an a to b converting enzyme, or a protein phosphatase. Like the field of protein phosphorylation, knowledge of protein phosphatases emerged from studies of mammalian glycogen metabolism. In 1983, a series of seminal papers from the Cohen laboratory demonstrated that essentially all of the serine and threonine protein phosphatase activities in cells could be ascribed to four classes based on biochemical properties: type 1 and types 2A, 2B and 2C [16]. Two heat stable inhibitor proteins referred to as inhibitor 1 (I1) and inhibitor 2 (I2) could inhibit type one enzyme (PP1) activity. Type two enzymes were resistant to the inhibitor proteins I1 and I2 and had various metal ion requirements as listed here: Protein phosphatase 2A (PP2A) (none), PP2B (Ca$^{2+}$) and Protein phosphatase 2C (PP2C) (Mg$^{2+}$). PP1, PP2A and PP2C activities were later found in plant tissues [17] and consistent with a lack of PP2B activity, no PP2B genes have been identified in plant genomes [18]. PP2B is a Ca$^{2+}$-calmodulin-dependent protein phosphatase, but due to the lack of PP2B in plants, will not be discussed in detail here. Purification of mammalian forms of each of these enzymes (PP1, PP2A and PP2C) and subsequent cloning unveiled that protein phosphatase catalytic subunits are amongst the most conserved enzymes known. This also allowed for a molecular search for additional phosphatase catalytic subunits using degenerate PCR. This revealed the existence of the so-called novel protein phosphatases, which are named PP4, PP5, PP6 and PP7 [19]. This also demonstrated that PP1, PP2A and PP2B catalytic subunits are from the same gene family, which now also includes the novel protein phosphatases. Collectively, they are referred to as the PPP family. The magnesium-dependent PP2C enzymes likely evolved independently and are designated the PPM family.

The sequencing of the first tyrosine kinase around 1980 and the purification and cloning of the first protein tyrosine phosphatase 10 years later ushered in the era of tyrosine phosphorylation. A detailed analysis of the human genome suggests that there are a comparable number of tyrosine phosphatases (107; of this total, several are catalytically inactive and others are specific for mRNA and inositol phospholipids, but belong to this gene family) and tyrosine kinases (90; five are catalytically inactive) [20]. The Arabidopsis genome encodes for 53 predicted tyrosine kinases, and the last bioinformatic analysis of plant tyrosine phosphatases listed 21 genes [18]. Recently defined novel tyrosine phosphatases [20, 21] likely means this group has expanded the plant collection and this warrants a bioinformatic update.

The most striking difference between the tyrosine phosphatases and the serine/threonine phosphatases is that most tyrosine phosphatases appear to have additional modular domains that function to regulate and/or target the enzyme to another molecule or compartment. The serine/threonine catalytic subunits, on the other hand, specifically bind other proteins that target or regulate them in a similar fashion (PP1 being the best example). Some of the novel serine/threonine phosphatases do have N- or C-terminal extensions beyond the catalytic domain that likely play targeting
or regulatory roles (see PP5 and the Kelch-domain phosphatase below). Similarly, the atypical dual specificity phosphatases have no domains outside the minimum catalytic domain and it is likely that they have additional, as yet undiscovered, targeting or regulatory subunits.

5.3.1 Protein phosphatase 1

Protein phosphatase 1 (PP1) is a widely expressed, highly conserved enzyme, found in every eukaryotic organism examined. In plants, PP1 has been implicated in various cellular processes, which include signal transduction, regulation of membrane channels, cell cycle control and development [22–27]. Native PP1 generally exists as a heterodimer consisting of an exceptionally well conserved catalytic subunit and a variable targeting or regulatory subunit. This regulatory subunit controls PP1 activity in vivo by targeting it to a particular subcellular location and confers substrate specificity to the enzyme complex. The functions of PP1 are thus contributed to the different PP1 regulatory subunits, but to date, there have been no PP1 regulatory subunits identified or characterized from higher plants. In mammalian systems, a single PP1 enzyme can dephosphorylate multiple substrates. This is because the regulatory subunits bind to PP1 in a mutually exclusive manner, thereby targeting the same catalytic subunit to various substrates and subcellular locations.

A PP1 catalytic subunit binding motif was found by screening a peptide library with PP1 [28]. It was shown that binding to PP1 is conferred to a protein containing the peptide motif (R/K)(V/I)X(F/W), where X denotes any amino acid other than large hydrophobic residues. Also, the motif is often preceded by 2–5 basic residues and followed by one acidic residue. Using sequence alignments and site-directed mutagenesis experiments, this consensus sequence has since been further defined as (R/K)X_{0-1}(V/I){P}(F/W), where {P} is any residue other than proline and X is defined as above [29]. The complex of human PP1 with the RVXF peptide derived from the muscle glycogen PP1 targeting subunit (GM) revealed the precise means of how the sidechains of the highly conserved V and F residues of this motif interact with the catalytic subunit [30]. Because of the high degree of conservation of PP1 amongst eukaryotes, it is likely the same regulatory mechanism is used in plant systems. Indeed, the PP1 residues that bind the RVXF motif are completely conserved in all plant PP1 enzymes.

After a long wait, the first crystal structure of PP1 associated with a regulatory subunit was published in 2004 (Figure 5.1, generated with MOLMOL [31]) [32]. The PP1-MYPT1 complex from smooth muscle shows how a regulatory subunit modifies the catalytic cleft of the enzyme to accommodate the substrate (myosin) and how other regions of the targeting subunit likely aid in the interaction of this complex with the substrate. It is also notable that the C-terminus, which is highly variable in all PP1s, and highly disordered in monomeric structures, was visible in the complex interacting with the ankyrin repeat of MYPT1.

Although the RVXF motif remains the primary means of interaction between the regulatory subunits and PP1, it has been suggested that secondary interactions
with PP1 exist to stabilize binding and to provide crucial contacts for modulating the activity and/or substrate specificity of PP1. Studies carried out on known PP1 binding proteins show that the basic region preceding the RVXF motif appears to strengthen the binding and/or modulates the activity of PP1, whereas the RVXF motif itself appears to have no effect on activity [33, 34]. Because these secondary interactions alone are not sufficient to initiate formation of complexes, the notion of the RVXF motif acting mainly as an anchor, which allows the strongest association with PP1, is starting to gain acceptance. Undoubtedly, each novel PP1 binding protein has evolved to aid in the dephosphorylation of the appropriate substrate by assisting in binding the substrate and/or altering the PP1 structure to have increased activity against the phospho-target.

5.3.2 Protein phosphatase 2A

PP2A plays a role in numerous plant processes, including hormone signal transduction, metabolism, gene expression and development [23–26]. Native PP2A is found either as a heterodimer, consisting of the catalytic subunit (PP2Ac) and the regulatory A subunit, or as a heterotrimer, involving PP2Ac, the regulatory A subunit and a variable B regulatory subunit [35]. The 65 kDa A subunit, otherwise known as PR65 or the scaffolding protein, consists of 15 tandem HEAT repeats which it uses to link PP2Ac to different B subunits.

The catalytic subunit of PP2A is highly conserved, with a 79–82% identity amongst plant, human and yeast amino acid sequences [17]. Plant PP2Ac has been localized to various subcellular compartments, such as the nucleus [26] and cytosol,
but has not been found in chloroplasts [17, 36]. PP2Ac is anchored constitutively to the A subunit and methylation of the leucine residue at the C-terminus of PP2Ac (as demonstrated in mammals and yeast) controls the binding of various B subunits to the core heterodimer. Its association with the regulatory B subunits controls the activity and substrate specificity of PP2A, although examples exist where the PP2A core is bound to proteins other than the B regulatory subunits [37].

At least 20 B regulatory subunits, ranging from 54–130 kDa, have been identified from mammalian systems. Using biochemistry and molecular biology, four distinct, unrelated groups have been identified which are the 55 kDa B group, the 52–74 kDa B’ group, the 72–130 kDa B” group and the putative 93–110 kDa B”” group [35, 38–40]. A recent survey of the Arabidopsis genome revealed at least six PP2Ac genes, three A regulatory subunit genes, and two B, nine B’ and five B” regulatory subunit genes [41]. Because of the numerous variable regulatory subunits, a large combination of PP2A complexes is possible, which certainly contributes to the diversity of PP2A functions.

A few novel PP2A regulatory B subunits have been identified in higher plants. Most recent was the isolation of the TONNEAU2 (TON2) gene, where researchers showed not only that TON2 encodes a putative novel regulatory subunit of PP2A, but also that it was involved in the control of cytoskeletal organization in plants [41]. The TON2 gene, which is expressed ubiquitously in Arabidopsis, encodes a 55 kDa protein that is highly conserved in higher plants. The C-terminal end of the protein displays significant similarity to the C-terminal region of the human PR72 protein, which is a representative member of the B” group of regulatory subunits. Also, using the yeast two hybrid system, the physical interaction between Arabidopsis TON2 protein and the A subunit of PP2A was verified. Taken together, these results justified the classification of the TON2 protein as a novel B” regulatory subunit. It is hypothesized that the function of the TON2-PP2A complex involves the control of the cortical cytoskeleton, as mutations in the TON2 gene resulted in abnormalities in the organization of this subcellular component. Information obtained from plant genomes will aid in the identification of novel regulatory subunits and the dissection of the unique functions of PP2A in all aspects of plant growth and development.

5.3.3 Protein phosphatase 2C

PP2C, although the largest phosphatase gene family in Arabidopsis, is one of the least well characterized serine/threonine phosphatases. A recent analysis of the Arabidopsis genome revealed 69 genes encoding putative, functional PP2C enzymes [18]. This is a considerably large number, as there are no more than 15 PP2Cs identified in the human genome [42]. But when one takes into account the number of kinase genes (~1019 Arabidopsis kinase genes compared to only ~518 protein kinase genes in humans) it seems logical that there are this many PP2C genes to oppose the action of the protein kinases. Also, the large number of PP2C genes is needed to support the sophisticated signalling pathways that exist in the plant stress response mechanism.
PP2C genes in Arabidopsis have been divided into 10 different groups (A–J) based on amino acid sequence alignments [42]. Of these 10 groups, only three have representative genes with described functions. Group A consists of nine genes, including ABI1 and ABI2 (abscisic acid insensitive 1 and 2), which are genes associated with the abscisic acid signalling pathway. Group B (six genes) contains genes which show homology to alfalfa MP2C (Medicago sativa phosphatase 2C), which is a negative regulator of the stress activated MAPK pathway. Group C (seven genes) consists of the POL-type phosphatases (POLTERGIEST-type phosphatases), known for their role in flower development. Also, KAPP (kinase-associated protein phosphatase) was isolated as a binding partner of RLK5 (receptor-like kinase 5) and because it shares no similarity with the other 10 PP2C gene groups, it is the only Arabidopsis gene belonging to the KAPP gene cluster. As so few PP2C genes have known functions, it is not surprising that only one physical substrate of PP2C has been identified in plants.

The PP2C genes of Arabidopsis all share a common catalytic core consisting of 11 highly conserved subdomains [42]. Interestingly, the catalytic core is usually found at the C-terminal region but in a few cases, the PP2C genes begin with the catalytic core. The C-terminal region of PP2C has been implicated in conferring substrate specificity because many domains involved in protein–protein interactions, such as the forkhead associated (FHA) domain, have been described in this region. The variable N-terminal extensions of some PP2C genes may also allow interactions with specific substrates, as the uniqueness of the N-terminal extensions are well suited as binding sites for specific substrates or as attachment sites for different signalling complexes. A recent study by Scheible et al. showed a possible link between PP2C and nitrate signalling [43]. The experiment involved Arabidopsis seedlings grown for 7 days in liquid media containing complete nitrogen, then growing these plants for 2 days in low nitrogen liquid media. Nitrate was then added and seedlings harvested 30 min or 3 h later. RNA expression levels in the seedling tissue were measured using microarray technology and it was found that, in response to nitrate readdition, four PP2C genes were induced. In particular, one PP2C gene (At4g32950) containing a putative MAPK docking site was most highly induced. These results suggest a putative role for PP2C in the nitrate-signalling pathway. With the abundance of Arabidopsis PP2C genes, it will be a daunting task to ascribe specific functions to each gene. As genetic, molecular and biochemical tools become available, they will help in the elucidation of PP2C functions in vivo and will be invaluable in the identification of targets of the PP2C enzymes.

5.3.4 Novel protein phosphatases

The Arabidopsis genome encodes many novel protein phosphatases, including two genes for PP4, one gene each for PP5, PP6 and PP7 and one gene for an ‘ancient’ phosphatase most related to a bacterial protein phosphatase [18]. It was interesting to note that the one Arabidopsis gene encoding the bacterial-like phosphatase contains a putative chloroplast transit peptide. Also, the Arabidopsis genome has four genes encoding phosphatases with large N-terminal extensions. These were identified
recently as BSU1 and BSU1-like proteins [44]. BSU1 is a novel nuclear protein phosphatase involved in the brassinolide signalling pathway in plants. Although PP4, PP5, PP6 and PP7 were identified years ago, very little research has been dedicated to these phosphatases in plants. There are no genes encoding either PPY or PPZ phosphatases in Arabidopsis although these phosphatases have been found in other eukaryotes such as *Drosophila melanogaster* and *S. cerevisiae*.

Much research has been done on PP5, as in mammals it functions in many signalling pathways that control growth arrest, apoptosis and DNA damage due to ionizing radiation [45–47]. Although its function is unknown, the Arabidopsis homolog of PP5 consists of all the structural features that characterize all PP5 phosphatases. These characteristics include three TPR (tetratricopeptide repeats) motifs in the N-terminal domain followed by a variable region and a phosphatase domain in the C-terminal region. The TPR motif is important as it allows for protein–protein interactions, thus it likely targets PP5 to specific substrates and subcellular localizations [48]. Also, it has been shown that the proteolytic removal of either the TPR domain or the C-terminal region of PP5 increases its catalytic activity, suggesting that these regions function in an autoinhibitory manner [49, 50]. In plants, PP5 catalytic activity can be stimulated by long chain fatty acids implicating they may have a role in the regulation of PP5 *in vivo*. Using the solved structures, the superimposition of the phosphatase domain of auto-inhibited human PP5 and PP2B, and PP1 complexed to calyculin A, it was found that all three structures had very similar features and characteristics. Thus it was hypothesized that the mechanism by which the TPR domain inhibits PP5 is similar to that of PP2B autoinhibition by its C-terminal domain (CTD) and PP1 inhibition by toxins such as calyculin A and microcystin [51]. Specifically, inhibition of phosphatase activity is carried out by a Glu residue that binds to a catalytic arginine residue found in the phosphatase, thereby effectively blocking access to the catalytic center. In human PP5, this Glu (Glu76) residue is found in the TPR domain and blocks phosphatase activity by interacting with the catalytic Arg275 residue. Similar glutamate and arginine residues, interacting in an inhibitory manner, have been identified in PP1-microcystin complexes (Arg96 of the PP1 catalytic site, which is equivalent to Arg275 of PP5) and autoinhibited PP2B (Glu481 in the C-terminal domain inhibits the catalytic Arg254, which is equivalent to Arg400 of PP5).

A novel Arabidopsis nuclear protein phosphatase, BSU1, was recently identified [44]. Three orthologs of BSU1 were identified in Arabidopsis and subsequently named BSL1, BSL2, and BSL3 for BSU1-like. Using these sequences we found that these four phosphatases are the same enzymes identified by Kerk *et al.* [18], which they defined as protein phosphatases with long N-terminal extensions. The BSU1 protein contains an N-terminal Kelch-repeat domain, a connecting middle region, followed by a C-terminal phosphatase domain. The Kelch domain has been implicated in conferring substrate specificity and defining subcellular localizations for BSU1, as Kelch domains, like TPR domains are involved in protein–protein interactions [52]. BSU1 was found to be a functional phosphatase, with catalytic activity similar to both PP1 and PP2A, when tested with various well-known PP1 and PP2A inhibitors. Also, it was shown that the Kelch domain behaved
independently of the phosphatase domain as the Kelch domain did not interfere with the phosphatase activity in the C-terminal domain. Overall, BSU1 is implicated in the dephosphorylation of BES1 in the nucleus, thereby opposing the action of BIN2, which is a glycogen synthase kinase-3 homolog. Together, BSU1 and BIN2 are responsible for regulating the phosphorylation state of BES1 and thus they respond to the varying levels of the plant steroid hormone brassinolide. This study is a prime example of the discovery and characterization of novel protein phosphatases from Arabidopsis and it is hoped that many more findings of similar magnitude will be made in the near future.

5.3.5 The tyrosine and dual specificity protein phosphatases

Since the first purification and cloning of a tyrosine phosphatase over 15 years ago in mammals, and the identification of the dual specificity protein phosphatases (of which the MAPK phosphatases are the most famous), we now know there are four protein tyrosine phosphatase families. Classification is derived from work done primarily in mammalian systems, and the four protein tyrosine phosphatase families are based on the catalytic domains of these enzymes [20].

5.3.5.1 Class I cysteine-based protein tyrosine phosphatases

This is by far the largest family, with all enzymes likely evolving from a common ancestral gene, and includes the tyrosine specific enzymes and the group called dual specificity enzymes. The dual specificity enzymes are given this name based on the ability of the MAPK phosphatases to dephosphorylate tyrosine and threonine in the MAPK activation loop. This group also includes the atypical dual specificity enzymes, Slingshots, PRLs, the cdc14s (which dephosphorylate the activation loop of cyclin-dependent kinases), the PTENs and myotubularins. The last two subgroups specifically have evolved not to dephosphorylate proteins, but the D-3 position of inositol phospholipids. The Arabidopsis genome appears to encode a single tyrosine specific enzyme and about 20 dual specificity protein phosphatases.

5.3.5.2 Class II cysteine-based protein tyrosine phosphatase

In humans this class is represented by a single enzyme, which has a low molecular mass and activity specific for phosphotyrosine. It is more ancient than the Class I PTPs with representatives across archaea, eubacteria and eukaryotes, including plants. The Arabidopsis gene is predicted to have a mass of ~20 kDa and is 37% identical (48% similar) to the human enzyme.

5.3.5.3 Class III cysteine-based protein tyrosine phosphatases

This family constitutes the group of enzymes known as the CDC25 phosphatases and is responsible for dephosphorylating the cyclin-dependent kinases on neighboring tyrosine and threonine residues in their N-terminal domain. In yeast a single CDC25 performs this role, while humans have three CDC25s that perform
dephosphorylation events at different points of the cell cycle. Once dephosphorylated at the N-terminus, the cyclin-dependent kinases can become fully activated and drive the cell cycle. If CDC25 is phosphorylated, for instance in response to DNA damage, the generated 14-3-3 binding motif functions to allow 14-3-3s to bind and shuttle CDC25 out of the nucleus. Yeast CDC25 has been shown to activate cell division in plants, suggesting a plant homolog performs the equivalent role [53]. No classic CDC25 homologs have been found in the Arabidopsis or rice genomes, although recently a small tyrosine phosphatase was identified in Arabidopsis that is functionally the CDC25 equivalent [53, 54].

5.3.5.4 Class IV protein tyrosine phosphatases
This class was only defined in 2003 when the protein of the Drosophila mutant Eyes Absent displayed tyrosine phosphatase activity [21]. To date, only four proteins of this large family of hydrolases have been characterized to have tyrosine phosphatase activity and thus the possibility of expansion of this class exists. It is thought that the cysteine-based class I, II and III enzymes evolved independently, but structurally they display a common ancestral fold. On the other hand, the class IV enzymes have a completely different catalytic mechanism, which utilizes a key aspartic acid residue and a cation [20, 55]. We found evidence for at least two homologs in Arabidopsis with the best matches to the human Eyes Absent protein being 37 and 31% identical.

5.3.6 RNA polymerase II phosphatases-FCP1 and SCP
The initiation of transcription by RNA polymerase II (RNAPII) involves a large complex of proteins containing several general transcription factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH). At the time of initiation, RNAPII becomes highly phosphorylated on its CTD in a heptapeptide repeat [56]. This repeat has the consensus YSPTSPS (where serines 2 and 5 get phosphorylated) and is present 29, 42, 52 and 34 times respectively in yeast, Drosophila, mammal and Arabidopsis RNAPII CTD. Just after or during the termination of transcription, the CTD of RNAPII must be dephosphorylated to allow another round of preinitiation complex assembly. The original purification of the CTD phosphatase from HeLa cell extracts yielded a 150 kDa protein whose activity was Mg$^{2+}$ dependent and is now designated FCP1 (TFIIF associated CTD phosphatase) [56, 57]. The presence of a BRCA1 carboxy-terminal (BRCT) domain was demonstrated through cloning of FCP1 and a functional BRCT is necessary for FCP1 to dephosphorylate CTD. FCP1 protein is associated with the complex through the 74 kDa subunit of TFIIF with the highly conserved last 82 amino acids of each protein interacting with the other. The p74 subunit of TFIIF greatly stimulates the phosphatase activity of FCP1 when phosphorylated CTD is used as substrate. The FCP1 protein is a CTD phosphatase, yet until recently it did not have any apparent homology to any other characterized protein phosphatase and thus represented a novel, specialized phosphatase domain. Further characterization of this domain has revealed a conserved
DXDX(T/V) motif necessary for catalysis that is present in members of the super-family of phosphohydrolases and phosphotransferases and is now recognized as the same catalytic motif found in class IV tyrosine phosphatases [58]. Three proteins closely related to the catalytic region of FCP1, but lacking a BRCT domain, were identified in the human databases. One of these small CTD phosphatases (SCPs) preferentially dephosphorylates serine 5 of the CTD repeat and is also activated by p74 [59].

Searching the Arabidopsis genome predicted the presence of four FCP1-like proteins based on the catalytic region [53]. Two are the larger BRCT-domain containing enzymes, such as human FCP1, and two are the shorter SCP-like enzymes. The two SCP-like enzymes have just been characterized and, like their human counterpart, they preferentially dephosphorylate serine 5 of the Arabidopsis CTD repeat sequence.

5.3.7 Histidine phosphatases

The demonstration of phosphorylation on histidine residues in eukaryotes occurred over 40 years ago and it is believed that as much as 6% of the total phosphoproteome in eukaryotes resides on histidine residues [60]. Very few eukaryotic proteins are known that are phosphorylated on histidine; on the other hand, histidine phosphorylation is very well studied in prokaryotes due to the prevalence of two component systems, and well characterized histidine kinases and phosphatases. Very recently a small (14 kDa) phosphohistidine phosphatase was purified from mammalian tissue and its first substrate was identified as ATP-citrate lyase [61]. To date, no histidine phosphatases have been reported in plants. We have blasted this mammalian histidine phosphatase against the Arabidopsis genome and found no obvious homologs.

5.4 A multitude of phosphospecific binding modules

5.4.1 Phosphospecific binding modules

It is likely that the most significant observation in the last 20 years of signal transduction research is the realization that the specific interaction of proteins is responsible for much of the specificity and regulation of signal transduction events. The phosphorylation of a specific amino acid and the residues surrounding this site can provide a specific docking domain for other protein modules. The 14-3-3 proteins were the first proteins shown to specifically bind a target protein in a phospho-serine or threonine dependent fashion. To date, such phospho-dependent binding modules include 14-3-3 proteins, leucine rich repeats, FHA, WW, MH2, WD40, polobox and BRCT domains for serine and threonine phosphorylation and SH2 and protein tyrosine binding domains for phosphotyrosine [62, 63]. It is likely that additional, and perhaps many more phosphospecific binding modules exist and await discovery. A recently developed method to address this question was put forth by
the Yaffe laboratory [64]. Their approach to identify new phosphospecific binding modules is based on the observation that protein kinases phosphorylate their substrates at discrete motifs. For instance, PKA phosphorylates preferentially at RRXSØ sequences (where Ø is any large hydrophobic residue and S is the phosphorylated serine) and cyclin-dependent kinases modify at SP motifs. The DNA damage response protein kinase ATM belongs to the PIKK family of protein kinases. ATM kinases phosphorylate proteins at a SQ motif, and it was predicted that part of the DNA damage response signalling cascade was based on generating phospho-SQ-binding sites on ATM substrates. Their strategy was to develop a phosphopeptide library biased toward this motif and couple this, plus the nonphosphorylated version of the same library, to beads and screen for the ability of in vitro translated polypeptides (from a cDNA library) to preferentially bind the phospho-SQ peptides [64]. After screening ~100,000 translated proteins of various lengths, several proteins or fragments thereof were flagged for their ability to bind selectively to the phospho, but not the dephospho-SQ library peptides. A fragment of the protein PTIP was identified as a strong phospho-SQ interactor. This fragment contained the four PTIP BRCT domains and the last two were shown to bind strongly to this phospho-SQ library. An oriented peptide library was then used to define the optimal phospho-binding motifs for the BRCT domains of PTIP and the breast cancer susceptibility gene, BRCA1. These results indicated that individual BRCT domains (functioning in pairs) likely have evolved in the context of each protein to yield specific binding motifs. The BRCA1 and PTIP BRCT domains both bind phospho-SQ peptides, but the surrounding amino acid sequences were different. The use of the oriented peptide library also demonstrated that BRCT domains are best defined as phosphoserine binding domains because there was in fact no strong selection for peptides with glutamine (Q) at the plus one position. The BRCT domain is conserved in more than 30 proteins of the human genome. A majority of these proteins are involved in the DNA damage response. Interestingly, the RNA polymerase CTD phosphatase FCP1 has a BRCT domain, and it is conserved in the two Arabidopsis FCP-like proteins [58]. No doubt, additional phospho-specific binding domains will be retrieved using the technique described. As yet, this sort of methodology has not been applied to plant systems.

5.4.2 14-3-3 proteins

14-3-3s were discovered in 1967 during an examination of abundant brain proteins and given this peculiar title based on their chromatography column elution fraction and position after starch gel electrophoresis [65]. 14-3-3s resurfaced in the literature many years later, initially as activators of tryptophan and tyrosine hydroxylases [66, 67], then as regulators of protein kinase C and the protein kinase Raf-1 [68–70]. The key experiment brought to light that binding of 14-3-3 to its target protein was dependent on the phosphorylation of that protein [71]. Since this discovery in 1996, 14-3-3s have emerged as regulators of a multitude of phosphorylation-dependent cellular events. Several proteomic studies to identify the 14-3-3 interactome in plants and humans have identified more than 350 proteins that reside in 14-3-3
complexes, although it is likely that not all directly bind 14-3-3s [72–76]. Some of the seminal work that defined 14-3-3 function was performed in plant systems and will be discussed below. Because much of the detailed knowledge of protein phosphorylation events linked to primary metabolism in plants involves 14-3-3 proteins, we will first provide a framework for understanding 14-3-3 protein function before discussing specific examples of 14-3-3-dependent processes in plants. We also refer readers to several recent excellent reviews on 14-3-3 proteins [77–79].

5.4.2.1 14-3-3 structures and function

The 14-3-3s have been found in every eukaryotic genome sequenced with no 14-3-3 or 14-3-3-like proteins present in any prokaryotes. 14-3-3s are acidic, approximately 30 kDa proteins that form homo- and heterodimers. The number of 14-3-3 isoforms varies from organism to organism with 12 in Arabidopsis, 7 in mammals and 2 in yeast, *C. elegans* and *D. melanogaster*. Their importance is best evidenced by yeast knockout studies of both 14-3-3 genes, as this yields a lethal phenotype.

The first 14-3-3 crystal structure demonstrated that the 14-3-3 dimer forms a cup or saddle shape with the most conserved residues on the interior of the cup or underside of the saddle. Each subunit has been shown to bind a defined phosphoserine or threonine peptide in an extended antiparallel orientation [63, 80]. It is the amino acids of the phospho-peptide binding region that are mostly highly conserved across species with the residues equivalent to Lys⁴⁹, Arg⁵⁶, Arg¹²⁷ and Tyr¹²⁸ of human 14-3-3 being completely conserved in every 14-3-3 known. These residues are responsible for direct interaction with the phosphate moiety of the bound phosphoprotein, as illustrated in Figure 5.2.

The mapping of the phosphorylation sites on proteins that 14-3-3s recognize and bind to revealed a 14-3-3 docking motif. This was confirmed by the use of an oriented peptide library to define the preferred 14-3-3 binding peptides. This work produced two high affinity 14-3-3 binding peptides that required phosphorylation for interaction with an apparent preference for phospho-threonine over phospho-serine. These motifs, referred to as mode one and mode two respectively, are RSXpSXP and RXXXXpSXP, where R is arginine, X is any amino acid, S is serine, pS is phosphoserine and P is proline. A binding constant (Kₐ) based on a mode two peptide showed the affinity to be very high (Kₐ ~ 37 nM). Although these are high affinity binding peptides, it turns out that many in vivo 14-3-3 binding proteins do not conform exactly to either of these sequences and several nonphosphorylated 14-3-3 binding proteins are known [77, 78]. One of the best-characterized examples of 14-3-3 interacting with a ‘less than optimal’ binding motif is the C-terminus of the plant plasma membrane H⁺-ATPase [81]. *In vivo*, the C-terminus of the plant plasma membrane H⁺-ATPase is autoinhibitory and inhibition is abolished when the second last residue of the enzyme is phosphorylated (QSypTV-COOH) allowing 14-3-3 binding to this site. A phospho-peptide generated based on this motif interacts with 14-3-3 with a binding constant (Kₐ) 70-fold higher than the mode two peptide described above. It is thought that this is important in vivo, as it would likely yield a fast on–off rate.
Figure 5.2 Conservation of peptide binding by 14-3-3 protein. (a) Sequence alignment of evolutionarily diverse 14-3-3 proteins. Residues which are 100% identical are shaded in black and residues which are >50% identical are shaded in gray. Included in the alignment are representative proteins from *S. cerevisiae* (Bmh1), *Arabidopsis thaliana* (GP14k), *D. melanogaster* (14-3-3e), *C. elegans* (14-3-3 isoform 1) and human (14-3-3ζ). Residues which directly contact the phosphate group of target proteins are indicated with dark arrows. (b) Structure of 14-3-3ζ shaded according to residue conservation with the darkest amino acids being most conserved. Structure analyzed using Consurf [77] with 14-3-3 isoforms from humans (7 isoforms), *A. thaliana* (12 isoforms), *S. cerevisiae* (2 isoforms), *D. melanogaster* (2 isoforms) and *C. elegans* (2 isoforms). Sequence alignment was performed using ClustalX [77] with residue conservation determined by a maximum likelihood method within Consurf. Structures (b, c and d) were based on 14-3-3ζ (PDB 1QJB). Legend denotes relative conservation levels in the protein. In (c) and (d) the peptide (ARSHpSYPA; shown as a dark stick representation with the phosphate group shown as light colored) binds in an extended conformation to 14-3-3 (shown as a ribbon diagram in different shades of gray for each monomer) within the conserved groove of each monomer. Figure 5.2d shows one half dimer from the perspective of the other monomer. Structure figures were generated using Molscript and Raster3D [31, 77] (figure from Bridges and Moorhead, *Sci STKE* 2004 RE10. Kindly provided by permission from *Sci STKE*).
Whether other factors are involved is not known, but nature has produced a toxin that exploits the interaction of 14-3-3 and the plasma membrane H\(^+\)-ATPase. The fungal toxin fusicoccin targets the plant plasma membrane H\(^+\)-ATPase resulting in constant activation of the pump and subsequent continuous opening of stomata and therefore wilting. The crystal structure of the 14-3-3, H\(^+\)-ATPase C-terminal phosphopeptide (QSYpTV-COOH) and fusicoccin beautifully illustrates the role of the toxin. Here fusicoccin fills a cavity at the 14-3-3-peptide binding site, which is empty due to the ‘shortened’ binding peptide. Biophysical analysis also demonstrated that in the presence of fusicoccin, the binding constant for 14-3-3 and QSYpTV dropped 90-fold. Although this 14-3-3 peptide binding is not ‘tight’, it has evolved to bind with precisely the correct affinity to regulate proton pumping. Interestingly, it has been demonstrated that 5’-AMP can promote the dissociation of 14-3-3 from this site on the H\(^+\)-ATPase implicating energy status as a regulator of at least some 14-3-3 functions [82].

5.4.2.2 14-3-3 roles and control

The diversity of binding partners and cellular processes that 14-3-3 participates in makes defining a single function for 14-3-3s very difficult. In fact, it now appears that 14-3-3s have several and in some cases overlapping functions. We recently attempted to classify their roles and have been able to ascribe three functions. Much of this understanding comes from insights derived from the crystal structures of 14-3-3 with and without bound ligands.

1. 14-3-3 directed conformational changes. The solved structure of human 14-3-3 alone, with a phosphopeptide or with a large fragment of a target protein, has shown the 14-3-3 dimer to be a very rigid structure with little change in shape upon ligand binding. This is consistent with the highly α-helical nature of the protein. These structures have led to the molecular anvil or molecular clamp hypothesis for 14-3-3 function. It is thought that this rigid structure of the 14-3-3 imposes structural alterations in the target, leading to a change in some property of the target protein [78, 79]. The enzyme serotonin-N-acetyltransferase binds a 14-3-3 protein after phosphorylation at two separate sites. The binding of the 14-3-3 induces an alteration in the enzyme that increases catalytic activity and affinity for substrate. This is the only example where the ‘molecular anvil’ hypothesis has been clearly illustrated, but likely explains the effect of 14-3-3 on many other targets. A beautiful example of inactivation after 14-3-3 binding came from studies on the chloroplast and mitochondrial ATP synthase. The chloroplast ATP synthase β subunit was one of the original 14-3-3 binding proteins identified eluting from a 14-3-3-Sepharose affinity column [74]. Subsequent work showed that the binding of 14-3-3 to the ATP synthase β-subunit (chloroplast or mitochondrial) inactivated the enzyme [83]. This is thought to prevent the synthase from operating in reverse and consuming ATP when the chloroplast or mitochondrial membrane proton gradient is not maintained because of darkness or lack of oxygen, respectively.

2. Masking of sequence specific or structural features. The ‘molecular anvil’ hypothesis works on the concept that 14-3-3 binding could potentially induce
structural changes in a protein very distant from the site of binding. Yet it is also possible that the binding of 14-3-3 to a target protein could directly mask or block a structural or sequence specific feature on the protein. Again, this concept is supported by the co-crystal structure of serotonin-\textit{N}-acetyltransferase and 14-3-3\textsubscript{ζ}. Here, the association of the 14-3-3 buries 2527 Å2 of surface area on the target enzyme, thus demonstrating that 14-3-3\textsubscript{s} can mask a relatively large surface area. The classic example of this phenomenon is evidenced with the dual specificity phosphatase known as CDC25. CDC25 performs its function in the nucleus where it dephosphorylates a tyrosine and threonine in the N-terminus of CDK2, the first step in the activation of this mitotic kinase. The phosphatase CDC25 has a constitutively exposed nuclear export signal (NES) and a nuclear localization signal (NLS) that resides near a 14-3-3 binding site. Once CDC25 is phosphorylated at the appropriate site, 14-3-3 docking here is thought to mask the nearby NLS and the NES dictates shuttling out of the nucleus and no subsequent import back unless this NLS is exposed again. Once out of the nucleus, CDK2 is activated and mitosis is triggered. Other well-studied examples of 14-3-3 masking include several mammalian histone deacetylases and the potassium channel protein Kir6.2 [84].

3. Co-localization of proteins. The idea that 14-3-3\textsubscript{s} could co-localize two separate proteins, in addition to the 14-3-3 itself, arose from data showing the co-binding of Bcr and Raf-1 with 14-3-3 and the structural studies illustrating that each subunit of a 14-3-3 dimer could bind a phosphopeptide. This meant that a 14-3-3 molecule could act as a phospho-dependent scaffold. To date only a few studies have shown this principle [77].

5.5 The role of protein phosphorylation in the control of plant primary metabolism

Some of the best-understood roles for protein phosphorylation in plants come from studies in primary metabolism and key examples will be highlighted below. A number of conserved protein kinases in yeast and mammals play central roles in nutrient sensing and signalling and a greater understanding of their function has emerged recently. Many of these protein kinases, such as the TOR and general control non-derepressible (GCN2), appear to be conserved in plants. Recent work in yeast and mammalian cells has established that the protein kinase TOR is a coordinator between nutrient and energy charge sensing (amino acids and ATP) in the cytosol of cells and the control of protein synthesis, cell growth and proliferation. Glimpses of a related capacity for TOR have been uncovered in plant cells and will be discussed here.

5.5.1 Nutrient sensing and signalling through conserved protein kinases

The TOR pathway in mammalian and yeast cells has a variety of both upstream and downstream components that all work through the TOR protein to illicit a cellular response to a variety of conditions, such as amino acid or ATP depletion. TOR
exerts its effects on the cell through its downstream targets, the most characterized of which are ribosomal protein S6 kinases (S6Ks) and eukaryotic initiation factor 4E binding proteins (4E-BPs) [85, 86]. The phosphorylation state of these two types of proteins, as well as other targets of TOR, is thought to be mediated by a combination of TOR kinase activity and PP2A phosphatase-like activity [87].

When amino acids are abundant, TOR phosphorylates S6K, which serves to activate the enzyme, leading to increased ribosomal S6 protein and eukaryotic initiation factor 4B phosphorylation (dephosphorylation occurs during amino acid starvation). Phosphorylation of these targets increases translation of ribosomal proteins and other translational regulators [88]. Despite several theories, it has not yet been shown conclusively how S6Ks mediate the effects of TOR signalling [89–91]. Mammalian TOR is also thought to function as a homeostatic ATP sensor due to its high K_m for ATP [92]. More recently, the energy charge sensing AMP-activated protein kinase (AMPK) has been demonstrated to function upstream in the TOR pathway and control signalling to mTOR in response to AMP/ATP levels [88].

In mammals, S6Ks and 4E-BPs (discussed below) are targeted to TOR through a conserved F(D/E)(hydrophobic)(D/E)(I/L) motif [93]. While plants do have two S6K proteins, neither has the TOR targeting motif, suggesting TOR functions through some alternate means. The mechanism of action of the other well-characterized targets of TOR, the 4E-BPs, has been largely determined in yeast and mammals. Eukaryotic initiation factor 4E (eIF4E) is responsible for binding to the 7-methyl guanosine cap on the 5′ end of mRNA and then recruiting other proteins required for initiation through binding of eukaryotic initiation factor 4G (eIF4G). The binding of a 4E-BP protein prevents the binding of eIF4G, and thus prevents initiation of translation. The phosphorylation of 4E-BPs prevents them from binding to eIF4E and allows the initiation complex to form normally [86]. While plants do not have a close homolog of the 4E-BPs, another protein has been identified as capable of binding eIF4E in the same manner as 4E-BPs in yeast, with very little homology to them, outside a small docking motif [94]. This protein also does not have a homolog in plants. Despite the fact that the two best-known targets of TOR lack highly related homologs in plants, it has been demonstrated that TOR has a very similar function in plants compared to yeast and mammals. TOR knockouts in both Arabidopsis and Drosophila show similar phenotypes: an inability to progress past equivalent stages in development [95–97]. It is then very likely that the function of the TOR pathway will be similar in both organisms.

While the targets of TOR are relatively well defined, the means of activating TOR in response to nutrient availability and energy charge (both amino acids and ATP) is not. Clues to the mechanism have been found by identifying TOR interacting proteins, such as the regulatory associated protein of TOR (RAPTOR in mammals; KOG1 in yeast) and LST8 (sometimes called GβL in mammals) [95]. These proteins are essential for the nutrient sensing ability of TOR, and their complex with TOR may be the nutrient sensing complex. Both of these proteins are well conserved in plants, indicating a likely similar role in the regulation of TOR [92]. Even though TOR shares a common role in developmental pathways, it may be that the nutrient sensing roles may differ in plants and animals. While TOR is ubiquitously
expressed in mammalian cells, it is only present in nondifferentiated tissues of
plants, raising the question of how differentiated plant cells respond to nutrient
stress [14].

The role of TOR in nutrient deprivation is only recently beginning to take shape,
but the roles of other protein kinases, GCN2 and Snf1, have been studied for some
time. The Snf1-like kinase has been studied in many organisms, including plants,
while the focus of GCN2 research has been on yeast, the organism it was discov-
ered in. Upon binding of uncharged tRNA (an indicator of amino acid starvation) to
GCN2, the enzyme is activated and phosphorylates eukaryotic initiation factor 2α,
which inhibits the entire eIF2 complex [98]. This leads to an inhibition of transla-
tion initiation, and thus protein synthesis as a whole. Snf1, known as AMPK in
mammals, is responsible for the control of a wide variety of functions within the
cell. AMP is a good indication of cellular energy status because all cells have an
adenylate kinase which maintains the equilibrium 2ADP ↔ ATP + AMP, which
means that a very small decrease in ATP produces a comparatively large increase in
AMP. AMPK, Snf1 and Snf1-like kinases have many known targets in yeast, mam-
mals and plants, some being specific to certain kingdoms, such as nitrate reductase
(NR) in plants, and others being more general, such as TOR [99, 100].

5.5.2 Nitrate reductase

One of the earliest and best-studied examples of protein phosphorylation as a regu-
latory mechanism in primary plant metabolism concerns NR. NR is a cytosolic
enzyme that catalyzes the reduction of nitrate to nitrite. Several early observations
indicated that NR was a highly regulated enzyme. During the artificial lowering of
CO2 levels or upon the transition from light to dark, the extractable activity of NR
decreased dramatically and this was a phosphorylation-dependent event [101, 102].
Attempts to purify the ‘inactive’, phosphorylated form of the enzyme proved
unfruitful, even in the presence of excess protein phosphatase inhibitors [102]. It
was subsequently found that some inhibitory factor was dissociating from phospha-
NR because of the dilution associated with the purification procedure. An enzyme
assay set up to look for this inhibitory factor of phosphorylated NR revealed that
this factor was a protein. Purification and structural analysis of this protein, origin-
ally called NIP (nitrate reductase inhibitory protein), disclosed its identity as 14-3-3.
Interestingly, we were able to show that a phospho-peptide based on the 14-3-3 bind-
ing region of mammalian Raf-1 could abolish the inhibitory effect of the 14-3-3.
Moreover, the inhibitory effect of the purified plant 14-3-3 on phosph-NR activity
could be replicated with yeast or human 14-3-3 proteins [103]. Knowing that the
inhibitory effect of the yeast and human 14-3-3 was as potent as the plant 14-3-3,
we then used immobilized recombinant yeast 14-3-3 proteins as an affinity matrix
in an attempt to purify and identify other plant 14-3-3 binding proteins. The
strength of this approach relied on the affinity displacement of the proteins retained
on the matrix with a phosphorylated peptide based on a 14-3-3 binding motif. This
technique was enormously successful and to date more than 30 plant 14-3-3 inter-
actors have been identified by this method [74].
5.5.3 Sucrose synthase

Sucrose synthase (SUS) catalyzes the synthesis of sucrose from UDP-glucose and fructose. This reaction occurs optimally at pH 8–8.8, whereas under hypoxic or anoxic conditions, the pH in the cell falls and the sucrose synthase enzyme degrades sucrose to UDP-glucose and fructose [104]. SUS is only one of two enzymes (the other being invertase) capable of sucrose degradation in vivo. The SUS enzyme has increased degradation activity under reduced oxygen conditions, as its pH optimum is between 6 and 6.5 [104]. It is this characteristic of the SUS enzyme that allows plants to acclimate to oxygen stresses, such as flooding. Changes in environmental conditions activate both translational and post-translational responses in SUS, as the SUS gene is regulated by the level of its own enzyme products, and the SUS enzyme is regulated by changes in subcellular localization, protein turnover and phosphorylation [104, 105]. The phosphorylation of SUS by a CDPK occurs on two conserved Ser residues. In Zea mays, the phosphorylation of the major site (Ser15) has been linked to subsequent phosphorylation on its second site (Ser170) [105]. Phosphorylation of the major site may activate the cleavage activity of the enzyme by altering the structure of the amino terminus [105]. In addition, Ser15 phosphorylation results in changes in the kinetic properties and subcellular localization of SUS, as the distribution of SUS between the soluble and membrane fractions is associated with the developmental stage of the organ examined and the phosphorylation status of Ser15. It is thought that membrane associated SUS provides UDP-glucose to the membrane localized cellulose synthase complex [104]. The minor phosphorylation site (Ser170) plays a role in regulating protein turnover, as it targets SUS for ubiquitin-mediated degradation by the proteosome [105].

5.5.4 Sucrose phosphate synthase and trehalose phosphate synthase

The synthesis of the nonreducing sugars sucrose (glucose and fructose) and trehalose (two glucose molecules) from hexose monophosphates proceed via the rate limiting steps catalyzed by sucrose phosphate synthase (SPS) and trehalose phosphate synthase (TPS), respectively. The phosphate is released by the respective 6-phosphatases to yield either sucrose or trehalose. The synthesis of sucrose and trehalose and the reactions catalyzed by SPS and TPS are highlighted below:

\[
\text{SPS} \quad \text{UDP-glucose + fructose-6-phosphate} \rightarrow \text{sucrose-6-phosphate} \rightarrow \text{sucrose + Pi}
\]

\[
\text{TPS} \quad \text{UDP-glucose + glucose-6-phosphate} \rightarrow \text{trehalose-6-phosphate} \rightarrow \text{trehalose + Pi}
\]

Both enzymes were retained and eluted from the 14-3-3 affinity matrix described above, placing phosphorylation and 14-3-3 binding at the forefront of regulation of the synthesis of these key disaccharides. Genomics has shown that there are four SPS genes in Arabidopsis and classic kinetics demonstrated that SPS is allosterically activated by glucose-6-phosphate and inhibited by inorganic phosphate. SPS was found to be phosphorylated many years ago [106] and the three sites in the
spinach leaf enzyme are serines 158, 229 and 424. Although the role of each phosphorylation site is not completely resolved, serine 229 is the likely 14-3-3 docking site. Two different groups have reported different effects for 14-3-3 binding to SPS [74, 107]. Both activation and inhibition have been suggested, and as yet this controversy has not been resolved.

TPS was indicated to be a phospho-protein due to its retention on 14-3-3-Sepharose. Recent work with overexpressing plants suggest that trehalose-6-phosphate may be a key signalling molecule, as has been demonstrated in yeast [108]. The roles of phosphorylation and 14-3-3 binding of TPS are yet to be elucidated. Future research will be needed to define the regulation of TPS and the functions of trehalose-6-phosphate.

5.5.5 6-phosphofructo-2-kinase/fructose2,6-bisphosphatase

PFK2 is a bifunctional enzyme responsible for the reversible synthesis of the regulatory metabolite fructose-2,6-bisphosphate (F26P2) from fructose-6-phosphate. In mammals and yeast, F26P2 stimulates glycolysis by activation of 6-phosphofructo-1-kinase (PFK1) and slows gluconeogenesis by inhibiting fructose-1,6-bisphosphatase (FBPase). Plant cytosolic FBPase is inhibited by F26P2, while the ATP-dependent PFK1 is not F26P2 stimulated. Interestingly, the PPi-dependent PFK (PFP) is activated by this metabolite. Although a clear role for PFP is yet to be defined in plants, various evidences suggest it is an adaptive enzyme that helps to contribute to the unique flexibility of primary plant metabolism thereby helping plants acclimate to unavoidable abiotic stresses (such as anoxia and Pi starvation) they encounter in their natural environment. Recently the plant PFK2 was demonstrated to be phosphorylated on serine and threonine residues [109] and a screen of an Arabidopsis 14-3-3 column eluate showed that this enzyme is retained on the matrix and eluted with a 14-3-3 competing phospho-peptide [110]. Recombinant PFK2, phosphorylated in vitro with an Arabidopsis extract, recombinant atCDPK3 or mammalian AMPK then has the ability to bind 14-3-3s. Mapping of the phosphorylation sites generated during conditions that result in 14-3-3 binding yielded three phosphorylation sites on PFK2, including one that resembles a mode one 14-3-3 binding site. The role of 14-3-3 binding to PFK2 is yet to be determined, as a thorough kinetic examination did not find any changes in kinetic parameters or ratio of F26P2 synthesis to degradation activities. The precise function of 14-3-3 binding to PFK2 awaits discovery.

5.5.6 Starch synthase and starch branching enzyme

Starch is synthesized in chloroplasts during the light period from carbon assimilated through the reductive pentose phosphate pathway. Starch accumulates as an insoluble polymer or granule of amylose and amyllopectin. Starch synthase adds glucose moieties from ADP-glucose to the nonreducing ends of amylose or amyllopectin with specific isoforms of starch synthase bound to the starch granule, or found in the soluble fraction or stroma of the plastid. Branching, the generation of α1→6 bonds, is introduced in the growing chains by starch branching enzyme.
The first suggestion that protein phosphorylation plays a role in regulating starch metabolism came from 14-3-3 antisense plants which accumulate more starch compared to wild-type plants [111]. Western analysis of isolated starch and microscopy studies displayed the presence of 14-3-3s on the starch granule. An analysis of starch metabolic enzyme sequences showed that starch synthase III, a granule bound form, has a near ‘perfect’ mode one 14-3-3 binding motif and it was proposed to bind 14-3-3 on the starch granule [111]. More recently, labeling of intact wheat amyloplasts with γ32P-ATP and purification of phosphoproteins on a phospho-affinity matrix detected one soluble and two granule associated starch branching enzymes, plus two granule bound starch synthases as phospho-proteins. Phosphorylation of starch branching enzyme II stimulated the activity of the enzyme [112].

5.5.7 Glutamine synthetase (GS1 and GS2)

The ATP-dependent glutamine synthetase (GS) reaction yields glutamine from glutamate and ammonium and is considered to be a pivotal interface of carbon and nitrogen metabolism as this catalyzes the reaction that incorporates inorganic nitrogen into organic form. Bacterial GS is highly regulated, being covalently modified through adenylylation, which allows feedback inhibition by no fewer than eight key downstream metabolites. Both cytosolic (GS1) and plastidic (GS2) forms of glutamine synthetase are present in plant cells. Because of the critical step catalyzed by this reaction, it is natural to predict that these are regulated enzymes. Perhaps it was no surprise that both GS1 and GS2 were purified on a 14-3-3 matrix, the first clue that they were likely phosphoproteins [74]. Additional work has revealed that both GS1 and GS2 are phosphoproteins; both bind 14-3-3s in their respective compartments and association with 14-3-3 activates the enzymes 1.5 to 2-fold [113, 114]. Chromatography of Chlamydomonas reinhardtii extracts on 14-3-3 Sepharose also identified one of the major 14-3-3 binding proteins as the cytosolic form of GS [115]. Here no effect on enzyme activity was observed.

5.5.8 Nonphosphorylating glycerladehyde-3-phosphate dehyrdrogenase

There are three different enzymes capable of oxidizing glyceraldehydes-3-phosphate (G3P) in plants. Two of them are phosphate dependent, with one being present in both photosynthetic and nonphotosynthetic tissues, whereas the other is present strictly in the chloroplast. The third enzyme converts G3P to 3-phosphoglycerate coupled to the production of NADPH. This enzyme, known as non-phosphorylating glycerldehyde-3-phosphate dehydrogenase (GAPN), is unrelated to the other two enzymes with which it shares function, and is actually most similar to the superfamily of aldehyde dehydrogenases [116]. GAPN is proposed to be involved in the shuttling of NADPH generated through photosynthesis into the cytosol. However, GAPN is not specifically expressed in photosynthetic tissues, which suggests that it may have a nonphotosynthetic role as well. In support of a role outside photosynthesis, GAPN has been found to be phosphorylated in
wheat (*Triticum aestivum*), but only in endosperm and shoots, but not leaves. Furthermore, the phosphorylation has been found to allow binding of the enzyme to 14-3-3 proteins. This binding changes the catalytic properties of the enzyme, producing an enzyme complex that inhibits GAPN activity in cells with high energy charge [117].

5.5.9 *Phosphoenolpyruvate carboxylase and PEPC kinase*

PEPC catalyzes the cytosolic carboxylation of phosphoenolpyruvate to form oxaloacetate and phosphate (see Chapter 12). In C4 and CAM plants, the photosynthetic PEPC is responsible for the primary fixation of CO₂, while other isoforms are best known for their role as a replenisher of TCA cycle intermediates during nitrogen assimilation. All forms are allosterically activated by glucose-6-phosphate and inhibited by malate. Phosphorylation of a highly conserved serine residue near the N-terminus relieves malate inhibition of PEPC. The identification and purification of the protein kinase responsible for this phosphorylation was a daunting task. The protein kinase was partially purified from maize as a Ca²⁺-independent enzyme of 30–32 kDa and was eventually cloned. The PEPC kinases are unusual in that they consist almost entirely of just a protein kinase catalytic domain with no N- or C-terminal extensions [8]. They are also unique in that the activity of this enzyme appears to be regulated solely by expression. As mentioned earlier, the residue of the activation loop that would be phosphorylated to activate the kinase is a glycine in the PEPC enzymes and genomics has shown that the PEPC kinases are unique to plants and a specific subgroup of protists.

5.6 Summary

Genomics, standing on the shoulders of the information derived from the long history of biochemistry and molecular biology of protein kinases, phosphatases and metabolism, has thrown light on many phospho-regulated processes in plants. By exploiting the recently developed techniques of microarray analysis, RNAi, peptide library analysis, proteomics and phospho-proteomics, we are now on the verge of witnessing an explosion of information on plant biology concerning the role protein phosphorylation plays in primary plant metabolism and other cellular processes. This chapter provides a framework of information on protein kinases and protein phosphatases across a broad spectrum of organisms and we hope it will function as a guide for plant biologists and stimulate additional interest in protein phosphorylation as a regulatory mechanism.

Acknowledgements

G.B.G. Moorhead is supported by the Natural Sciences and Engineering Research Council of Canada. The authors thank D. Bridges for assistance in modifying Figure 5.2.
References

6 Redox signal transduction in plant metabolism

Santiago Mora-Garcia, Fabiana G. Stolowicz and Ricardo A. Wolosiuk

6.1 Introduction

The advent of oxygenic photosynthesis was probably the second major event in the history of life on our planet, after the inception of life itself. The ability to use staples such as water and light as energy sources for the assimilation of carbon unleashed the potential of primary producers. At the same time, oxygen released as a by-product of the photosynthetic process became an effective electron acceptor for respiration. However, organisms that perform this particular type of reaction play, literally, with fire. Molecular oxygen is particularly prone to yield reduced and highly unstable reactive oxygen species (ROS), which avidly react with the electron-rich organic molecules. Oxygen builds up in the light, precisely at the same time as light-excited photosystems and transport chains handle a rich pool of free electrons. Whenever the abundance of suitable acceptors fails to match the rate of production, several mechanisms tend to transfer these electrons directly to oxygen. The most abundant protein in land plants, ribulose-1,5-bisphosphate (RuBP) carboxylase (Rubisco), further complicates this scheme. Rubisco incorporates O₂ into RuBP almost as readily as CO₂, a process known as photorespiration. When the availability of CO₂ becomes restricted, for instance in response to water deficit, or when high temperatures alter the catalytic properties of Rubisco, photorespiration may take over, and 2-phosphoglycolate is produced at the expense of the building block for the Benson-Calvin cycle, 3-phosphoglycerate. Although this reaction is a starting point for several biosynthetic processes and a way to remove oxygen, the oxidation of glycolate in peroxisomes significantly contributes to the production of H₂O₂ during the light period. Photosynthetic organisms must, therefore, deal with elevated concentrations of a molecule that is both a sink of electrons and a source of wrecking intermediates (for a comprehensive review see [1]). In addition, as sessile organisms, plants must continually acclimate to changing conditions. The term acclimation involves both developmental plasticity in response to long-term environmental trends as well as the ability to tolerate a broad spectrum of transient changes.

The impact of these processes on central metabolic pathways is such that, in plants, departures from optimal conditions ultimately result in increases in the abundance of ROS and, thus, in unbalances of the redox homeostasis, the so-called oxidative stress. Given the crucial importance of this condition for the overall performance of the cells, ROS are powerful adaptive cues. Toxic oxygen derivatives are also effective means to
fight pathogens. ROS contribute to an active defense strategy, strengthening cell walls and damaging the intruder, and eventually lead to the programmed death of the cells under attack [2]. In many cases, the ability of \(\text{H}_2\text{O}_2 \) to permeate lipid membranes allows it to diffuse throughout the cell and into neighboring cells, acting by itself or through intermediates as a systemic signal for disparate environmental injuries.

It has recently become clear that controlled and localized production of ROS fulfills much broader functions in plant cells. Local increases in ROS concentration precede stomatal closure in reaction to water shortage and abscisic acid, and are associated with polar root hair growth and differential cell expansion in tropic responses under the control of auxin. In all these processes, ROS activate hyperpolarization-dependent Ca\(^{2+}\)-permeable cation channels, which increase cytosolic Ca\(^{2+}\) concentration and prompt Ca\(^{2+}\)-dependent signal transduction [3]. Although the molecular mechanisms leading to the activation of these channels, whether direct or indirect, are still unknown, sulfur atoms in cysteines and methionines are especially attractive as targets of ROS. Alteration of the catalytic or structural features of proteins through the control of the oxidation number of cysteines offers a versatile framework for the control of physiological processes. Furthermore, the ability of a particular cysteine to undergo various oxidation states opens the way to a ‘redox code’, suited to trigger different cellular responses. In fact, an increasing number of signal transduction components and gene expression modulators are recognized to bear redox-sensitive residues.

An exogenous stimulus displaces the thermodynamic equilibrium with the consequent imbalance of associated processes. Although the midpoint redox potential gives an estimation of the driving force for transferring electrons from donor molecules to acceptors, catalysts that lower barriers of activation energy are key players. As a consequence, any attempt to establish the importance of redox cell signalling in metabolism requires the characterization of the interplay between stimuli, the abundance of reductants and oxidants (thermodynamic control) and the features of the catalysts involved (kinetic control). Here, we summarize our current knowledge about thiol redox signalling on a number of well-studied systems, with the final goal of clarifying, where possible, the complexity of the network. Experimental evidence on cysteine-based signals from organisms other than plants are mentioned when they give useful clues as to how the concept of cellular redox modulation can be furthered. Next, we describe in detail thiol/disulfide exchanges catalyzed by protein-disulfide oxido-reductases, because this mechanism plays paramount roles in the control of primary plant metabolism. We concentrate on important breakthroughs from the past few years and provide an overview of the components involved and the functional principles that govern these processes. Where appropriate, we remit the reader to well-documented reviews.

6.2 The reactivity of the sulfhydryl group

In proteins, covalent modifications of amino acids by small chemical groups usually affect the stability, intracellular location, catalytic function and/or their ability
to interact with other partners [4]. Phosphorylation of serine, threonine, tyrosine or histidine, oxidation of methionine, methylation of lysine or hydroxylation of proline does not have the flexibility to adopt more than two states. At variance, sulfhydryl groups in cysteines are able to acquire a series of redox states ranging from thiol (-S-H; sulfur oxidation number: −2) to more oxidized forms such as disulfide (-S-SR; −1), sulfenic acid (-S-OH; 0) or S-nitrosothiol (-S-NO; 0). Since the pioneer review of Barron [5], the thiol-disulfide alternancy in cysteines has been implied in all sorts of biochemical events, from the modulation of catalysis to the stabilization of the tertiary structure in secretory proteins. More recently, the study of several case proteins has revealed the hidden subtleties of thiol chemistry. For example, the transformation of a single -SH group in OxyR, a redox sensing transcription factor in *Escherichia coli*, into either -S-S-glutathione, -S-OH or -S-NO yields transcriptionally active forms that differ in structure, binding affinity for DNA and promoter activity [6]. This is but a token of the flurry of novel mechanisms related to cysteine residues discovered in the last few years – a trend that shows no sign of slowing down. The emerging picture shows that, in a cellular context, redox transitions of sulfhydryls give rise to different products that in turn trigger specific responses.

As the predominant nonprotein thiol in cells, reduced glutathione (GSH) plays an important role as a reductant that helps to metabolize damaging oxidants in most aerobic cells, yielding the oxidized glutathione disulfide (GSSG) [7]. Shifts in the balance between reduced and oxidized forms of GSH in response to endogenous or environmental stimuli serve as sensors of stress and triggers for development [8–11]. Protein S-glutathionylation is a particular case of the well-known reversible thiol/disulfide exchange between reduced cysteines and GSSG:

\[
\text{HS-Prot-SH} + \text{GSSG} \leftrightarrow \text{HS-Prot-S-SG} + \text{GSH}
\]

or between protein cystines and GSH:

\[
\text{Prot-(S)2} + \text{GSH} \leftrightarrow \text{HS-Prot-S-SG}
\]

In some cases, however, a glutathione moiety can be bound to proteins through the intermediary of highly reactive species, i.e., glutathione S-oxide (also named glutathione thiosulfinate), a by-product of S-nitrosothiol transformations [12]:

\[
\text{GSH} + \text{NOH} \rightarrow \text{GS(NHOH} \rightarrow \text{GS(O)NH}_2 \\
\text{GSH} + \text{GS(O)NH}_2 \rightarrow \text{GS(O)SG} + \text{NH}_3 \\
\text{Prot-SH} + \text{GS(O)SG} \rightarrow \text{Prot-SSG} + \text{GSOH}
\]

Ample experimental evidence has revealed that glutathionylation has considerable significance for the function of many proteins [9–11, 13]. A relatively large number of S-glutathionylated proteins have been detected in yeast and animal cells, including transcription factors such as the p50 subunit of NF-κB, critical enzymes such as glyceraldehyde 3-P dehydrogenase and the redox active thioredoxin (Trx) [14–16]. Our current knowledge of such events in plant cells is still scarce, but is rapidly improving. Accordingly, a study identified about 20 proteins from cultured...
Arabidopsis thaliana cells that incorporated biotinylated GSH. Two of these targets were characterized as triose-phosphate isomerase and a putative plastidic aldolase, key enzymes for sugar metabolism. The inactivation and reactivation of recombinant triose-phosphate isomerase by GSSG and GSH, respectively, further links the redox status of GSH to enzyme control [17]. Moreover, the recent finding that poplar thioredoxin-h2 (ptTrx-h2) (a mitochondrial Trx isoform) is glutathionylated, whereas two cytosolic counterparts (PtTrx-h1 and PtTrx-h3) are unreactive under similar experimental conditions, stresses the specificity of this type of modification [18].

Another remarkable mechanism of redox control involves the conversion of the sulfur atom to more oxidized states by the action of reactive oxygen and nitrogen species. Chemical and crystallographic studies have provided compelling evidence of the presence of functional sulfenates in many proteins upon mild oxidation [19]. The -Cys-SOH group of some proteins (i.e., 2-Cys peroxiredoxins (2-Cys Prx)) functions as a transient intermediate during the reduction of H₂O₂ and the peroxynitrite anion (ONOO⁻) or coordinates metals in the active site (i.e., Fe(III) in nitrile hydratase) [20–22]. In other cases, the reversible oxidation of key Cys-SH to Cys-SOH may serve as a relay sensor of the intracellular redox status, modulating stress responses.

S-nitrosylation of proteins is another important post-translational modification that must be adequately poised to avoid the so-called nitrosative stress [23–25]. In plants, NADH:nitrate reductase or an inducible nitric oxide synthase produces the nitric oxide radical (NO') which triggers the conversion of -Cys-SH into -Cys-SNO. The cell redox status and the proximity to the NO' source control the reversal of this process [26–28]. A search of putative sites for the acid–base catalysis of nitrosylation using the degenerate motif \((G/S/T/C/Y/N/Q)(K/R/H/D/E)C(D/E) \) disclosed 103 matches in Arabidopsis, including proteins involved in the cell cycle, transport, signalling and metabolism [30]. Other timely findings uncovered that thiol groups of Trx in animal cells are targets for S-nitrosylation by N₂O₃-like species generated in a superoxide producing system containing xanthine and xanthine oxidase. In one set of experiments, this mechanism dissociates Trx from the apoptosis signal regulating kinase 1 which in turn becomes functional [31, 32]. This finding suggests the intriguing possibility that Trx, under some conditions, may rely on post-translational modifications other than the classical thiol/disulfide exchange. Another reactive nitrogen species that mediates the oxidation of sulfhydryl groups is the ONOO⁻, the reaction product between the free radical species superoxide and NO' \((O_{2}^- + NO' \rightarrow ONOO^- \leftrightarrow ONOOH \rightarrow OH^- + NO_2) \). Although the apparent second order rate constant for the reaction of protein thiols with the ONOO⁻ (2700 M⁻¹.s⁻¹) is three orders of magnitude greater than the corresponding rate constant for the reaction with H₂O₂ (1.14 M⁻¹.s⁻¹) at pH 7.4, the regulatory role, if any, of ONOO⁻ is yet to be established [33].

Data summarized above show that our understanding of thiol dynamics has evolved from the simple on/off switch associated with thiol/disulfide exchanges to encompass a range of redox-based modifications driven by reactive oxygen and nitrogen species (Figure 6.1). By virtue of this flexibility, sulfhydryls can process a wide spectrum of stimuli into different functional responses [34].
Despite the ample room for variations at a single cysteine, thiol/disulfide exchanges are still the mechanisms studied in greater detail. These reactions are carried out by a specialized and diverse group of enzymes dubbed protein disulfide oxido-reductases (PDOR), seemingly one of the most ancient and widespread protein families among living organisms. In recent years, the availability of complete genome sequences and the burgeoning of high-throughput proteomic studies have boosted the interest in this group. The discovery of an unexpected variety of PDOR isoforms encoded in the genomes of oxygenic photosynthetic organisms goes hand in hand with a flood of structural and biochemical studies and with the identification of a plethora of previously unsuspected interacting partners. Therefore, we discuss this issue in detail below.
6.3 Protein-disulfide oxido-reductases

The relevant feature in the ubiquitous PDOR is the presence of the motif -CXXC-, whose cysteine residues undergo a cycle of intracatenary oxido-reduction. The midpoint redox potential of this reactive site grossly establishes the tendency of catalysis. Thus, a highly reducing motif (i.e., *E. coli* Trx, $E_0 = -270$ mV; *E. coli* Grx = -233 mV) drives hydrogens for cleaving target disulfide bonds while a more oxidizing motif (i.e., *E. coli* DsbA, $E_0 = -106$ mV) withdraws hydrogens from the sulfhydryls of target proteins, generating a cystine (Table 6.1). All members of this superfamily share a common tertiary fold composed of a central four-stranded β-sheet surrounded by three α-helices, named the Trx fold. The nucleophilic cysteine (located at the N-side of the active site) protrudes to the solvent while the remaining cysteine remains buried in the globular structure [35]. This basic unit seems to be extremely versatile, considering the growing number of proteins comprising one or more Trx modules linked to additional domains. Although these composite proteins play important roles in redox signalling – i.e., nucleoredoxin, a polypeptide containing three Trx-like modules that localizes preferentially in the nucleus of developing maize kernels [36] – space limitations make it impossible to cover all of them in this review. We thus circumscribe primarily our analysis to the most recent developments in functional aspects of plant Trx, glutaredoxins (Grx), protein disulfide isomerases (PDI) and some related PDOR; several excellent reviews provide an overview of the previous [37–40] and recent [41] literature in this field.

Table 6.1 Midpoint redox potentials of thiols and dithiol proteins

<table>
<thead>
<tr>
<th>Protein/thiol</th>
<th>E_0 (mV)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSH</td>
<td>-252</td>
<td>[199]</td>
</tr>
<tr>
<td>PDI</td>
<td>-180</td>
<td>[200]</td>
</tr>
<tr>
<td>E. coli Grx</td>
<td>-230</td>
<td>[200]</td>
</tr>
<tr>
<td>E. coli Trx</td>
<td>-270</td>
<td>[200]</td>
</tr>
<tr>
<td>Spinach Trx-f</td>
<td>-290</td>
<td>[201]</td>
</tr>
<tr>
<td>Spinach Trx-m</td>
<td>-300</td>
<td>[201]</td>
</tr>
</tbody>
</table>

6.4 Thioredoxins

Trx are small (ca 12 kDa) single-domain proteins carrying a conserved -CGPC-motif that catalyzes the reduction of protein disulfides at rate orders of magnitude faster than those of free thiols such as dithiothreitol (DTT) or GSH. The unusual basic microenvironment around the Trx active cysteine allows the formation, under physiological pH, of a nucleophilic thiolate that attacks the disulfide bond of the target protein, forming a covalently linked heterodimer:

$$\text{HS-Trx-SH} \rightarrow \text{HS-Trx-S}^- + \text{H}^+$$

$$\text{HS-Trx-S}^- + \text{Prot-(S)}_2 \rightarrow [\text{HS-Trx-S}^-\text{-S}-\text{Prot-S}]^- \rightarrow \text{S-Trx-S-S-Prot-SH}$$
The heterodisulfide undergoes an intramolecular thiol/disulfide exchange by the action of the buried, resolving Cys, releasing the oxidized Trx and the reduced target protein:

$$\text{S-Trx-S-Prot-SH} + H^+ \rightarrow \text{Trx-(S)}_2 + \text{HS-Prot-SH}$$

Finally, for the functioning of this catalytic cycle, the Trx active site needs to retrieve the hydrogens provided to the target protein.

6.4.1 Thioredoxin isoforms

The gearing of CO₂ assimilation in the Benson-Calvin cycle to the light-driven electron transport in photosystems was one of the first examples of global metabolic redox control through thiol/disulfide exchanges [42]. biochemical features and the location in leaf cells set the basis for originally grouping plant Trx into three subfamilies [43]. Chloroplast species that enhanced the activity of chloroplast fructose-1,6-bisphosphatase (CFBPostase) and NADP-malate dehydrogenase (NADP-MDH) were named Trx-f and Trx-m, respectively, while that found in the cytosolic fraction was called Trx-c and afterward renamed Trx-h (for heterotrophic). Later, it was recognized that these forms belonged to different phylogenetic lineages, providing a first glimpse of the remarkable variety of Trx isoforms in plants [44]. Full genomic sequences have confirmed the considerable complexity of the Trx complement of oxygenic photosynthetic organisms, compared to nonphotosynthetic prokaryotes and eukaryotes [45]. Indeed, whereas *E. coli* encodes 2 divergent Trx genes, the cyanobacterium *Synechocystis* codes for 4 different forms, named -m, -x, -y and an unclassified one. On the eukaryotic side, brewer’s yeast and humans have 3 and 2 isoforms, respectively, while the green algae *Chlamydomonas reinhardtii* and the land plant Arabidopsis have 8 and 19 isoforms, distributed in six different subfamilies (Trx-f, -m, -x, -y, -o and -h), respectively (Tables 6.2 and 6.3) [46–48]. Phylogenetic relationships indicate that subfamilies -h, -f and -o are akin to eukaryotic Trx, whereas subfamilies -m, -x and -y seem to be of prokaryotic origin; in fact, Trx-m in red algae is encoded by the plastidial genome [49]. Being all Trx nuclear encoded in Viridiplantae, a relatively large number of predicted primary structures that bear N-terminal extensions suggest a variety of final intracellular destinations. In line with this view, N-terminal sequences of purified mature Trx-f and Trx-m and fusions of Trx-m2 and Trx-y2 to green fluorescent protein (GFP) confirmed their localization in the stroma of chloroplasts [50]. The expression of these chloroplast isoforms is stronger in leaves and is induced by light. By contrast, the expression of Trx-y1, highly similar to Trx-y2 and likely localized in plastids as well, is high in nonphotosynthetic tissues, especially in seed leucoplasts during the accumulation of storage lipids [50]. The genome of Arabidopsis also encodes Trx-o1 and Trx-o2, which do not keep homology to chloroplast counterparts [51, 52]. Recent import experiments showed that mature AtTrx-o1, devoid of transit peptide, is present in the mitochondrial matrix [53].
Arabidopsis encodes eight Trx-h isoforms; some of them conserve the classical site -CGPC- while others hold atypical -CPPC- and -CXXS- motifs (Table 6.3). Since these motifs are nonetheless followed by predicted α-helices, a feature conserved in redox enzymes but not in other proteins, they may impart alternative catalytic functions [54, 55]. Phylogenetic evaluations divided this subfamily into three main groups. In Arabidopsis, only one member of group I, AtTrx-h1, harbors the classic sequence at the active site whereas the other three hold the unusual motif -CPPC- without modification of the Trx fold [54, 56]. On the other hand, all Trx-h in group II host the typical -CGPC- active site, but the comparison with counterparts from many other plants led to further subdivision of this group into three sub-

Table 6.2 Non Trx-h isoforms of *Arabidopsis thaliana*

<table>
<thead>
<tr>
<th>Isoform</th>
<th>Polypeptide length</th>
<th>Active site sequence</th>
<th>Subcellular localization</th>
<th>MATDB entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtTrx-m1</td>
<td>179</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At1g03680</td>
</tr>
<tr>
<td>AtTrx-m2</td>
<td>186</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At4g03520</td>
</tr>
<tr>
<td>AtTrx-m3</td>
<td>173</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At2g15570</td>
</tr>
<tr>
<td>AtTrx-m4</td>
<td>193</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At3g15360</td>
</tr>
<tr>
<td>AtTrx-x</td>
<td>171</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At1g50320</td>
</tr>
<tr>
<td>AtTrx-f1</td>
<td>178</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At3g02730</td>
</tr>
<tr>
<td>AtTrx-f2</td>
<td>185</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At5g16400</td>
</tr>
<tr>
<td>AtTrx-y1</td>
<td>172</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At1g76760</td>
</tr>
<tr>
<td>AtTrx-y2</td>
<td>167</td>
<td>-CGPC-</td>
<td>Chloroplast</td>
<td>At1g43560</td>
</tr>
<tr>
<td>AtTrx-o1</td>
<td>194</td>
<td>-CGPC-</td>
<td>Mitochondria</td>
<td>At2g35010</td>
</tr>
<tr>
<td>AtTrx-o2</td>
<td>159</td>
<td>-CGPC-</td>
<td>Cytosol(^a)</td>
<td>At1g31020</td>
</tr>
</tbody>
</table>

\(^a\)Putative.

Table 6.3 Trx-h isoforms of *Arabidopsis thaliana* [18, 58]

<table>
<thead>
<tr>
<th>Group</th>
<th>Subgroup</th>
<th>Isoform</th>
<th>Polypeptide length</th>
<th>Active site sequence</th>
<th>localization (putative)</th>
<th>Subcellular MATDB entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>AtTrx-h1</td>
<td>114</td>
<td>CGPC</td>
<td>Cytosol</td>
<td>At3g51030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AtTrx-h3</td>
<td>118</td>
<td>CPPC</td>
<td>Cytosol</td>
<td>At5g42980</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AtTrx-h4</td>
<td>119</td>
<td>CPPC</td>
<td>Cytosol</td>
<td>At1g19730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AtTrx-h5</td>
<td>118</td>
<td>CPPC</td>
<td>Cytosol</td>
<td>At1g45145</td>
</tr>
<tr>
<td>II</td>
<td>II-A</td>
<td>AtTrx-h2</td>
<td>133</td>
<td>CGPC</td>
<td>Cytosol</td>
<td>At5g39950</td>
</tr>
<tr>
<td></td>
<td>II-C</td>
<td>AtTrx-h7</td>
<td>129</td>
<td>CGPC</td>
<td>Cytosol</td>
<td>At1g59730</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AtTrx-h8</td>
<td>148</td>
<td>CGPC</td>
<td>Mitochondria</td>
<td>At1g69880</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>AtTrx-h9</td>
<td>140</td>
<td>CGPC</td>
<td>Cytosol</td>
<td>At3g08710</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AtCXXS1</td>
<td>118</td>
<td>CIPS</td>
<td>Cytosol</td>
<td>At1g11530</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AtCXXS2</td>
<td>154</td>
<td>CLPS</td>
<td>Cytosol</td>
<td>At2g40790</td>
</tr>
</tbody>
</table>
groups [18]: II-A and II-C comprise proteins related to AtTrx-h2 and AtTrx-h8, respectively, while II-B contains mainly Trx-h from cereals. The third group of Trx-h was initially identified in monocots but seems to be present in all land plants. The relevant feature of this group is that many members harbor the canonical bicysteinic -CGPC- active site while some hold a monocysteinic -CXXS- sequence [54, 57]. Interestingly, the reductive capacity of two isoforms from poplar belonging to this group and related to AtCXXS1 departs from that usually ascribed to Trx (cf. below) [58, 59]. Trx-h isoforms have been detected in different cell locations, except in chloroplasts. In addition to the cytosol [60], they appear in the nuclei of developing wheat seeds [61] and in the extracellular compartment, as a component of phloem sap [62, 63]. More recently, immunological detection and fusions to GFP showed that PtTrx-h2, grouped in II-C with AtTrx-h7 and AtTrx-h8, is targeted to plant mitochondria [18]. Not surprisingly, different Trx-h isoforms are expressed not only at different levels [64] but also in tissue- and developmental-stage specific manners. For example, in mature barley seeds, HvTrx-h1 is present in the endosperm, the aleurone layer and the embryo and HvTrx-h2 locates mainly at the embryo. At the onset of germination, the levels of HvTrx1 remain high in the embryo but fall in the other two compartments, while the abundance of HvTrx2 decreases [65].

The variety of proteins that contain a Trx domain but do not easily accommodate among the well-known PDOR is a clear indication of the multiple alternatives present in this superfamiliy for driving reducing power to specific physiological processes. Support for the idea that similar proteins will be likely found in the near future comes from a novel bipartite protein from Arabidopsis that bears a C-terminal Trx and an N-terminal tetraicopeptide repeat domain, similar to that observed in rat and human Hip (HSP70-interacting protein), a protein that stabilizes the ADP-bound form of the chaperone Hsp70 [66]. This 42-kDa protein, AtTDX (for Tetratricopeptide domain-containing Trx), exhibits disulfide reductase activity both in vitro and in vivo and interacts specifically with the yeast Hsp70 Ssb2 protein. This interaction is sensitive to the redox status, with the Trx domain acting as a redox switch that turns the complex with Ssb2 on and off.

6.4.2 Reductants of thioredoxins (sources of reducing power)

In cellular compartments that depend on reduced carbon skeletons as their main source of energy, NADPH ($E_m = -340$ mV) provides the reducing power to cleave the disulfide bond of Trx, assisted by NADP-Trx reductase (NTR) (Figure 6.2) [51, 67, 68]:

$$\text{NTR} \quad \text{NADPH} + H^+ + \text{Trx(S)}_2 \rightarrow \text{NADP}^+ + \text{HS-Trx-SH}$$

Along with dihydrolipoamide reductase, glutathione reductase, alkylhydroperoxide reductase and mercuric reductase [69, 70], NTR is a member of the superfamiliy of flavoprotein-disulfide oxido-reductases whose redox-active disulfide -CA(V/T)C- locates at a gaping hole between the FAD and NADP domains [71, 72].
Figure 6.2 Reduction of Trx in plant cells. NTR mediates the reduction of Trx by NADPH, whereas FTR uses Fd as reductant. In the stroma of chloroplasts, reduced Fd is the initial source of electrons for the reduction of both NADP and Trx. It was generally believed that the NTR pathway was absent from chloroplasts; the finding of NTRC [81] suggests that both Trx-reducing systems may be operative. Abbreviations: PETS, photosynthetic electron transport system; FNR, Fd-NADP reductase; MP, metabolic pathways producing NADPH.

Contrasting with the bewildering diversity of Trxs, Arabidopsis seems to make do with a limited number of NTRs. Laloi et al. [51] found that most of the NTR function in Arabidopsis is served by two paralogous genes, AtNTRA and AtNTRB. In both AtNTRA and AtNTRB, two in-frame start codons produce two different polypeptides of ca 42 and 37 kDa. For NTRB, the former species yields a 37-kDa form after import into mitochondria, in a process that is sensitive to the electrochemical membrane potential. Although AtNTRA and AtNTRB seemingly have overlapping functions, given that individual knockout plants are viable, AtNTRB appears to produce the major form in mitochondria [73], whereas AtNTRA provides most of the cytosolic enzyme. The use of two ATGs for cytosolic and mitochondrial targeting has also been described for NTR in mammals, insects and parasites [74–76]. Hence, like plant aminoacyl tRNA synthetases [77, 78], alternative translation start seems to be a common feature of the NTR gene in eukaryotes.

Gelhaye et al. [59] have recently found evidence hinting at an alternative way for the reduction of vascular plants Trx-h. PtTrx-h4 and PtCXXS3 are members of the poplar Trx-h group III – harboring the typical -CGPC- and the unusual -CMPS- sequences, respectively. Surprisingly, both proteins are insensitive to Arabidopsis and E. coli NTR. Instead, PtTrx-h4 reduces several Trx targets, such as Prx or methionine sulfoxide reductases, accepting reducing equivalents from poplar or E. coli Grx, whereas PtCXXS3 drives the reaction commonly used for testing the activity of Grx, i.e. the GSH-dependent cleavage of hydroxyethylidisulfide. Hence, the transfer of reducing equivalents from GSH via members of Trx-h group III uncovers the presence (in plants) of Trx-like structures with Grx-like activities, linking Grx- and Trx-dependent systems (Figure 6.3). Apparently, a conserved cysteine residue located in the N-terminal extension in group III Trx-h helps to circumvent the unfavorable redox potential of Grx for the reduction of Trx in thiol/disulfide exchanges [58]. It will be extremely interesting to identify the Trx isoforms whose catalytic cycle is driven by GSH-dependent reductions.

In chloroplasts and cyanobacteria, a completely different system provides reducing equivalents to Trx (Figure 6.2). The product of the photosynthetic electron transport system, reduced ferredoxin (Fd) $(E_m = -420 \text{ mV})$ and two protons...
regenerate thiol groups in oxidized Trx, thus linking redox reactions to the operation of photosystems:

\[
2 \text{Fd}_{\text{red}} + 2 \text{H}^+ + \text{Trx(S)}_2 \xrightarrow{\text{FTR}} 2 \text{Fd}_{\text{ox}} + \text{HS-Trx-SH}
\]

The iron–sulfur enzyme Fd-Trx reductase (FTR), a key element in this pathway, is formed by two different subunits [79]. The catalytic subunit (ca 13 kDa) contains seven conserved cysteine residues, six of which participate actively in the binding of the [4Fe–4S] iron–sulfur cluster and in the redox reactions with the target disulfide. The variable subunits (8–13 kDa), on the other hand, exhibit pronounced diversity in their primary structure; truncations in their N-terminal extensions significantly increase the stability of the complexes, without impairing the affinity for Fd and Trx-f [80]. The mechanism suggested for the two-electron process, the reduction of a disulfide, using a one-electron carrier, ferredoxin, is described elsewhere [79].

The Fd/Trx system was considered so far the only source of reducing power for Trx in oxygenic photosynthetic organisms. However, a novel gene with homology to the typical \textit{NTR} was recently identified in both cyanobacteria and land plants. \textit{NTRC} notably encodes an NTR with an N-terminal extension typical of a chloroplast transit peptide and a C-terminal region homologous to Trx [53, 81]. The mature form of this composite protein thus resembles the NTR of \textit{Mycobacterium leprae}, which is also fused to a Trx domain [82]. Rice NTRC exhibits \textit{in vitro} both

\textbf{Figure 6.3} Different types of Trx-h accept reducing equivalents from different donors. On the left, the cleavage of the disulfide bond in groups I and II is catalyzed by NTR. On the right, the conversion of group III Trx-h to the reduced form occurs when Grx uses GSH, formed by the action of glutathione reductase (GR), as reductant. Reduced Grx \textit{per se} has also the ability to cleave cystines in many proteins.
NTR and Trx activities but, surprisingly, lacks the capacity to function cooperatively as an NTR/Trx system [81]. Although the function of this NTR is still unknown, this notable finding brings a twist to the view that hitherto considered the plastid the exclusive residence of the FTR.

6.4.3 Targets of thioredoxins (oxidants of thioredoxins)

In plants, reduced Fd and NADPH poise the abundance of reduced Trx, which in turn serves as reductant for many cellular oxidants. However, the high number of isoforms located in almost every cell compartment and the broad range of midpoint redox potentials raise inquiries on target specificity and functional reductants, respectively. As an additional level of complexity, the expression levels of a given isoform may vary independently of other counterparts at the same cellular location during cell growth or in response to environmental cues. The understanding of redox signals, therefore, requires the coordinated analysis of structure and function of these PDOR in a spatial and temporal context. Despite considerable efforts and advances in the last three decades, the full extent of Trx physiological functions is still incomplete.

Until the early 1990s, biochemists were restricted to the study of specific metabolic steps; nowadays, genomic and proteomic analyses provide a much larger body of information. An exciting new approach is the isolation of Trx targets via affinity chromatography. As discussed in further detail by Lee Sweetlove (Chapter 2), Trx mutants holding a serine residue in place of the resolving cysteine were linked to a solid support. Thus, mixed heterodisulfides formed by the attack of the nucleophilic cysteine became stably linked. Subsequently, reduction with DTT released a population of Trx-bound polypeptides suitable for characterization by mass spectrometry [83, 84]:

\[-\text{Matrix-Trx-SH} + X(S)_2\]
\[\downarrow\]
\[-\text{Matrix-Trx-S-SXSH}\]
\[\downarrow\]
\[X(SH)_2 + -\text{Matrix-Trx-SH}\]

This experimental approach largely increased the number of proteins putatively targeted by Trx in chloroplasts, mitochondria [83–86] and in the endosperm and embryo of mature seeds (see below) [87–91]. Similar analyses in *Chlamydomonas* and *Synechocystis* also pinpointed numerous novel putative targets [92, 93]. Thus far, the relevance of the observed interactions has only been confirmed in few cases. For example, phosphoglucomutase, one of the novel Trx-binding enzymes isolated from cyanobacterial extracts, was found to be activated and inhibited *in vitro* by reducing and oxidizing conditions, respectively [92].

The following sections survey notorious plant biological processes that involve thiol/disulfide exchanges. We review at length chloroplast events, because connections
between Trx and the metabolism in mitochondria and the cytosol are in general less explored. However, it must be kept in mind that this stage is about to change dramatically, as a wide variety of processes linked to Trx-h are being uncovered [94].

6.4.4 Control of chloroplast enzymes by thioredoxin

For more than 30 years, the function of Trx in chloroplasts has been associated with the control of enzyme activity (Table 6.4) and, as a consequence, this issue has been extensively reviewed [40, 95–97]. As the number of isoforms increases, a detailed account of functional aspects is necessary to establish the specificity for target proteins. For example, recombinant Trx-y1 and Trx-y2 only weakly enhanced the activity of the extensively used enzymes NADP-MDH and CFBPase in vitro [98]. Perhaps their midpoint redox potential, less negative than plastidial Trx-f and Trx-m but similar to ineffective Trx-x, is unlikely to be a significant source of energy for driving the reductive activation [50]. Beyond their crucial role in CO2 fixation, Trx likely modulate many other stromal processes; in consequence, different metabolic pathways should be explored to determine the functions of the newly found isoforms.

Starch metabolism has emerged as an important target for Trx modulation. The activity of chloroplast ADP-glucose pyrophosphorylase (AGPase), which catalyzes a rate-determining step in starch biosynthesis, cf. [99], is activated by 3-phosphoglycerate, inhibited by inorganic phosphate and stimulated by the DTT-mediated reduction of the disulfide bond that links two catalytic small subunits [100]. In vitro studies established that reduced Trx-f and Trx-m activate, while the oxidized forms inactivate, potato tuber AGPase [101]. Similar mechanisms occur in Arabidopsis and pea chloroplasts. Moreover, the reduced (active) form of this enzyme builds up in vivo when the flow of carbon into starch is increased [102, 103]. Still, further studies are required to understand how conditions in the cytosol affect the redox control in plastids, because the activation of chloroplast AGPase by sucrose and glucose also depends on the activity of a cytosolic protein kinase (SNF1-related protein kinase-1, SnRK1) and hexokinase, respectively [104]. Trx has also been shown to control the activity of α-glucan water dikinase (GWD), an important enzyme that transfers the β-phosphate of ATP to the C-6 or the C-3 positions in amylopectin prior to the amylolytic degradation via β-amylases [105]:

\[(\text{Glc})_n + \text{A-P-P-P} + \text{H}_2\text{O} \rightarrow \text{P}(\text{Glc})_n + \text{AMP} + \text{Pi}\]

When a disulfide bond links cysteine residues at the conserved site sequence -CFATC-, GWD is bound to the starch granule and is inactive [106]. The enzyme becomes both soluble and active after the in vitro reduction with Trx-f and, less efficiently, with Trx-m. Although these data collectively suggest that Trx controls both the synthesis and the degradation of starch in plastids, the spatial and temporal aspects of the modulation remain to be established.

3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase is also activated by reduced Trx [107]. This enzyme catalyzes the condensation of phosphoenolpyruvate and erythrose-4-phosphate yielding DAHP and inorganic phosphate,
<table>
<thead>
<tr>
<th>Target enzyme</th>
<th>Regulatory site</th>
<th>Most efficient modulator</th>
<th>Species</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benson-Calvin cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fructose-1,6-bisphosphatase</td>
<td>-EC^{153}X_{16}C^{173}IVN VCQ-</td>
<td>Trx-f</td>
<td>Pea</td>
<td>[40, 202]</td>
</tr>
<tr>
<td>Sedoheptulose-1,7-bisphosphatase</td>
<td>-SC^{52}GGTAC^{57}V-</td>
<td>Trx-f</td>
<td>Wheat</td>
<td>[203]</td>
</tr>
<tr>
<td>Phosphoribulokinase</td>
<td>-GC^{16}X_{15}C^{35}L-</td>
<td>Trx-f</td>
<td>Spinach</td>
<td>[201, 204, 205]</td>
</tr>
<tr>
<td>Rubisco activase</td>
<td>-GC^{92}X_{14}C^{41}V-</td>
<td>Trx-f</td>
<td>Arabidopsis</td>
<td>[206]</td>
</tr>
<tr>
<td>Glyceraldehyde 3-P dehydrogenase</td>
<td>-FC^{364}X_{10}C^{375}K- (B subunit)</td>
<td>Trx-f</td>
<td>Pea</td>
<td>[207]</td>
</tr>
<tr>
<td>Photophosphorylation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF1-ATP synthase (γ-subunit)</td>
<td>-IC^{108}DINGNC^{204}V-</td>
<td>Trx-f</td>
<td>Pea</td>
<td>[40, 208]</td>
</tr>
<tr>
<td>NADP- malate dehydrogenase</td>
<td>-EC^{24}FGVFC^{50}T- -KC^{36}X_11C^{377}D-</td>
<td>Trx-m</td>
<td>Sorghum</td>
<td>[209, 210]</td>
</tr>
<tr>
<td>Glucose 6-phosphate dehydrogenase</td>
<td>-TC^{149}X7C^{157}D-</td>
<td>Trx-m</td>
<td>Potato</td>
<td>[211]</td>
</tr>
<tr>
<td>Oxidative pentose phosphate cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADP-glucose pyrophosphorylase</td>
<td>Starch synthesis C^{12} (small subunits) intercatenary disulfide</td>
<td>Trx-f</td>
<td>Potato</td>
<td>[100]</td>
</tr>
<tr>
<td>Glucan-water dikinase</td>
<td>N.D.</td>
<td>Trx-f</td>
<td>Potato</td>
<td>[106]</td>
</tr>
<tr>
<td>Acetyl-CoA carboxylase</td>
<td>C^{267} (α subunit) and C^{542} (β subunit) intercatenary disulfide</td>
<td>Trx-f</td>
<td>Pea</td>
<td>[212–214]</td>
</tr>
</tbody>
</table>

*Reduction by Trx stimulates the activity of most of the above mentioned enzymes. The only exception is glucose 6-phosphate dehydrogenase (italics), active in the oxidized state and inactivated by reduction [211].
N.D.: not determined
the first step in the shikimate pathway that leads to chorismate, the precursor of phenylalanine, tyrosine, tryptophan and numerous secondary metabolites derived from these aromatic amino acids. *In vitro*, reduced Trx-f is extremely efficient while Trx-m is orders of magnitude weaker in enhancing the catalytic capacity of the recombinant enzyme.

Proteomic studies have shown that Trx potentially affect almost every metabolic pathway in chloroplasts. Motohashi *et al.* [83] have assigned several chloroplast proteins as targets of Trx-m, some known previously from biochemical studies (Rubisco activase, 2-Cys Prx, glyceraldehyde-3-phosphate dehydrogenase, sedoheptulose-1,7-bisphosphatase) while others were novel targets (glutamine synthetase, cyclophilin, Prx-Q, Rubisco small subunit). In parallel, 26 stromal proteins were identified as targets of Trx-f and Trx-m in spinach, 11 in established Trx-regulated processes (Benson–Calvin cycle, nitrogen and sulfur metabolism, translation, pentose phosphate cycle and glycolysis), but 15 involved in processes not previously known to be linked to Trx (isoprenoid, porphyrin and vitamin biosynthesis, protein assembly/folding, protein and starch degradation, glycolysis, HCO$_3^-$/CO$_2$ equilibration, plastid division and DNA replication/transcription) [85]. Given that electrostatic interactions seem to play an important role in docking Trx to certain targets [108], adsorption of stromal proteins onto immobilized wild type Trx-f at low salt and elution at high salt concentrations [109] identified 18 possible targets of Trx, some of them missing in previous approaches. These proteins are involved in translation, protein assembly/folding, protein degradation, nitrogen metabolism, the C4/malate valve, the HCO$_3^-$/CO$_2$ equilibration and the biosynthesis of ATP, starch, fatty acids and tetrapyrrololes. Out of 10 proteins not previously associated with Trx, nine are known members of chloroplast complexes that hold at least one component linked to Trx (the large subunit of Rubisco, phosphoglycerate kinase, RNA binding proteins (24 and 41 kDa), ribosomal proteins (S1, S5, L4 and L21) and the α-subunit of ATP synthase). Possibly, these proteins bind via one of the target enzymes rather than interacting directly with Trx-f itself. As usual in proteomic studies, further biochemical analyses are necessary to establish whether the observed interactions modulate the function of the identified proteins.

Ever since the discovery of the Fd-Trx system in chloroplasts, most target proteins for these reductants have been sought in the stroma; a number of recent developments have broadened the horizon. Immunophilins are a diverse group of proteins comprising parvulins, cyclophilins and proteins that bind the immunomodulator FK506 (FKBP); some of these proteins catalyze the cis-trans isomerization of the peptide bond located between proline and its preceding residue [110]. Notably, Arabidopsis encodes 19 putative chloroplastic immunophilins, with three of them presumably located in the stroma and the remaining in the thylakoid lumen [111]. The stromal cyclophilin AtCYP20-3 lacks peptidyl-prolyl cis-trans isomerase (PPIase) activity in the oxidized state, but regains it after reductive cleavage of two disulfide bridges by Trx-m [112]. On the other hand, Gopalan *et al.* [113] recently found that the thylakoid lumen resident AtFKBP13 exhibits a unique pair of disulfide bonds that are reduced *in vitro* by chloroplast Trx-m and *E. coli* Trx. Whereas in most cases Trx-dependent reduction increases the catalytic activity of stromal
enzymes (Table 6.4), reduction inactivates the associated PPIase activity of AtFKBP13. It is speculated that AtFKBP13 is kept reduced by the Fd/Trx system while traveling across the stroma, but becomes oxidized upon its incorporation into the lumen of thylakoids. Again, the function of this protein is poorly understood, but it was recently shown that the precursor form of AtFKBP13 interacts with and modulates the level of the Rieske protein, a component of cytochrome b₆f on the luminal side of thylakoid membranes [114]. It is worth recalling that cytochrome b₆f is thought to be the main transducer of the other major redox signal that senses the function of photosystems, namely, the plastoquinol–plastoquinone (PQ) ratio in the thylakoid membranes (see below for other examples). If proteins in the thylakoid lumen are subject to redox modulation, a system for handling reducing equivalents must exist in this compartment. A recently identified thylakoid protein in Arabidopsis exhibits significant homology to CcdA and related plasma membrane bacterial proteins. These proteins are involved in the maturation of c-type cytochromes, to which cytochrome b₆f is related, and in the transfer of electrons from cytosolic Trx to disulfide exchange proteins resident in the periplasm using a thiol-disulfide cascade. Disruption of Arabidopsis CCDA impaired the accumulation of cytochrome b₆f [115]. Severe deficiency of cytochrome b₆f was also observed in a mutant for a membrane-bound Trx-like protein facing the thylakoid lumen, HCF164 [115]. Although the experimental evidence suggests that both proteins play a specific role in the formation of the cytochrome b₆f complex, it is tempting to speculate that this system may also constitute a more general mechanism for the transference of reducing equivalents from the stroma to the thylakoid lumen.

6.4.5 Translation of chloroplast mRNA

Light greatly enhances the translation of many mRNAs encoded by the chloroplast genome, i.e., psbA (coding for D1, a core protein of photosystem II (PSII)), psbD (coding for D2 protein), rbcL (coding for large subunit of Rubisco) and psaA–psaB (coding for 65- and 70-kDa chlorophyll a apoproteins of photosystem I (PSI)). Given that D1 and the products of psaA and psaB genes are the main targets of photoinhibition, the replacement of the oxidatively damaged forms results in one of the fastest turnover rates for plant proteins. Genetic and biochemical evidences indicate that, in Chlamydomonas, four nuclear-encoded proteins of ca 60, 55, 47 and 38 kDa must interact with the 5’ UTR of the psbA mRNA for light to activate translation [116–118]. The 47-kDa species (RB47) is highly homologous to eukaryotic poly(A)-binding proteins whereas the 60-kDa protein (RB60) contains two Trx-like domains with putative catalytic sites -CGHC-, resembling a PDI. Surprisingly, this protein resides in chloroplasts of both vascular plants and Chlamydomonas even though it holds a C-terminal -KDEL- signal for retention in the endoplasmic reticulum (ER) [116, 119]. In fact, it has recently been found that, in Chlamydomonas, RB60 does co-localize in microsomal fractions along with ER markers, revealing a novel mechanism for dual targeting [120]. In addition to an ADP-dependent phosphorylation, the specific and reversible binding of RB47 to the 5’ UTR of the psbA mRNA requires the participation of vicinal dithiols at the Trx domains of RB60.
The current set of data supports the idea that a light-driven priming signal oxidizes RB60 so that it becomes sensitive to the reductive signal. Apparently, the reduction of PQ by PSII triggers the priming signal while PSI transfers electrons via the Fd-Trx system to the PDI moiety of the 5’ UTR binding complex. Hence, the relative activities of both PSII (signaled by the redox state of the PQ pool) and PSI (signaled by the reduction of Fd), acting in opposite directions on the redox state of RB60, modulate the synthesis of the chloroplast protein D1 [119]. The reader will find further information on different aspects of the light-actuated expression of plastid and nuclear genes in an authoritative review [123].

6.4.6 Phosphorylation of chloroplast proteins

In thylakoid membranes, phosphorylation of Lhcb1 and Lhcb2, chlorophyll a/b-binding proteins of the light-harvesting complex II (LHCII), redirects the excitation energy to PSI at the expense of PSII, thereby tuning the distribution of light energy between both photosystems in response to variations of light quality and intensity [124–126]. At high light intensities, binding of plastoquinol to the cytochrome-b_{6}f complex controls the activity of thylakoid-bound kinases responsible for the phosphorylation of LHCII [127–130]. Reduction by Trx-f and Trx-m counter the activity of these kinases, and conformational changes after phosphorylation shield further phosphorylation sites in LHCII [131–134]. In line with these observations, H_{2}O_{2} serves as an oxidant that restores the activity of LHCII kinases in thylakoids isolated from illuminated leaves. The number and identity of thylakoid protein kinases in vascular plants are still uncertain, but both the thylakoid-associated Ser-Thr kinase Stt7 from *Chlamydomonas* and its recently identified orthologue STN7 from *Arabidopsis* participate in state transition modulation and hold two cysteines separated by four amino acids, a typical target for Trx [135, 136]. Other evidence suggests, in contrast, that LHCII phosphorylation–dephosphorylation as a function of irradiance is a thylakoid-sufficient phenomenon [137]. Experiments with isolated thylakoids of *Arachis hypogea* showed that the down-regulation of LHCII phosphorylation at high irradiance does not require assistance from stromal components, even though it becomes sensitive to modulation by the thiol redox state under specific experimental conditions. The apparent insensitivity to reduction may be the consequence of thiol-insensitive intrinsic thylakoid LHCII kinase(s), acting in parallel to thiol-sensitive peripheric thylakoid LHCII kinase(s). Thus, the way components of the redox signalling interact in response to environmental stimuli to modulate the amount of light harvested the individual photosystems is far from being completely understood.

6.4.7 Control of mitochondrial proteins

For more than a decade, it has been known that plant mitochondria possess a Trx system [60, 138], but its variety and functions are just starting to be unveiled
As outlined by Vanlerberghe and McDonald (Chapter 11) one potential target of mitochondrial Trx is the homodimeric alternative oxidase (AOX), a non-proton pumping bypass to cytochrome oxidase of classical respiration. AOX is inactive when the subunits are linked by a disulfide bond but becomes sensitive to activation by \(\alpha\)-keto acids after reduction [139, 140]. The role of Trx in this reaction was confirmed by monitoring the pyruvate-dependent activation of soybean AOX after \textit{in vitro} reduction with NTRA and PtTrx-h2 [18]. On this basis, some Trx-h isoforms may play a major role in lowering the levels of mitochondrial ROS through the activation of AOX, which can thereby effectively compete with the cytochrome oxidase for electrons donated by the ubiquinone pool.

6.4.8 Removal of reactive oxygen species

Reactive oxygen and nitrogen species modify a wide range of cellular components including lipids, proteins and nucleic acids. Although they may act in a random and destructive fashion, numerous studies suggest that their intracellular levels are tightly modulated and drive specific signalling cascades. As it is impossible to prevent the generation of these species \textit{in vivo}, both enzymatic and nonenzymatic defenses have evolved in aerobic organisms. The most effective enzymes for removal of reactive species include superoxide dismutase, catalase, glutathione peroxidase and a large array of peroxidases, while the main nonenzymatic antioxidants are glutathione, ascorbic acid and tocopherol. Prx is a particular class of ubiquitous peroxidases that reduce reactive oxygen and nitrogen species, such as \(\text{H}_2\text{O}_2\) and \(\text{ONOO}^-\), using one or two conserved cysteines, thus defining the 1-Cys and 2-Cys Prx types, respectively [21, 141–145]. The reaction cycle of 2-Cys Prx starts with the formation of a sulfenic acid derivative at the nucleophilic thiolate:

\[
\text{HS-[2-Cys Prx]-SH} + \text{ROOH} \rightarrow \text{HS-[2-Cys Prx]-SOH} + \text{ROH}
\]

The unstable -SOH group reacts to form an internal disulfide bond with a nearby Cys:

\[
\text{HS-[2-Cys Prx]-SOH} \rightarrow [2-Cys \text{ Prx}]-\text{(S)}_2 + \text{H}_2\text{O}
\]

Cleavage of the disulfide bond with reduced Trx or Grx closes the cycle [146]:

\[
[2-Cys \text{ Prx}]-\text{(S)}_2 + [T/G]\text{rx-(SH)}_2 \rightarrow \text{HS-[2-Cys Prx]-SH} + [T/G]\text{rx-(S)}_2
\]

Hence, the biological role of Prx is linked to the capacity for poising the concentrations of reactive oxygen and nitrogen species, thereby preventing the damage of biomolecules or triggering the operation of signal transduction pathways [20, 147–149].

The Arabidopsis genome encodes 10 different Prx isoforms, many of which are predicted to localize in chloroplasts (Table 6.5). \textit{In vitro}, chloroplast 2-Cys Prx [148] reduces \(\text{H}_2\text{O}_2\) via NADPH \(\rightarrow\) NTR \(\rightarrow\) Trx \(\rightarrow\) 2-Cys Prx \(\rightarrow\) \(\text{H}_2\text{O}_2\) [147]. On this basis, the \textit{in vitro} action of several plastidial Trx isoforms on 2-Cys Prx was confronted with two well-known targets of chloroplast Trx, NADP-MDH and
Notably, Trx-x provides reducing power to 2-Cys Prx but is unable to stimulate the other targets, suggesting a specific involvement in resistance against oxidative stress. Contrasting with all the Trx isoforms assayed, Trx-m3 is inactive with all three targets [50, 150]. In line with their possible role in the removal of reactive species, chloroplast Trx-x and most Trx-m isoforms, but not Trx-f or Trx-m3, restore the ability of yeasts devoid of endogenous Trx to thrive under oxidative conditions [151]. Similarly, cytosolic, mitochondrial and chloroplastic Trx efficiently reduce many alkyl hydroperoxides via PrxQ, a particular group of Prx, presumably chloroplastic, that carries a disulfide bridge formed by two cysteines separated by four amino acids [98, 152, 153]. The hypersensitive response of poplar to the causative agent of rust is accompanied by a marked increase in the mRNA levels of PrxQ, supporting previous evidence on the participation of peroxidases in poising the concentration of H₂O₂ during biotic stresses [154]. On the other hand, changes in the redox state affect the intraorganellar partition of chloroplast 2-Cys Prx. At redox potentials above the midpoint (−315 mV), the oxidized Prx remains in the stroma as a homodimer linked via two intercatenary disulfide bonds. Under reducing conditions, the excision of the cystine drives the oligomerization of dimers, with the subsequent attachment to thylakoid membranes [147]. Thus light intensity, as well as temperature and environmental oxidants (i.e., CO₂, NO₃⁻), tunes 2-Cys Prx for optimum performance.

CDSP32 (chloroplastic drought-induced stress protein of 32 kDa), a stromal protein composed of two Trx domains whose expression is induced by oxidative stress [155], is closely linked to 2-Cys Prx. Potato plants with reduced levels of CDSP32 by cosuppression fared poorly under conditions that cause oxidative damage [156–158]. Affinity chromatography with a CDSP32 mutant form lacking the resolving Cys identified 2-Cys Prx as a major interactor. Five additional chloroplast targets were also identified; three participate in photosynthesis-related processes (ATPase γ-subunit, Rubisco, aldolase) while the others are functional in responses to the oxidative damage (PrxQ and methionine sulfoxide reductase).
Co-immunoprecipitation experiments with extracts from plants overexpressing the wild type CDSP32 or the active site mutant counterpart confirmed the formation in vivo of heterodimeric complexes between CDSP32 and PrxQ for the reduction of H$_2$O$_2$. Despite tantalizing glimpses provided by these studies, significant gaps remain in our understanding of the mechanisms involved in the control of the oxidative stress, mainly the coordination of the redox events among the multiple isoforms of Trx and Prx. Even though some isoforms are undoubtedly addressed to a particular cellular location, validation of appropriate interactions is still a fertile ground for research.

6.4.9 Seed germination

During seed maturation and drying, the oxidation of thiol groups in reserve tissue proteins inactivates selected enzymes, activates inhibitors and increases the stability of storage proteins. Once adequate environmental conditions trigger germination, reduction of disulfide bonds reverses these processes. Earlier studies in wheat supported the idea that Trx-h, reduced with NADPH, takes part in the mobilization of nitrogen and carbon reserves in the starchy endosperm through the inactivation of amylolytic inhibitors and the activation of thiocalsin, a calcium-dependent protease [159, 160]. In fact, overexpression of Trx-h in barley endosperm not only enhanced the activity of the starch debranching enzyme but also speeded up the synthesis of α-amylase and the rate of germination [88, 91, 161, 162]. Trx-h also seems to participate in the transfer of compounds from maternal tissues to the developing seed and in the response to oxidative stress during dessication and germination [61].

Several proteomic approaches have been tried to identify the targets of Trx in cereal seeds during maturation or germination [91]. On the one hand, endosperm proteins from wheat and barley seeds were first reduced with the NADP/Trx system, subsequently labeled with the fluorescent, thiol-reactive probes monobromobimane or Cy5 maleimide and finally separated by 2-D electrophoresis [87, 89]. On the other hand, interacting proteins from young and mature wheat endosperm were covalently trapped on an affinity column prepared with a mutant Trx-h lacking the resolving cysteine [90]. Although results varied in each case, some proteins were consistently recovered. Among them were several members of the α-amylase/subtilisin inhibitor family, metabolic enzymes (alcohol dehydrogenase, fructose 1,6-bisphosphate aldolase, cytosolic glyceraldehyde 3-phosphate dehydrogenase, cytosolic malate dehydrogenase, glutamine synthase, vitamin B12-independent methionine synthase) and proteins involved in the oxidative stress response (ascorbate peroxidase, germin-like protein, monomeric type II Prx) and in protein biosynthesis (elongation factor 2, eukaryotic translation initiation factor 4A) and degradation (the regulatory subunit of the 26S proteasome). Some of these targets were also identified in another study that used mutant Trx-h isoforms to trap proteins from dark-grown Arabidopsis plants [163]. The biological relevance of these findings still needs to be thoroughly evaluated.
6.4.10 Modulation of receptor functions

Two recent discoveries suggest that cytosolic Trx or Trx-like proteins modulate the function of certain plasma membrane-bound receptors that recognize extracellular ligands. Self-incompatibility is a widespread mechanism by which flowering plants prevent inbreeding. Self-pollen rejection in the Brassicaceae family occurs when specific ‘S-alleles’ are expressed by the pollen and the pistil. The S-locus contains, among others, two polymorphic genes, one encoding the male determinant – the S-locus cysteine-rich (SCR) protein – and another the female counterpart – the membrane-spanning S-locus receptor kinase (SRK). The signalling cascade that leads to the rejection of the incompatible pollen starts with the autophosphorylation of SRK on the pistil stigma upon recognition of its cognate SCR on the surface of the pollen grain [164–166]. Two Brassica Trx-h, THL1 and THL2, have the capacity to interact with SRK in a phosphorylation-independent manner [167, 168]. In fact, it was shown that Brassica oleracea THL1 prevents the spontaneous autophosphorylation of SRK in the absence of the ‘activating’ component of the pollen coat, thus lowering the risk of constitutive pollen rejection [169]. Although it is not clear how THL1 affects the activity of SRK, there is evidence to suggest that the reduced form does so via conserved cysteines on the cytosolic side of the transmembrane domain of SRK. Since both THL-1 and THL-2 are expressed in a variety of organs, their action may not be restricted to reproductive tissues.

A Trx-like protein, CITRX, with an N-terminal variable extension and a typical C-terminal Trx domain, interacted in a yeast two-hybrid screen with the cytosolic domain of the receptor-like protein Cf-9 of Solanaceae. Tomato Cf-9 codes for a transmembrane protein with extracellular leucine-rich repeat domain and a short cytosolic tail. This protein is involved in the specific resistance to Cladosporium fulvum strains carrying the avirulence determinant Avr9. CITRX was found to interact specifically with the cytosolic domain of Cf-9, but not with the same region of the related Cf-2. In addition, silencing of CITRX expression led to an exacerbated response to Avr9, suggesting that CITRX acts as a negative modulator of Cf-9 signalling. Since there are no cysteine residues in the Cf-9 fragment used as bait, it will be interesting to investigate whether these effects depend on the integrity of the active site of CITRX [170].

Briefly, it seems that some membrane receptors, in the absence of their specific ligands, are kept in a silent state through the interaction with Trx-like proteins. The physiological meaning of this phenomenon is still unclear. It is intriguing, however, that both pollen-stigma and pathogen-plant signalling pathways lead to rapid changes in Ca$^{2+}$/H$^{+}$ fluxes and ultimately to processes of programmed cell death. In the light of these results, it would be worth revisiting earlier hypotheses on the links between both processes [171].

6.5 Glutaredoxins

In 1976, the presence of an alternative hydrogen donor for the reduction of ribonucleotides to deoxyribonucleotides in mutants of E. coli devoid of Trx led to the
identification of Grx. These small proteins (ca 10 kDa) exhibit an overall three-
dimensional structure similar to Trx and have been found in all living organisms
[45]. An analysis of annotated genome sequences reveals that most organisms pos-
sess many isoforms with both classical (-CXXC-) or atypical (-CXXS-) sequences
at the active site. Searches in the Arabidopsis genome revealed an extraordinary
diversity comprising 14 bicysteinic and 17 monocysteinic isoforms (Table 6.6)
[172, 173]. Based on the current level of genome annotation, rice, wheat, maize
and barley also exhibit an apparent wealth of Grx. The Arabidopsis family can be
classified into three groups, mainly on the basis of their active site sequences. Out of six
members in the first group – five bicysteinic and one monocysteinic – four would

<table>
<thead>
<tr>
<th>Isoforma</th>
<th>Polypeptide length</th>
<th>Active site sequence</th>
<th>Subcellular localization</th>
<th>MATDB entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>CxxC1</td>
<td>125</td>
<td>CGYC</td>
<td>Cytosol</td>
<td>At5g63030</td>
</tr>
<tr>
<td>CxxC2</td>
<td>111</td>
<td>CPYC</td>
<td>Secretory pathway</td>
<td>At5g40370</td>
</tr>
<tr>
<td>CxxC3</td>
<td>130</td>
<td>CPYC</td>
<td>Secretory pathway</td>
<td>At1g77370</td>
</tr>
<tr>
<td>CxxC4</td>
<td>135</td>
<td>CPYC</td>
<td>Secretory pathway</td>
<td>At5g20500</td>
</tr>
<tr>
<td>CxxC5</td>
<td>174</td>
<td>CSYC</td>
<td>Chloroplast</td>
<td>At4g28730</td>
</tr>
<tr>
<td>CxxC6</td>
<td>144</td>
<td>CCMC</td>
<td>Cytosol</td>
<td>At4g33040</td>
</tr>
<tr>
<td>CxxC7</td>
<td>136</td>
<td>CCMC</td>
<td>Cytosol</td>
<td>At3g02000</td>
</tr>
<tr>
<td>CxxC8</td>
<td>140</td>
<td>CCMC</td>
<td>Cytosol</td>
<td>At5g14070</td>
</tr>
<tr>
<td>CxxC9</td>
<td>137</td>
<td>CCMC</td>
<td>Cytosol</td>
<td>At1g28480</td>
</tr>
<tr>
<td>CxxC10</td>
<td>145</td>
<td>CCMC</td>
<td>Chloroplast</td>
<td>At5g11930</td>
</tr>
<tr>
<td>CxxC11</td>
<td>103</td>
<td>CCMC</td>
<td>Cytosol</td>
<td>At3g62950</td>
</tr>
<tr>
<td>CxxC12</td>
<td>103</td>
<td>CCMC</td>
<td>Cytosol</td>
<td>At2g47870</td>
</tr>
<tr>
<td>CxxC13</td>
<td>102</td>
<td>CCLC</td>
<td>Cytosol</td>
<td>At2g47880</td>
</tr>
<tr>
<td>CxxC14</td>
<td>102</td>
<td>CCLC</td>
<td>Cytosol</td>
<td>At3g62960</td>
</tr>
<tr>
<td>CxxS1</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At1g03020</td>
</tr>
<tr>
<td>CxxS2</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At5g18600</td>
</tr>
<tr>
<td>CxxS3</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At4g15700</td>
</tr>
<tr>
<td>CxxS4</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At4g15680</td>
</tr>
<tr>
<td>CxxS5</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At4g15690</td>
</tr>
<tr>
<td>CxxS6</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At3g62930</td>
</tr>
<tr>
<td>CxxS7</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At4g15670</td>
</tr>
<tr>
<td>CxxS8</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At4g15660</td>
</tr>
<tr>
<td>CxxS9</td>
<td>102</td>
<td>CCMS</td>
<td>Cytosol</td>
<td>At2g30540</td>
</tr>
<tr>
<td>CxxS10</td>
<td>102</td>
<td>CCMS</td>
<td>Mitochondria</td>
<td>At3g21460</td>
</tr>
<tr>
<td>CxxS11</td>
<td>99</td>
<td>CCLC</td>
<td>Cytosol</td>
<td>At1g06830</td>
</tr>
<tr>
<td>CxxS12</td>
<td>179</td>
<td>CSYS</td>
<td>Chloroplast</td>
<td>At2g20270</td>
</tr>
<tr>
<td>CxxS13</td>
<td>150</td>
<td>CCLG</td>
<td>Chloroplast</td>
<td>At1g03850</td>
</tr>
<tr>
<td>CxxS14</td>
<td>173</td>
<td>CGFS</td>
<td>Chloroplast</td>
<td>At3g54900</td>
</tr>
<tr>
<td>CxxS15</td>
<td>169</td>
<td>CGFS</td>
<td>Mitochondria</td>
<td>At3g15660</td>
</tr>
<tr>
<td>CxxS16</td>
<td>293</td>
<td>CGFS</td>
<td>Chloroplast</td>
<td>At2g38270</td>
</tr>
<tr>
<td>CxxS17</td>
<td>488</td>
<td>CGFS</td>
<td>Cytosol</td>
<td>At4g04950</td>
</tr>
</tbody>
</table>

aIsoforms in bold, italic and normal characters possess the active site sequences Cxx(C/S), CGFS and CCx(C/S/G), respectively.
be addressed to a cytosolic or perhaps extracellular localization; the other two, with active site sequences -CSYC- and -CSYS-, possess a long N-terminal extension characteristic of chloroplast transit peptides. Four different Grx containing the -CGFS-sequence cluster in the second group, three of which are possibly addressed to organelles. The fourth, surprisingly, codes for a putative cytosolic protein (488 amino acids) that hosts one Trx motif followed by three Grx modules, bearing striking resemblance to PICOT (for protein kinase C-interacting cousin of Trx), a human protein that plays a regulatory role in cellular stress responses associated with transcription factors AP-1 and NF-κB [174]. The third group, with 21 members, includes both bicysteinic and monocysteinic isoforms bearing unusual geminate cysteines in the active site -CC(ML)(C/S/G)-. Remarkably, homologous sequences are present in all land plants analyzed, but are absent in other photosynthetic organisms such as Synechocystis or Chlamydomonas. It is important to bear in mind that intracellular localizations predicted in Table 6.6 are all tentative, since sound experimental evidence is lacking.

A more positive midpoint redox potential endows Grx with the capacity to use GSH to cleave disulfides or GSH-mixed disulfides, via a dithiol or a monothiol mechanism, respectively [45]. In the dithiol pathway, the nucleophilic cysteine attacks the protein disulfide forming a heterodisulfide resolved by the second cysteine, releasing oxidized Grx and the reduced protein:

$$\text{HS-Grx-SH} + \text{Prt-(S)2} \rightarrow \text{HS-Grx-S-S-Prt-SH} \rightarrow \text{Grx(S)2 + Prt-(SH)2}$$

Subsequently, GSH restores the reduced form of Grx:

$$\text{Grx(S)2 + 2 GSH} \rightarrow \text{Grx-(SH)2 + GSSG}$$

The monothiol pathway accommodates the functioning of monocysteinic Grx because the single thiol of Grx releases the reduced protein and concurrently generates a mixed disulfide with GSH, which can be cleaved subsequently by GSH:

$$\text{Grx-SH} + \text{Prt-S-SG} \rightarrow \text{Grx-S-SG + Prt-SH}$$

$$\text{Grx-S-SG + GSH} \rightarrow \text{Grx-SH + GS-SG}$$

A crucial feature of the monothiol pathway is that the affinity of Grx for free GSH is higher than for the same moiety in glutathionylated proteins [175–177]. However, the finding that the nucleophilic cysteine of yeast Grx with a -CGFS- motif forms a disulfide with a second cysteine placed 50 residues upstream of the active site may change this view [178].

Few data are available on the distribution of Grx isoforms in plant tissues. Grx were initially identified in spinach leaves, developing rice seeds or Ricinus communis cotyledons [179–181]. The rice gene is expressed almost exclusively in the seed aleurone while the R. communis counterpart appears in cotyledons, hypocotyls and roots and to a lesser extent in leaves. On the other hand, the gene coding for AtCxxS14 is expressed in leaves, stems and roots, and is repressed in seedlings by ion treatment [182]. Functional information on this PDOR family in plants is also scant. Studying the activation of the Arabidopsis vacuolar H⁺/Ca²⁺ antiporter (CAX1) in yeast hypersensitive to high levels of Ca²⁺, Cheng and Hirschi [182] found that AtCxxS14, but not
AtCxxS16, associates with the N-terminal region of CAX1 and suppresses the vacuolar transport defect. Interestingly, CAX1 contains a nine-amino-acid region required for Ca\(^{2+}\) transport in which resides a -CXXC- sequence [183]. There is consequently great interest in examining how each Grx interacts and modulates specific targets.

6.6 Protein-disulfide isomerases

Protein-disulfide isomerases are PDOR that, owing to a more positive redox potential at their active sites, tend to catalyze the formation and shuffling of disulfide bridges, rather than their reduction. Classical eukaryotic PDI are ER resident proteins with a modular structure, comprising domains a, b, b’, a’. The most conserved and best defined a and a’ domains have Trx folds containing, at least one of them, the characteristic motif -CXXC- at the redox active site [184, 185]. b domains, which also have a Trx-like fold but lack sequence homology with a domains, play an important role in the specificity for target proteins. A set of 22, 19 and 22 proteins identified in Arabidopsis (Table 6.7), rice and maize, respec-

<table>
<thead>
<tr>
<th>MATDB entry</th>
<th>Polypeptide length</th>
<th>C-terminal sequence</th>
<th>Trx domains</th>
<th>Structural class(^a)</th>
<th>Phylogenetic group</th>
</tr>
</thead>
<tbody>
<tr>
<td>At1g21750</td>
<td>501</td>
<td>KDEL</td>
<td>2</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>At1g77510</td>
<td>508</td>
<td>KDEL</td>
<td>2</td>
<td>1</td>
<td>I</td>
</tr>
<tr>
<td>At5g60640</td>
<td>597</td>
<td>KDEL</td>
<td>2</td>
<td>1</td>
<td>II</td>
</tr>
<tr>
<td>At3g54960</td>
<td>579</td>
<td>KDEL</td>
<td>2</td>
<td>1</td>
<td>II</td>
</tr>
<tr>
<td>At1g52260</td>
<td>537</td>
<td>KDEL</td>
<td>2</td>
<td>1</td>
<td>III</td>
</tr>
<tr>
<td>At3g16110</td>
<td>531</td>
<td>KDEL</td>
<td>2</td>
<td>1</td>
<td>III</td>
</tr>
<tr>
<td>At2g47470</td>
<td>361</td>
<td>VASS</td>
<td>2</td>
<td>2</td>
<td>IV</td>
</tr>
<tr>
<td>At2g32920</td>
<td>440</td>
<td>KDEL</td>
<td>2</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>At1g04980</td>
<td>443</td>
<td>KDDL</td>
<td>2</td>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>At1g07960</td>
<td>146</td>
<td>DKEL</td>
<td>1</td>
<td>5</td>
<td>VI</td>
</tr>
<tr>
<td>At1g35620</td>
<td>440</td>
<td>KKED</td>
<td>1</td>
<td>5</td>
<td>VII</td>
</tr>
<tr>
<td>At3g20560</td>
<td>483</td>
<td>GKNI</td>
<td>1</td>
<td>5</td>
<td>VIII</td>
</tr>
<tr>
<td>At4g27080</td>
<td>480</td>
<td>GKNF</td>
<td>1</td>
<td>5</td>
<td>VIII</td>
</tr>
<tr>
<td>At1g15020</td>
<td>528</td>
<td>EQER</td>
<td>1</td>
<td>5</td>
<td>IX</td>
</tr>
<tr>
<td>At2g01270</td>
<td>495</td>
<td>PRRR</td>
<td>1</td>
<td>5</td>
<td>IX</td>
</tr>
<tr>
<td>At4g04610</td>
<td>465</td>
<td>NLVR</td>
<td>1</td>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>At1g62180</td>
<td>454</td>
<td>NLLR</td>
<td>1</td>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>At4g21990</td>
<td>458</td>
<td>NLVR</td>
<td>1</td>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>At1g34780</td>
<td>310</td>
<td>SSSQ</td>
<td>1</td>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>At3g03860</td>
<td>300</td>
<td>SDQS</td>
<td>1</td>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>At4g08930</td>
<td>295</td>
<td>SASQ</td>
<td>1</td>
<td>5</td>
<td>X</td>
</tr>
<tr>
<td>At5g18120</td>
<td>289</td>
<td>SQSA</td>
<td>1</td>
<td>5</td>
<td>X</td>
</tr>
</tbody>
</table>

\(^a\)Class 1 proteins have two Trx domains, one close to the N-terminus and another at the C-terminus. Class 2 (two Trx domains) and 4 (three Trx domains) proteins contain two Trx domains in tandem at the N- and C-terminal regions, respectively. Class 3 proteins are similar to Class 1 plus an additional Trx domain at the N-terminal region. Class 5 proteins have single Trx domains [188, 216, 217].

Table 6.7 PDI isoforms of Arabidopsis thaliana [186]
tively, led recently to the classification of plant PDI into 10 groups [186]. The structure of proteins from groups I to V, with two Trx domains, is similar to PDI from other eukaryotes. The remaining five groups bear a single Trx domain. Two of these exhibit nonisomerase enzymatic activities encoded by an additional domain, i.e. adenosine 5’-phosphosulfate reductase and quiescin-sulfhydryl oxidase. Further examination of predicted primary structures revealed two salient features [186]. First, single-domain PDI have neither KDEL-like ER retention signals characteristic of groups I–III and V, nor the conserved C-terminal ER retention domains found on multidomain PDI of group IV. Traditionally, PDI were characterized by the -CGHC- motif found in all of the multidomain PDI as well as in those from group VII, but members of groups VI and VIII surprisingly hold motifs -CKHC- and -CYW(C/S)-. Given that mining of maize expressed sequence tags and RNA-profiling databases indicates that members of the single-domain PDI are likely expressed in all plants, new insights into the enzymatic activities of single domain PDI are necessary for understanding their biological roles. Moreover, it is still unclear whether all these proteins, that exhibit distinct domain distribution, originated from the same ancestral protein containing either one [187] or two Trx domains [188].

Along with their capacity to isomerize cystine bonds, PDI may also act as thiol oxidases for the formation of disulfides in nascent proteins, mainly in the secretory pathway [189]. Congruent with this view, PDI enhances the oxidative refolding rate of the fully reduced horse gram protease inhibitor, a disulfide-rich Bowman–Birk class dual inhibitor (8–10 kDa) that binds and inhibits trypsin and chymotrypsin activities [190]. However, it is remarkable that PDI has evolved other ‘moonlighting’ functions devoid of redox activity, including a role as a chaperone that assists in the in vitro refolding of denatured proteins with no disulfide bonds [191] or as the \(\beta \)-subunit of prolyl hydroxylase – the enzyme that catalyzes the post-translational hydroxylation of proline [192]. Although it has long been known that ER-localized PDI catalyze the reversible formation and isomerization of disulfide bonds necessary for the proper folding, assembly, activity and secretion of numerous proteins, the identification of PDI-like proteins in mitochondria and chloroplasts clearly indicates that this family is not restricted to the ER [116, 193]. Proteins homologous to PDI are expressed in all tissues of durum wheat as well as peach shoots and leaves [194, 195]. Some evidence suggests that different PDI isoforms have overlapping functions. In fact, individual knock out of three PDI-like genes in the moss Physcomitrella patens had no effect on viability [196]. Nonetheless, PDI seems to play major roles during seed development. Three esp2 mutants of rice, which lack PDI in the endosperm, contain larger amounts of the 57-kDa proglutelin precursor and levels of acidic and basic glutelin subunits lower than normal [197]. In line with a role of PDI in processing proglutelin within the ER lumen, PDI was expressed in wild type seeds only during early stages of seed development. Finally, PDI may also be involved in some aspects of the response to pathogens, as it is differentially expressed during the infection of wheat with the fungus Mycosphaerella graminicola [198].
6.7 Concluding remarks

The last decade has significantly extended our understanding of redox cell signalling, disclosing novel post-translational modifications of cysteines and introducing additional regulatory systems into a scene thus far dominated by thiol/disulfide exchanges. It is well established now that many oxidation states of thiol groups enable proteins to acquire multiple post-translational modifications on a single residue. Thiol-dependent reactions appear to affect almost every major metabolic pathway in plant cells, not only in chloroplasts where this process was first described, but also in mitochondria and in the cytosol. Although much progress has been made concerning the pivotal role of cysteine residues as exquisite sensors of cellular redox status, our knowledge on the participation of these mechanisms in plants is still fragmentary. However, recent progress with similarly complex systems in other organisms points to suitable experimental avenues and provides confidence that novel plant mechanisms will appear on time.

The ever growing collections of plant genes and the implementation of proteomic studies have dramatically increased the inventory of redox signalling players in plants and also raised numerous questions that remain to be answered. Photosynthetic cells turn out to be lush diversity hotspots for PDOR and related proteins. Indeed, over 100 genes in Arabidopsis code for polypeptides capable of catalyzing thiol-based reactions [186]. Alternative biochemical and cellular strategies are required to define how the redox status controls the large number of PDOR isoforms and their precise cellular location. Considering the close midpoint redox potential values of many members in each family of PDOR (cf. Table 6.1), noncovalent interactions during the approximation and the docking of interacting proteins should play important roles in the formation of complexes with their targets. These ideas have been revitalized by the identification of a plethora of PDOR-sensitive proteins through proteomic and complementary genomic and biochemical studies. Examination of these potential targets is experimentally challenging. In particular, the recent progress made in the analysis of transcription factors and the thylakoid lumen constitutes suitable experimental avenues off the well-trodden path of stromal metabolism that should provide novel alternatives about the generality of the redox signalling.

Acknowledgements

The authors gratefully acknowledge the funding from Agencia Nacional de la Promoción Científica y Técnica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad de Buenos Aires (UBA), Argentina.

References

CONTROL OF PRIMARY METABOLISM IN PLANTS

129. A.V. Vener, P.J. van Kan, P.R. Rich, I.I. Ohad and B. Andersson (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome b6f mediates signal transduction between light and protein...

7 Control of carbon fixation in chloroplasts
Brigitte Gontero, Luisana Avilan and Sandrine Lebreton

7.1 Introduction

The complex process of photosynthesis can be summarized with the following equation:

\[6\text{CO}_2 + 12\text{H}_2\text{O} + \text{Light} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O} \]

In this process, water is split into hydrogen and oxygen, incorporating the electrons of hydrogen into the energy-rich bonds of sugar molecules. Photosynthesis is thus an endergonic redox process in which water is oxidized and carbon dioxide is reduced. The process comprises two, interrelated stages, the light reactions and the Calvin cycle. The light reactions produce ATP by photophosphorylation and split water, evolving oxygen and forming NADPH by transferring electrons from water to NADP\(^+\). This occurs in the thylakoid membranes of chloroplasts. The ATP and NADPH generated by the light reactions of photosynthesis are then consumed in the chloroplasts to drive fixation of carbon dioxide into sugars (sucrose and starch) by a series of reactions first elucidated by Calvin and his colleagues in the 1950s. This series of reactions is hence often known as the ‘Calvin cycle’. It occurs in the chloroplast stroma and is the only process of net photosynthetic carbon fixation in plants. In C\(_4\) or CAM (Crassulacean acid metabolism) plants, the carbon dioxide is first fixed by other reactions but is then released and again incorporated into the Calvin cycle (see Chapter 8). As a consequence, this pathway is universal to all photosynthetic life forms.

The Calvin cycle is usually divided into three stages:

1. CO\(_2\) fixation or carboxylation
2. Reduction of phosphoglycerate or formation of carbohydrate at the expense of ATP and NADPH
3. Regeneration of the CO\(_2\) acceptor, ribulose-1,5-bisphosphate (RuBP), at the expense of ATP

The first step involves the enzyme, ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO, EC 4.1.1.39), the second step involves the enzymes phosphoglycerate kinase (EC 2.7.2.3) and NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.13) and the third step involves a series of enzymes (from triose phosphate isomerase (EC 5.3.1.1) and fructose-1,6-bisphosphatase (FBPase) (EC 3.1.3.11) to phosphoribulokinase (PRK) (EC 2.7.1.19)) that together convert triose phosphate into RuBP.
The sequence of the 13 reactions catalyzed by 11 different enzymes of this cycle is presented in Figure 7.1. This set of enzymes is also often referred to as the reductive pentose-phosphate pathway in contrast to the oxidative pentose-phosphate pathway (OPP). The stages in the ‘oxidative’ pathway are the conversion of glucose-6-phosphate into 6-phosphogluconate, followed by oxidation of the latter to ribose-5-phosphate.

There is an emerging consensus that the intact oxidative pentose-phosphate pathway occurs in plastids of spinach, pea, tobacco and sweet pepper fruit [1–3]. As the Calvin cycle and the oxidative pentose-phosphate pathway occur in the same compartment, a temporal separation is absolutely required, and so these pathways are influenced in an opposite fashion by the ferredoxin–thioredoxin system. This control prevents the Calvin cycle from being active in the dark, when it might function in a futile cycle either with the oxidative pentose-phosphate pathway or with glycolysis, wasting ATP and NADPH. The net effect of the ferredoxin–thioredoxin system is such that some of the Calvin cycle enzymes are up-regulated in the light and down-regulated in the dark (e.g. fructose-1,6-bisphosphatase, phosphoribulokinase) whereas some of the oxidative pentose-phosphate pathway and glycolysis enzymes are up-regulated in the dark and down-regulated in the presence of light (e.g. glucose-6-phosphate dehydrogenase).

Recently, the use of the technique of elementary mode analysis [4] has yielded new and useful insights into the Calvin cycle and the oxidative pentose-phosphate pathway [5]. Elementary mode analysis is a computer modeling technique concerned with identifying certain subsets of reactions, the so-called elementary
modes, within a system. In the steady state, a mode has no net consumption or production of any internal substrate. An elementary mode can thus be thought of as a minimal independent pathway within a network of reactions. The term elementary refers to a mode that cannot be subdivided into further modes. By applying this technique to the Calvin cycle and the oxidative pentose-phosphate pathway, it has been shown that they are not separate elements but rather play complementary roles and should thus be possibly regarded as overlapping sets of components whose operation is governed by the thioredoxin system in response to ambient light intensity [5].

It was concluded from this analysis that it is possible for starch degradation to enhance photosynthetic triose phosphate export in the light. Indeed, the elementary modes degrading starch do not utilize fructose-1,6-bisphosphate (FBP) aldolase (EC 4.1.2.13) or FBPase. The flux that these reactions would otherwise have carried is supplied via the degradation of transitory starch and then becomes available for export via the triose phosphate/phosphate translocator that is able to exchange 3-phosphoglycerate, dihydroxyacetone phosphate or glyceraldehyde-3-phosphate for inorganic phosphate [6]. The same analysis also led to the conclusion that the reactions of the Calvin cycle alone are not capable of sustaining a triose phosphate output flux in the dark using transitory starch as the starting point [5].

These results clearly indicate that although the reactions involved in the Calvin cycle and the oxidative pentose-phosphate pathway were elucidated long ago (in the 1950s), their control and their functions still raise unsolved questions.

Long-known processes that control the enzymes of the Calvin cycle include light-dependent ion movements. As light-driven electron transport leads to the generation of a pH gradient across the thylakoid membrane, the pH of the stroma increases from around pH 7 (dark) to pH 8 (light). Regulated enzymes of the Calvin cycle work best at pH values close to 8 and are relatively inactive at pH 7. Moreover, as a result of the pH change, other ions move across the thylakoid membrane to compensate for charge differences. In particular, magnesium ions move out as protons move into the lumen of the thylakoid membranes.

The Calvin cycle was considered for many years to be controlled by light-dependent activation of at least five enzymes often referred to as ‘key’ enzymes. These are RuBisCO, NADP-glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase (SBPase) and phosphoribulokinase. Of these five enzymes, all except RuBisCO are controlled by the ferredoxin–thioredoxin system and all are activated by light-induced increase in stromal pH.

This chapter will thus be mainly devoted to recent findings regarding the so-called key enzymes and to their control. However, transgenic plant analysis and large-scale gene expression data have recently revealed that other enzymes are also important and that their regulation at the gene level is sensitive to biological perturbations (e.g. alterations in light signals, mutations in light-signalling components, etc.) [7]. These data are most interesting as they overturn the preconception that the highly regulated (‘key’) enzymes exert the strongest control over carbon fixation. These findings will also be discussed in the present chapter.
Last but not least, there is no doubt now about the role of protein–protein interactions in many cellular processes. In plants for instance, it is well known that RuBisCO is regulated by a separate protein called RuBisCO activase. This protein binds to inactive RuBisCO and upon ATP hydrolysis, it changes the conformation of the enzyme, thus generating a highly active form of RuBisCO. Activase thus works along with pH and Mg$^{2+}$ to adapt the function of RuBisCO to demand. This type of protein–protein interaction is not unique and many such interactions have been described in the Calvin cycle.

Protein–protein interactions allow communication at the level of a metabolic pathway. These communications rely on specific interactions in response to physical or chemical signals and will thus be reviewed here.

7.2 Ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBisCO catalyzes CO$_2$ fixation and alternatively, an oxygenase reaction [8–10]. These two reactions can be summarized as follows:

\[
\text{ribulose-1,5-bisphosphate} + \text{CO}_2 \rightarrow 2\text{(3-phosphoglycerate)} \\
\text{ribulose-1,5-bisphosphate} + \text{O}_2 \rightarrow (\text{3-phosphoglycerate}) + 2\text{-phosphoglycolate}
\]

RuBisCO is the most abundant enzyme on earth and constitutes approximately 30% of the total protein in many leaves. For this reason, it is of considerable interest in relation to nitrogen nutrition of plants. In higher plants, RuBisCO is a complex made up of eight identical large subunits (L, 50–55 kDa) and eight identical small subunits (S, 12–16 kDa). The large subunits are chloroplast-encoded while the small subunits are nuclear-encoded [11]. The small subunits are targeted to the chloroplast via a transit peptide that is removed during import. In the chloroplasts, chaperones then assist in the assembly of the large and the small subunits into a hexadecameric form, via a complex process [9, 12, 13]. This hexadecameric form (designated type I or form I) is found not only in terrestrial plants but also in virtually all eukaryotic algae, cyanobacteria and phototrophic and chemoautotrophic proteobacteria. Another smaller form (designated type II or form II) that contains only the large subunit, the smallest functional unit being a homodimer L$_2$, is found in some bacteria (reviewed in [8]). Unusual RuBisCOs made up of five large subunit dimers (L$_2$)$_5$, and RuBisCO-like proteins grouped into forms III and IV, respectively, have been discovered recently [14–18].

Both the large and the small subunits of the RuBisCO are extensively modified during and/or after translation. Besides their phosphorylation, as part of a process regulating import into the chloroplast, the small subunits are methylated with still unknown effects. The N-terminus of the large subunits is acetylated in all vascular plant species examined and other modifications (e.g. formylation of methionine residues, trimethylation of lysine residues) have also been reported (reviewed in [19]). Some modifications on proline and cysteine residues have been found in RuBisCO of *Chlamydomonas reinhardtii* and may be unique to the algal forms [20, 21].
The crystal structures of RuBisCO from spinach [22–24], tobacco [25–27], cyanobacterium [28, 29], red alga [30], photosynthetic bacteria [31–33] and archaeabacterium [34] and from \textit{C. reinhardtii} [20, 21] have been reported.

Within RuBisCO, the large subunits are arranged as antiparallel dimers (head to tail) with the N-terminal domain of one monomer adjacent to the C-terminal domain of the other. Each active site is at the interface between monomers within a dimer, explaining the minimal requirement for a dimeric structure. In the holoenzyme, four L2 dimers are assembled into a core of eight large subunits, \((\text{L}_2)_4\), displaying a fourfold axis with local 4-2-2 symmetry. The small subunits comprise two separate clusters of four subunits each \((\text{S}_4)_2\), which tightly interact with the large subunits. In the center of the \(\text{L}_8\text{S}_8\) holoenzyme, along the fourfold axis, a channel extends throughout the molecule [22].

Besides solving the structure of this enzyme, searching for the molecular basis for its CO2/O2 specificity has been a challenge for many years, but has now greatly progressed as discussed below. The CO2/O2 specificity factor, \(\Omega\), is defined as the ratio between \(V_{c}K_o\) and \(V_oK_c\), where \(V\) is the \(V_{\text{max}}\) of either carboxylation (c) or oxygenation (o) and \(K\) is the \(K_{\text{m}}\) for CO2 or O2 [35]. There is considerable variation in \(\Omega\) values among RuBisCO enzymes of different species, with the enzyme from most land plants having \(\Omega\) values in the range of 80–100 (reviewed in [9]).

Since the active site for which CO2 and O2 compete is borne by the large subunit, considerable data have been accumulated on this subunit. Just as many enzymes have an \(\alpha/\beta\)-barrel-domain [36], the large subunit of RuBisCO has a loop (i.e. between \(\beta\)-strand 6 and \(\alpha\)-helix 6 in the \(\alpha/\beta\)-barrel) that folds over substrate during catalysis (reviewed in [10, 37]). RuBisCO may thus exist in two states; in the open state the active site is accessible to bulk solvent, whereas in the closed state the active site is completely shielded from the solvent. The transition between the two states is accompanied by significant structural changes that include the movement of the loop-6 region (residues 332–338), the movement of the C-terminal strand (residues 462 to the C-terminus) and a rigid-body rotation of the N-terminal domain of the adjacent L subunit. Numerous studies have indicated that loop 6 plays a major role in discriminating between CO2 and O2 in the competing RuBP carboxylation and oxygenation reactions of RuBisCO (reviewed in [10, 37]). Structural studies have demonstrated the importance of the C-terminus of the large subunit for the catalytic function [22, 28]. Moreover, removal of the C-terminal residues of the spinach or algal RuBisCO large subunit by carboxypeptidase-A reduces carboxylase activity by 60–70% [38]. Similarly, mutants in which the C-terminus of the large subunit is truncated lose catalytic activity and are no longer able to bind carboxy-arabinitol bisphosphate, a transition state analog [39]. The importance of the C-terminus and its folding over loop 6 was confirmed recently. It has been proposed that the aspartate residue in position 473 may serve as a latch, closing the RuBisCO structure that binds inorganic phosphate in one of the ‘open’ RuBisCO structures and thus supports the existence of a regulatory site [27]. Mutant enzymes in which the aspartate at position 473 has been replaced by an alanine or a glutamate residue have been produced in \textit{C. reinhardtii}, and it has been shown that this aspartate residue is not essential for catalysis. However, both mutations (Asp 473/Ala/Glu)
result in an 87% decrease in carboxylation catalytic efficiency and 16% decrease in \(\text{CO}_2/\text{O}_2 \) specificity. If the C terminus is required to stabilize loop 6 in the closed conformation, there must be additional residues at the carboxyl terminus/loop 6 interface that contribute to this mechanism.

Considering that the substitutions at position 473 can influence \(\text{CO}_2/\text{O}_2 \) specificity, further studies of the interactions between loop 6 and the C-terminus may define the precise role of this structural arrangement in catalysis and may provide clues to engineer RuBisCO to increase the carboxylation/oxygenation ratio that is expected to improve photosynthetic efficiency and consequently, crop yields [40].

In addition to the large subunit, attention has also been paid to the small subunits. Indeed, it has been shown that with expression of the large subunits of \textit{Synechococcus} in \textit{Escherichia coli} these proteins assemble into octameric cores [41–43]. These octameric forms have drastically reduced carboxylase activity. Thus the small subunits do more than just assemble or concentrate the large subunits of RuBisCO, but may also be partly responsible for the higher values characteristic of \(\Omega \) obtained with plant form-I enzymes [11].

Besides \(\text{CO}_2/\text{O}_2 \) specificity, other interesting features of RuBisCO are: (i) changes in the activity of the enzyme are linked to the well-known ‘activation’ phenomenon by carbamylation [44, 45] of a lysine residue (lysine 201) by a non-substrate molecule of \(\text{CO}_2 \) and subsequent \(\text{Mg}^{2+} \) binding [9, 44] in the active site prior to binding RuBP as reviewed in [46] and (ii) its interaction with RuBisCO activase.

A reduction in the catalytic activity of RuBisCO has been observed \textit{in vivo} as a consequence of either tight RuBP binding to the uncarbamylated enzyme [47, 48], or 2-carboxyarabinitol-1-phosphate (CA1P) binding to the carbamylated enzyme [49, 50]. CA1P is a naturally occurring, transition state analog of the carboxylase reaction of RuBisCO that binds tightly to the active site of this enzyme and thus inhibits catalytic activity. \textit{In vitro}, a fall over (a characteristic time-dependent decrease in enzymatic activity) of RuBisCO has also been observed and attributed to the formation of a tight-binding inhibitor during catalysis [51, 52]. This process remains to be clarified since it was later shown that RuBP may be oxidized into a tight-binding inhibitor [53]; an observation that was further supported by an increase in fall over observed when catalysis is performed at higher temperatures, thereby enhancing RuBP oxidation [54].

The regulatory protein RuBisCO activase has been shown to facilitate the release of sugar phosphates such as RuBP or CA1P from the catalytic site of RuBisCO [55–57]. The activity of RuBisCO \textit{in vivo} is modulated by the binding of these sugar phosphates, and the role of activase is thus crucial in the modulation of RuBisCO activity.

RuBisCO activase is a nuclear-encoded chloroplast protein that in most plants consists of two isoforms arising from alternative splicing of a pre-mRNA [58, 59]. It is an ATP hydrolyzing (ATPase) enzyme that causes a conformational change in RuBisCO from a closed to an open state. It is a member of the AAA\(^+\) family (ATPases associated with diverse cellular activities), a family with chaperone-like functions. The activity of this protein is controlled by the ratio of ATP/ADP.
The three-dimensional structure of the activase is still unknown although it possesses the conserved AAA$^+$ fold [61].

The function of each isoform has been examined by characterizing RuBisCO activation in transgenic plants of Arabidopsis that express only one or both isoforms of activase. In plants expressing only the shorter isoform (43 kDa), RuBisCO activity is as high as in the (nontransformed) wild type plants under saturating light, but activity in the transgenics is not down-regulated at limiting intensities for photosynthesis. In contrast, in plants expressing only the longer isoform (46 kDa), RuBisCO activity is down-regulated at limiting light intensities, but the activity is slightly lower and increases much more slowly at saturating light intensities when compared with the wild type [59]. The 46-kDa isoform contains C-terminal cysteine residues, and so when the capacity to redox-regulate the activity of the larger isoform is eliminated by replacement of these critical cysteine residues unique to this isoform, RuBisCO activity in saturating light is similar to the wild type. However, the ability of the larger isoform to down-regulate RuBisCO activity at limiting light intensities in the transgenic plants is almost abolished. These results indicate that the light modulation of RuBisCO under limiting light is mainly due to the ability of the RuBisCO activase to be regulated by redox changes in the stroma [59]. For those species that lack the larger isoform, the exact mode of activase/RuBisCO regulation remains unclear.

To understand and define the site of interaction between activase and RuBisCO, heterologous interactions between the two proteins have recently been analyzed.

RuBisCO activase from plants in the family Solanaceae (e.g. tobacco) fails to activate RuBisCO isolated from plants outside this family (e.g. spinach and the green alga C. reinhardtii). Conversely, activase from non-Solanaceous species cannot activate RuBisCO from Solanaceous species [62]. A comparison of the sequences and X-ray crystal structures reveals that there are seven residues clustered on the surface of the RuBisCO large subunit whose charges differ between the Solanaceae and non-Solanaceae enzymes (residues 86, 89, 94, 95, 356, 466 and 468) [63, 64]. Substitutions were then made to define the region of the large subunit that interacts with activase. A substitution was thus performed to change the specificity of the interaction by introducing a residue at position 89 that differs from either of the residues characteristic of Solanaceae (Arg 89) and non-Solanaceae (Pro 89) RuBisCO [65]. The results obtained seem to indicate that either of at least two residues (Arg 89 or Lys 94) on the surface of the algal RubisCO large subunit is sufficient for recognition by the tobacco activase, but that at least two residues (Pro 89 and Asp 94) are necessary for recognition by the spinach activase. However, a large subunit Pro89Ala substitution also blocks algal RuBisCO activation by spinach activase and allows activation by tobacco activase. It thus seems that it is more the absence of Pro than the presence of the Arg residue at position 89 that is required for activation by tobacco activase [65].

Considerable progress has been made in identifying natural variations in the catalytic properties of RuBisCO from different species, and in developing tools to introduce both novel and foreign RuBisCO genes into plants [10]. The manipulation of
genes encoding RuBisCO activase has also provided a means to investigate the regulation of RuBisCO activity. For example, plants with reduced amounts of cytochrome \(b/f \) complex (through gene antisensing) have impaired electron transport and a low trans-thylakoid pH gradient that restrict ATP and NADPH synthesis. In these plants, CO\(_2\) assimilation was further compromised by reduced carbamylation of RuBisCO. The authors thus propose that the low carbamylation of RuBisCO in the antisense \(b/f \) plants is due to reduced activity of RuBisCO activase. The possibilities that might explain this reduced activity include the trans-thylakoid pH gradient and the reduction state of the acceptor side of photosystem I and/or the degree of reduction of the thioredoxin pathway [66].

Extensive analyses have been carried out using antisense tobacco plants with reduced amounts of RuBisCO. The results obtained with the antisense plants showed that the flux control coefficient that may range from 0 to 1 [67, 68] is high in conditions where carboxylation efficiency is reduced; that is, when photorespiration is favored [69, 70]. In fact, the flux control coefficient exerted by RuBisCO may be below 0.2 [71–73] but can reach 0.8 or even higher when the antisense plants are grown in ambient CO\(_2\) and moderate light, or in a greenhouse with high irradiance, high temperature and low humidity; hence the control exerted by RuBisCO can be quite significant [70, 74]. Recently, a regulatory potential of the genes in the Calvin cycle has been inferred from the expression patterns of these genes. In this study [7], the analysis of the expression patterns of genes from almost 100 Arabidopsis microarray experiments was reported. Interestingly, RuBisCO is one of the enzymes that is the most sensitive to biological perturbations, which is quite consistent with the important rate-limiting role of this enzyme in controlling the carbon assimilation flux of the Calvin cycle.

The complexity of assembling copies of the two distinct polypeptide subunits of RuBisCO into a functional holoenzyme \textit{in vivo} (requiring sufficient expression and post-translational modifications), its interaction with RuBisCO activase and the very likely high control of this enzyme on the flux of carbon fixation constitute sufficient reasons to encourage further studies of this enzyme. Many of the structural and conformational changes have been shown to be crucial in the regulation and assembly of RuBisCO, but although data on RuBisCO have accumulated, the frequent reports of new information about this fascinating enzyme suggest that many important discoveries still remain to be made.

7.3 Glyceraldehyde-3-phosphate dehydrogenase

GAPDH exists in three main forms in higher plants and algae, two cytosolic forms and a chloroplast form involved in the Calvin cycle: (1) a cytosolic NADP-dependent nonphosphorylating GAPDH that occurs in the cytosol and catalyzes the irreversible oxidation of glyceraldehyde-3-phosphate into 3-phosphoglycerate coupled to the reduction of NADP into NADPH [75], (2) a classic phosphorylating NAD-specific GAPDH of glycolysis and (3) a phosphorylating NADP-dependent GAPDH involved in CO\(_2\) fixation in the chloroplast that catalyzes the reversible
reduction and dephosphorylation of 1,3-bisphosphoglycerate (BPGA) to produce glyceraldehyde-3-phosphate using NADPH. GAPDH isolated from chloroplasts has a dual specificity and can use either NAD(H) or NADP(H). It has been suggested that in vascular plants GAPDH exists either as a heterotetramer of two A subunits (36 kDa) and two B subunits (39 kDa) (A₂B₂), or as a homotetramer of four A subunits (A₄) [76]. A 600-kDa aggregated form (A₈B₈) has also been isolated from vascular plants [77–80]. Besides these oligomers, heterooligomers have been found, involving association of GAPDH with PRK and CP12, a small nuclear encoded chloroplast protein [81–86]. It has been shown that in darkened chloroplasts, vascular plants possess both types of complexes (A₈B₈ and PRK/GAPDH/CP12) with a probable ratio of 1:1 based on total GAPDH activity in either type of association [87]. In algae, only the A subunit has been found. The A and B subunits are very similar (about 80% sequence identities), except that the B subunit has a highly negatively charged C-terminal extension of 30 amino acid residues that contains two additional cysteine residues. Interestingly, the C-terminus of CP12 is homologous to the C-terminal extension of the B subunit.

The C-terminal extension confers regulatory properties to B subunit-containing isoforms [88–91]. This extension is also responsible for the tendency of the A₂B₂ tetramer to aggregate into the A₈B₈ form [88, 92]. The polymerization state of the enzyme is linked to its control by dark-light transitions. The A₈B₈ form of GAPDH is considered to be a regulatory form, whose activity in vitro may be controlled by metabolites such as NADP(H) or BPGA in the presence of a reducing agent [92–94]. This control is mediated by the dissociation of the ‘heavy’ form of GAPDH in the presence of BPGA [94, 95] leading to the formation of a more active tetramer. In all cases, the modulation of GAPDH activity requires intact B subunits, as occurs in GAPDH having both A and B subunits, artificial isoforms composed only of B subunits [88, 89, 91] or alternatively, the presence of the regulatory peptide CP12 [84, 85, 87, 96]. The small CP12 protein can inhibit directly the ‘non-regulatory’ A₄-GAPDH isoform [96]. The resulting inhibitory effect is on the catalytic constant, k_{cat}, of the NADPH-dependent reaction. Indeed, the C-terminal extension and CP12 contain regulatory cysteine residues whose redox state is under the control of thioredoxin [84, 91] and these proteins exert their inhibitory effect following oxidation of the cysteine residues to form intrachain disulfide bridges.

Recent electron microscope data indicate that the A and the B subunits occur together in situ in pea (Pisum sativum), despite the apparent differences in distribution of these two subunits in the stroma (half of the A subunit, but only one-third of the B subunit seems to be associated with the thylakoid membranes) [97]. This difference suggests that the redox-insensitive A₄-GAPDH isoform and the redox-regulated tetramers might have different roles. It has been suggested that in the dark, the A₄-GAPDH more specific for NAD could participate in the metabolism when starch is broken down and phosphoglycerate is exported to cytosol. In the presence of light, A₄-GAPDH will convert spill-over BPGA from the Calvin cycle to glyceraldehyde-3-phosphate, which is then exported to the cytosol or returned to the Calvin cycle. In contrast the isozymes that contain the B subunit, whatever their
composition, would be more adapted than those lacking the B subunit, to partici-
pate in photosynthetic CO$_2$ fixation [97].

Transcription is one of the primary steps by which light regulates gene expres-
sion in plants. In tobacco and Arabidopsis, expression of the nuclear genes that
encode the A and B subunits of chloroplast GAPDH ($GapA$ and $GapB$) is known to
be regulated by light [98–100]. Several cis-acting elements and their cognate bind-
ing factors of both $GapA$ and $GapB$ have been identified [101], and it has been sugges-
ted that a single cis-acting element may respond to more than one photoreceptor
[102]. It is known that blue and white light are much more efficient when compared
with red light in inducing $GapA$ and $GapB$ expression. Further, continuous expo-
sure of dark-treated mature plants to blue or white light is required for high-level
expression of $GapA$ and $GapB$ [99, 103].

The crystal structure of spinach A$_4$-GAPDH has been solved [104, 105]. The
coenzymes NADP and NAD show similar conformations and interactions with the
apoprotein in NADP- and NAD-GAPDH complexes, respectively, except in the 2’-
phosphate region. The 2’-phosphate group of NADP is stabilized by two hydrogen
bonds with the hydroxylated side-chains of Thr 33 and Ser 188, the latter belonging
to an S-shaped loop (‘S loop’) of a symmetry-related subunit [104]. On the other
hand, NAD, in common with the NAD-specific glycolytic enzyme [106], is kept in
place by hydrogen bonding between the 2’-hydroxyl group of the NAD and the
Asp32 carboxylate group of the same subunit [105, 106].

It was recently shown that a mutated spinach A$_4$-GAPDH in which the serine
residue at position 188 was replaced by alanine, relaxes to a loosened, enlarged
conformation [107]. This mutation results in a significant decrease of the maximum
catalytic activity of the enzyme with NADPH alone [96]. Since Ser188 is sur-
rrounded by several positive charges (Arg residues 183, 191, 194, 195 and 197), and
since both the C-terminal extension and the N-terminus of CP12 are negatively
charged [84], an interaction between the S loop and the so-called ‘inhibitory
domain’ was suggested [107]. This interaction might prevent Ser188 hydrogen
bonding to the 2’-phosphate group of NADP with a consequent dramatic change of
enzyme conformation and a decrease in catalysis. The authors proposed that the
oxidized C-terminal extension and (possibly) CP12 interacting with the S loop may
inhibit the NADPH-dependent activity of the wild type enzyme [107]. Consistently,
the lack of this hydrogen bond in Ser188 mutants of A$_4$-GAPDH produces kinetic
effects similar to the inhibition linked to the C-terminal extension present in
GAPDH having B and A subunits. The association of CP12 with algal A$_4$-GAPDH
also results in a decrease of the maximum catalytic activity with NADPH [96].
Finally, the interaction between the S loop of algal GAPDH and CP12 protein has
been clearly demonstrated. Indeed, a mutated algal GAPDH in which the arginine
residue at position 195 that belongs to the S loop has been substituted by glutamate
fails to reconstitute the complex GAPDH/CP12 [108]. This result is in very good
agreement with the findings of Trost and colleagues [107].

The generation of antisense tobacco plants directed against GAPDH has shown
that no effects on photosynthesis are observed until GAPDH activity is reduced to
below 35% of the wild type plants even under saturating light [109]. Moreover, the
flux control coefficient for this enzyme is quite low; in most conditions (high or low irradiance), it is less than 0.2. Nonetheless, even though understanding of the individual enzymes is necessary, it is not sufficient to understand the entire mechanisms that control metabolism. Consequently, the recent discovery of CP12 within a bi-enzyme complex that involves not only GAPDH but also phosphoribulokinase [82, 84, 85] indicates that further studies are required to understand the processes that operate in vivo to modulate these Calvin cycle activities, and the role they play in controlling carbon assimilation.

7.4 Fructose-1,6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase

FBPase and SBPase (EC 3.1.3.37) catalyze irreversible reactions corresponding to dephosphorylation of FBP and sedoheptulose-1,7-bisphosphate (SBP) into fructose-6-phosphate and sedoheptulose-7-phosphate, respectively [110, 111]. While SBPase is a homodimer unique to the Calvin cycle, in vascular plants there are two distinct homotetrameric FBPases, a cytosolic FBPase that is involved in sucrose synthesis from triose phosphates exported from chloroplasts (see Chapter 9) and a chloroplastic FBPase involved in the Calvin cycle. Although there have long been doubts as to the existence of an SBPase distinct from FBPase, SBPases have been partially or fully purified. SBPases have been purified from a number of different C₃ plant species such as spinach [112–114], pea [115] and wheat [116]. An alternate phosphatase was also purified from spinach leaves but this enzyme is not a true SBPase as it hydrolyzes FBP more readily than SBP [117, 118]. This enzyme resembles more the one found in cyanobacterial cells that seem to contain a unique enzyme, fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), although the cyanobacterial enzyme can hydrolyze both FBP and SBP with almost equal specific activities [119]. FBPase is widely distributed, and the plastid FBPase of red algae, green algae and plants are not of cyanobacterial origin but instead are related to cytosolic forms, suggesting that they originated through gene duplication [120]. SBPase is found in plastids of green algae and plants and in the cytosol of the kinetoplastid parasites such as Trypanosoma brucei [121]. The presence of a cytosolic SBPase, and the presence of an FBP aldolase in this kinetoplastid, was thus believed to be a good argument in favor of an ancestral plastid in kinetoplastid parasites. The discovery of a cytosolic SBPase in fungi, such as Neurospora crassa and Magnaporthe grisea, suggests that this enzyme may have been added later to plastid metabolism, having persisted in the cytosol of nonphotosynthetic eukaryotes prior to the initial acquisition of the chloroplast. Indeed, as mentioned above, cyanobacteria lack SBPase and use a dual-specificity FBPase, and therefore, the plastid SBPase probably originates from sources other than cyanobacteria [122]. Still, the function of SBPase in kinetoplastid parasites and fungi is puzzling; it may function in a modified pentose-phosphate pathway in concert with FBP aldolase [121].

The gluconeogenic FBPase is controlled in a similar way to the mammalian enzyme, that is, through fructose-2,6-bisphosphate and AMP [123]. The chloroplastic
FBPase is not controlled by AMP, but by light via the ferredoxin–thioredoxin system. SBPase is also light-regulated by this system [124]. Light-induced changes in stromal Mg\(^{2+}\) levels and pH also regulate the FBPase [125, 126] and SBPase [114, 116, 127–130] activities. The different regulatory pathways observed between the cytosolic enzyme and the chloroplastic enzyme rely on the insertion of a sequence within chloroplastic FBPases that bears three conserved cysteine residues [131]. It was shown by means of site-directed mutagenesis that this sequence contributes to redox regulation [132, 133]. While there have been extensive crystallographic studies on gluconeogenic FBPases from mammals, only a few reports deal with chloroplastic FBPase [123, 134]. These studies are valuable as they clearly show that the redox-sensitive cysteines are remote from the active site and accessible to thioredoxins at the surface of the enzyme [134]. As SBPase lacks this regulatory insertion [135], it has been suggested that the presence (in a loop) of redox active cysteine residues at positions 52 and 57 could fulfill the same role as that of the FBPase insertion. The interaction between FBPase and thioredoxin has also been investigated. It has been suggested that the FBPase binding site is a negatively charged cluster positioned in a protruding loop (‘170 loop’) in the middle of each FBPase subunit. This loop contains the two cysteine residues that seem to be involved in the thiol-disulfide exchange [136]. Also, it has been demonstrated that hydrophobic forces also play an essential role in FBPase-thioredoxin interaction [137]. Finally, the binding parameters for the interaction between chloroplast FBPase and the wild type pea thioredoxins f and m, as well as mutated thioredoxin m, determined by equilibrium dialysis in accordance with the induced fit model of saturation kinetics, provided additional support for the role of the two basic thioredoxin residues, Lys 70 and Arg 74, in the interaction with FBPase [138].

FBPase and SBPase catalyze irreversible reactions. The product of the reaction catalyzed by FBPase, fructose-6-phosphate, is the branch point for metabolites leaving the Calvin cycle and moving into starch biosynthesis. SBPase is at the branch point between regeneration of the CO\(_2\) acceptor molecule and biosynthesis of starch and sucrose, and could thus influence the distribution of carbon between these three competing pathways. Finally, as briefly described above, these two phosphatases are thioredoxin targets. Thus transgenic approaches have been developed to assess the contributions of these two phosphatases to the control of carbon flux through the Calvin cycle.

Using transgenic potato plants, no effect on photosynthesis occurred until the FBPase activity was less than 34% of the wild type, and the flux control coefficient for this enzyme was equal to that of GAPDH (0.2) in most environmental conditions [139]. On the other hand, the SBPase control coefficient was higher than that of FBPase, and could be up to 0.75 in specific conditions such as high irradiance (reviewed in [70]). Furthermore, transgenic tobacco plants with levels of SBPase activity less than wild type presented decreased rates of photosynthetic carbon fixation and altered carbohydrate levels in mature leaves [140–142]. Interestingly, the introduction and overexpression of cyanobacterial FBP/SBPase in the chloroplasts of transgenic tobacco plants lead to increased photosynthetic capacity in leaves,
carbohydrate accumulation and accelerated growth rate [119]. Quantitative flux control analysis of the photosynthetic data from the SBPase antisense plants shows that SBPase exerts considerable control on carbon assimilation, particularly under saturating light and CO2 conditions [70].

These antisense plant approaches [140–142], the highly regulated catalytic activity of SBPase, together with modeling studies [143, 144] led to the hypothesis that SBPase, even more than FBPase, plays an important role in the control of carbon flux through the Calvin cycle [143, 145]. This enzyme, like RuBisCO, was the most sensitive to biological perturbations when analyzing large-scale gene expression profiling data of Arabidopsis [7]. These data clearly indicate that SBPase is a strategic enzyme in the Calvin cycle.

7.5 Phosphoribulokinase

PRK is an important regulatory enzyme in the process of carbon fixation. Unique to this metabolic pathway, PRK catalyzes the ATP-dependent phosphorylation of ribulose-5-phosphate, thus regenerating ribulose-1,5-bisphosphate, the CO2 acceptor molecule and substrate for RuBisCO. A divalent cation is required for activity with, in order of preference, Mg2+ and then Mn2+ most efficiently supporting activity. PRK has been isolated from different sources and exhibits fundamental differences in structure as well as in catalytic and regulatory properties.

A comparison of prokaryotic and eukaryotic PRKs reveals many striking differences. While in prokaryotes, native PRKs appear as either hexameric or octameric oligomers composed of 32-kDa subunits, in eukaryotes native PRKs are dimers made up of 40-kDa subunits (reviewed in [146]). A high resolution (2.5 Å) three-dimensional structure of *Rhodobacter sphaeroides* PRK has been elucidated [147] but, to date, there are no reports of any such structures for eukaryotic PRK. At present, only modeling of a PRK structure of *C. reinhardtii* has been performed [148] although the low level of sequence identity shared between the *R. sphaeroides* and the *C. reinhardtii* PRK sequences (below 25%) have made this a difficult task. The authors thus took into consideration information about the secondary structure that is currently more conserved than the primary sequence. To do this, hydrophobic cluster analysis, a two-dimensional method of sequence analysis, was used to add to the one-dimensional lexical comparison, and so provide an analysis of the secondary structure [149].

As mentioned above, diverse regulatory mechanisms also distinguish prokaryotic from eukaryotic PRKs. The class of enzymes from prokaryotes are allosterically controlled, being activated by NADH and inhibited by AMP, while disulfide bridge reduction between cysteine 16 and cysteine 55 is a major determinant of activity for eukaryotic PRKs. Early studies had shown that eukaryotic PRKs lacking these two cysteine residues can be inhibited by chloroplast metabolites. The most effective inhibitor is 6-phosphogluconate, which is a competitive inhibitor of ribulose-5-phosphate [150, 151]. In later studies, light activation of PRK was
shown to be linked to the ferredoxin–thioredoxin-mediated pathway [152], while more recent studies were mainly devoted to the relative activity of the enzyme in isolated or individual state versus multienzyme complexes. Here, PRK embedded in a five-enzyme complex in spinach leaves exhibited slow oxidation and consequently inactivation, in comparison with the individual or so-called ‘isolated form’ [153]. In contrast, more rapid thioredoxin-dependent activation of PRK was observed with PRK as part of either a five-enzyme complex from spinach [154] or a bienzyme complex purified from a green alga [155]. The bienzyme form, which is associated with GAPDH and CP12, but not the isolated PRK, is also activated by NADP(H) but not by NAD(H). These results, therefore, support previous findings of information transfer and imprinting effects between these two enzymes [156].

Information transfer corresponds to stabilization–destabilization energies. These arise from a conformational change in the enzyme within a complex, and so part of the energy stored during association between the enzymes serves to increase the rate of catalysis after disruption of the complex via imprinting or memory effects [157–160]. It has thus been shown that information transfer may also be modulated by binding of a ligand such as NADP or NADPH. Moreover, the signal triggered by these cofactors may have two targets within a single ‘control unit’ [156]. Thus protein–protein interactions may give rise to new and unexpected regulatory properties.

Expression of PRK is also regulated by light [161, 162] and is under the control of the circadian-clock. It has been shown in C. reinhardtii that regulation of the PRK messenger RNA is controlled directly or indirectly by photosynthetic electron transfer as it is DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl-urea)-sensitive. The authors suggest that the redox state of the plastoquinone pool might be a good candidate for this regulation [162].

Interestingly, PRK is also a good target to study direct effects between photosynthesis, growth and allocation of dry matter, using transgenic plant approaches. Indeed, a decrease in the amount of PRK does not result in a large redistribution of nitrogen because PRK, unlike RuBisCO, accounts for only a fraction of the nitrogen present within a leaf. As a consequence, decreased photosynthesis in PRK antisense plants occurs without any nitrogen redistribution [163]. In this case, a genetic alteration of photosynthesis will be independent of the effects on nitrogen or nitrate. The effects observed on growth and allocation will rely only on photosynthesis and not on any disruption of plant nitrogen balance. The analysis of transgenic tobacco plants grown in low light showed, however, that even when there is a large decrease in PRK activity (greater than 85%), only small effects on the rate of photosynthesis and on shoot growth were observed [164]. Moreover, the maximum flux control coefficient for this enzyme is 0.25 when transgenic plants are grown in low light and photosynthesis is measured under saturating light [70, 165]. Therefore, when placing the PRK gene to reflect the sensitivity of this gene to biological perturbations, PRK presents an intermediate sensitivity, in common with FBPase, GAPDH, the transketolase and the epimerase [7]. These results indicate that PRK, like GAPDH, seems to have little control over photosynthetic carbon fixation.
7.6 Other important enzymes in the Calvin cycle

7.6.1 Transketolase

Transketolase (EC 2.2.1.1.) catalyzes reactions in the Calvin cycle and the oxidative pentose-phosphate pathway. It catalyzes the reversible transfer of a C2 ketol moiety and displays broad substrate specificity. In the Calvin cycle, it converts glyceraldehyde-3-phosphate and fructose-6-phosphate into xylulose-5-phosphate and erythrose-4-phosphate, and glyceraldehyde-3-phosphate and sedoheptulose-7-phosphate into xylulose-5-phosphate and ribose-5-phosphate. Plants contain one major isoform of transketolase [1]. The immediate substrates and products of the reaction catalyzed by the transketolase act as precursors for phenylpropanoid synthesis (erythrose-4-phosphate), nucleotide synthesis (pentose-phosphates), carbohydrate synthesis (fructose-6-phosphate) and of glycolysis (glyceraldehyde-3-phosphate) leading to respiratory metabolism, amino acid and lipid synthesis [166].

Only few reports describe the properties of this enzyme in vascular plants, and to our knowledge, only one deals with the purified enzyme. Transketolase purified from spinach leaves seems to be a homodimer composed of 74-kDa subunits. Although its optimum pH is close to 8, it is also active at least one pH value above and below the pH maximum. No influence of the redox status was observed [167]. It is thus not susceptible to the light-dependent regulation observed with the well-known ‘key’ enzymes, but the broad pH optima and its redox insensitivity may be advantageous to fulfill its function in both the Calvin cycle and the oxidative pentose-phosphate pathway.

Transketolase catalyzes a reversible reaction and is insensitive to ‘fine’ control. However, because of its strategic location between primary and secondary metabolism, the consequences of decreased activity of the transketolase have been studied using antisense tobacco plants. Surprisingly, the results showed that this enzyme is an important determinant of both photosynthetic carbon and phenylpropanoid metabolism [166]. Decreased transketolase activity alters photosynthetic allocation to favor starch rather than sucrose synthesis. Sucrose levels decline in step with a reduction in transketolase activity, with a 25% decrease in activity corresponding to a 25% decline in sucrose level. In contrast, starch accumulation is unaffected until the transketolase activity reaches less than 60% of the wild type activity. A 50% decrease of plastid transketolase activity leads not only to a marked inhibition of ambient photosynthesis, but also to decreased growth and to a dramatic decrease in aromatic amino acids, phenylpropanoid intermediates, chlorogenic acid and lignin. Thus this enzyme is near-limiting for several important metabolic pathways.

By analyzing large-scale gene expression, the regulation of this enzyme was at the same level as PRK, GAPDH, FBPase and thus seems to have intermediate sensitivity toward biological perturbations [7].

A theory in which the main portion of the intermediates of the Calvin cycle remain part of the cycle during one turnover has been developed. It showed that not only the reactions of nonequilibrium enzymes such as RuBisCO, but also reactions
that operate close to a thermodynamic equilibrium, especially the reduction of 3-phosphoglycerate and the transketolase reaction can significantly influence the total turnover period in the Calvin cycle [168].

Taken together, these observations show, quite unexpectedly, that this enzyme probably can play a significant role in regulating the flux through the Calvin cycle.

7.6.2. Aldolase

The FBP aldolases are divided into two classes (designated class I and class II) of phylogenetically and structurally unrelated enzymes characterized by several divergent properties. Both classes catalyze the cleavage of fructose-1,6-bisphosphate to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate or the reverse aldol condensation in the Calvin cycle. In addition to the aldol condensation of triose sugars, plastid FBP aldolase I can condense dihydroxyacetone phosphate and erythrose-4-phosphate to form sedoheptulose-1,7-bisphosphate [169]. Class I aldolases are homotetramers (160 kDa) that form a Schiff base with their substrate and can be inhibited with borohydride reagents (e.g. NaBH₄). Class II aldolases occur as homodimers (80 kDa), require divalent cations as cofactors and are inhibited by EDTA. Class I FBP aldolases are found in eukaryotes and in some proteobacteria. Red algae, green algae and plants possess two distinct class I FBP aldolases, a cytosolic aldolase involved in gluconeogenesis and glycolysis, and a plastid aldolase involved in the Calvin cycle. Class II FBP aldolases are mainly found in eu-bacteria and are divided into two subgroups. Homology between class I aldolases is at least 50% [170]. Class II aldolases show no homology to class I aldolases and have probably developed independently during evolution [171]. The evolutionary history of this enzyme is quite complex, involving lateral gene transfer and retargeting between cellular compartments [122, 172].

Euglena gracilis is one of the few eukaryotic organisms that contains both a class I aldolase (mainly expressed in autotrophically grown cells) and a class II aldolase (predominantly expressed in heterotrophically grown cells). These enzymes have been purified and characterized [173]. In contrast, in *Xanthobacter flavus*, a gram-negative facultatively autotrophic bacterium, a class I FBP aldolase is employed during heterotrophic growth, whereas a class II FBP aldolase is synthetized during autotrophic growth [174]. Therefore, at present, no clear link between growth conditions and the relative activity of either class I or class II aldolases can be established and further investigations are required.

Surprisingly, of the nine enzymes of the Calvin cycle studied (gene expression of phosphoglycerate kinase and triose phosphate isomerase were not included), gene regulation of aldolase, in common with RuBisCO and SBPase, was one of the most, if not the most, sensitive to biological perturbations [7]. This high sensitivity of gene regulation may indicate a role of aldolase in controlling the activity of the Calvin cycle, and the results obtained with antisense aldolase plants grown in different conditions may support this possibility. These studies clearly show that the flux control value of aldolase may increase to 0.55 at saturating CO₂ concentration.
In these plants, carbohydrate especially starch accumulation was reduced. Again, a nonregulated enzyme seems to have a significant share in the control over photosynthetic carbon flux.

7.7 Supramolecular complexes of the Calvin cycle

Because of the extremely high concentration of proteins in the stroma of chloroplasts, it is very likely that the enzymes involved in the Calvin cycle are not randomly distributed, but interact to give multienzyme complexes. This suggestion has been put forward because some of these proteins, for example PRK and GAPDH, are not easily isolated by conventional purification methods such as ion exchange, gel filtration and affinity chromatographies and copurify with other enzymes of the Calvin cycle. This organization into supramolecular edifices is a central feature of metabolism [176, 177]. If the enzymes inserted into these supramolecular structures do catalyze consecutive reactions, one of the major advantages of such structures is the transfer of reaction intermediates between catalytic sites without diffusion into the bulk of the cell. This so-called ‘metabolic channeling’ offers unique opportunities to enhance and regulate cell biochemistry. This metabolic channeling exists in primary and secondary metabolic systems in plants (reviewed in [177]). Although many multienzyme complexes catalyze consecutive reactions, others do not, and channeling thus cannot occur. In this case, a possible advantage of these complexes is alteration of the kinetic and regulatory intrinsic properties of the enzymes within the complex. New insights into both the function and mechanism of the formation of supramolecular complexes mainly come from studies on the green alga *C. reinhardtii*, and for the vascular plants mainly from spinach and pea. Different multi-enzyme complexes from pea and spinach with varying compositions have been isolated (reviewed in [176]). Smaller complexes that may be linked to the dissociation of higher order structures during the purification procedure may be considered as subcomplexes.

A five-enzyme complex composed of phosphoribose isomerase (PRI, EC 5.3.1.6), PRK, RuBisCO, phosphoglycerate kinase and GAPDH from spinach leaves has been studied in detail [153, 154, 178–180]. The same multienzyme complex with one additional enzyme, fructose-1,6-bisphosphatase has been identified in cotton (*Gossypium hirsutum*) [181]. The association of these enzymes results in alteration of the catalytic properties of RuBisCO and of PRK that results from an information transfer occurring in the complex [157, 179]. This complex may be bound to the thylakoid membranes [182]. Later, the use of cryomicroscopy has revealed that PRK and GAPDH from *C. reinhardtii* interact *in vivo* and are also associated with thylakoid membranes [183]. In addition to these two enzymes, PRI, FBP aldolase, SBPase and other enzymes that do not function as part of the Calvin cycle were also found bound to the thylakoid membrane [183]. A crucial role of thylakoid membranes in the supramolecular organization of the Calvin cycle has also been recently put forward by the use of differentially permeabilized cells of
Anacystis nidulans [184]. This study showed an association of Calvin cycle enzymes with the membranes near the sites of ATP and NADPH synthesis. Such an association would permit a link between carbon fixation and the light reactions of photosynthesis and may provide more efficient utilization of light-generated intermediates.

Clasper et al. [185] and Scheibe et al. [87] have isolated a PRK/GAPDH complex in spinach leaves, which is also found in green algae such as C. reinhardtii [83, 84], Scenedesmus obliquus [186, 187] and in the cyanobacterium Synechocystis PCC6803 [84]. In Sinapis alba, the presence of a binding fraction that was lost during purification [188, 189], and later proposed to be PRK [187], is required for the polymerization of GAPDH to form higher molecular mass structures. It has also been suggested that other chloroplastic components induce aggregation of PRKs that do not otherwise polymerize [190].

The PRK/GAPDH complex that may correspond to the core complex of a super-complex involved in CO₂ assimilation is one of the best documented examples [85]. The small 8.5-kDa protein, designated CP12 [81, 82, 84], has also been identified in most of these complexes (spinach, pea, tobacco, some algae and some cyanobacteria). In C. reinhardtii, the complex can be dissociated by reduction and reversed by oxidizing conditions. Indeed, the oxidized partners can spontaneously re-form a complex in vitro that possesses the same kinetic properties as those of the native state [83]. Site-directed mutagenesis indicates that substitutions that eliminate basicity at residue 64 (Arg in wild type PRK) disrupt the bienzyme complex [191]. Quite recently, two residues of GAPDH involved in protein–protein interactions within this complex were also identified by changing residues 128 (lysine) and 197 (arginine) either to alanine or to glutamate residues [108]. A model based on surface plasmon resonance data for the assembly of PRK/CP12/GAPDH has been proposed, in which CP12 first binds to GAPDH [86]. As a consequence of this binding, there is a conformational change of the enzyme, which then allows association with PRK. To examine this further, interactions between mutant GAPDH and CP12 were first analyzed, followed by those between mutant GAPDH/CP12 sub-complexes and PRK. All the mutants, except the mutant in which the arginine at position 197 was replaced by glutamate, were able to reconstitute the GAPDH/CP12 sub-complex. All the mutant GAPDH/CP12 sub-complexes failed to interact with PRK to form the native complex. The absence of kinetic changes of all mutant GAPDH/CP12 sub-complexes compared to wild type GAPDH/CP12 suggests that the mutants do not undergo the conformation change required for PRK binding [96, 108].

The association of these two enzymes (PRK/GAPDH) also gives rise to new properties. To show this, further characterization of the activity of isolated PRK and PRK contained in the complex has been performed. An existing belief is that PRK in the ‘oxidized’ complex is active [159], but this result has been disputed [146] since the cysteinyl sulfhydryls of PRK within the complex had never been tested directly. Alkylation of the so-called oxidized complex coupled with mass spectrometry analyses revealed that there is one disulfide bridge, very likely the one involving cysteine 16 and cysteine 55 (using residues corresponding to the
enzyme from spinach), in the PRK monomer within the complex [192]. The same study showed that GAPDH within the complex has four thiol groups whatever the redox state of this complex and so modulation of GAPDH activity observed upon reduction is not linked to disulfide reduction. It was proposed that the regulation of an enzyme such as PRK may modulate the regulation of another enzyme (GAPDH) via a ‘domino-like’ effect [192]. These data once more clearly demonstrate the role of protein–protein interactions in altering the properties of enzymes.

Gene expressions of GAPDH and PRK were investigated as mentioned above [98, 161, 162], but only recently was the coexpression of the \textit{PRK}, \textit{GapA}, \textit{GapB} and \textit{CP12} genes studied in Arabidopsis [193]. The expression of three Calvin cycle genes (\textit{GapA}, \textit{GapB}, \textit{PRK}) and two \textit{CP12} genes in the presence of light was inhibited by sucrose, although the response of \textit{CP12-1} was somewhat delayed compared to the rapid disappearance of all other transcripts. All the transcripts were especially abundant in leaves and flower stalks, less prominent in flowers and virtually undetectable in roots and siliques; however, there was a higher expression of \textit{CP12-1} in flowers and \textit{CP12-2} in stalks. However, the coordinated regulation of \textit{GapA-1}, \textit{GapB}, \textit{CP12-2} and \textit{PRK} at the level of gene expression is fully consistent with the existence and likely physiological relevance of a supramolecular complex involving GAPDH, CP12 and PRK in chloroplasts [84, 85, 87].

Other interactions have been reported between PRI, PRK and RuBisCO in spinach [194] and PRK and RuBisCO in pea [195]. There is also both kinetic and physical evidence that GAPDH interacts with aldolase and with phosphoglycerate kinase in the chloroplasts of vascular plants [196–198]. Recently, a robust graphical method for identifying enzymes that are associated \textit{in situ}, based on electron microscope analysis, has been developed [97]. This method also confirmed that GAPDH is close to phosphoglycerate kinase and aldolase \textit{in situ}. The fact that interaction is detected with a variety of techniques such as fluorescence anisotropy, hybridization techniques, phase-partitioning and isoelectric focusing, and that these enzymes appear to be in close proximity \textit{in situ}, increases the probability of functional aggregate of these enzymes within the chloroplast [97, 199].

The three-dimensional structure of the three-enzyme complex (PRI/PRK/RuBisCO) from spinach was obtained with a resolution of 3.5 Å and to our knowledge it is the only crystalline structure available of a complex involved in the Calvin cycle [200]. In this structure, certain conformational changes of RuBisCO are observed (the four axes of symmetry that are parallel in the isolated enzyme were at an angle of 70° in this structure). Using cryoelectron microscopy and image processing techniques for the \textit{C. reinhardtii} PRK/GAPDH/CP12 complex, strong structural differences between the modeled PRK dimers (not embedded in the complex) and PRK in the three-dimensional reconstruction volume of the whole complex were suggested [148]. Most isolated particles had a rod-like shape, with overall dimensions (20 × 10 nm) that are in good agreement with the expected size of the complex (about 460 kDa). At that time, the authors had not detected CP12 in the bienzyme complex, but the data obtained clearly showed the presence of an additional material
the Calvin cycle is characterized by different enzyme interactions, some of which are probably tighter than others. A tight association must be the case of PRK/GAPDH/CP12 found in different organisms. It should also be noted that as many enzymes from this cycle also participate in other pathways, the interactions may be transient to allow switches and interconnections between these pathways.

7.8 Conclusions

The Calvin cycle plays a pivotal role in most photosynthetic organisms and therefore, cellular functions and the so-called key enzymes in the cycle have been extensively studied. The model whereby the enzymes involved in this metabolic pathway are not randomly distributed in the chloroplast stroma but interact to give multi-enzyme complexes is widely accepted and provides new insights in the analysis of this pathway. Nonetheless, another organization scale now remains to be elucidated and the supramolecular organization around the thylakoid membranes remains to be investigated. It is also important to recall that in the Calvin cycle, there are only three enzymes (RuBisCO, PRK, SBPase) that are unique to this pathway, while the other enzymes are involved in additional pathways in chloroplasts. All these pathways are interconnected, and so many other interactions remain to be discovered. Of course, although easy to conceptualize, these ‘interactomes’ are not so easily mapped and analyzed, but probably progress made in both genomics and proteomics will make such studies more possible in the years to come.

Another powerful research tool that has emerged more recently is the use of transgenic plants. Over the past years, transgenic plant approaches and large-scale gene expression profiling data have revealed that enzymes to which only little attention had been paid to in the past are crucial; at least this seems to be the case for chloroplastic aldolase and transketolase. The findings that nonregulating enzymes catalyzing readily reversible reactions have a significant share in the control over the photosynthetic carbon flux are rather disturbing since ‘regulatory’ reactions are usually irreversible (thermodynamically nonequilibrium reactions, [201]). It is remarkable that the maximum rate of photosynthesis is almost completely limited by transketolase, an enzyme previously considered irrelevant to regulation. Plastid aldolase also exerts some control on the maximum rate of photosynthesis. Clearly, the investigations that were made on transgenic plants with decreased expression of specific enzymes of the Calvin cycle have led to a revision of ideas about the regulation of metabolism in this cycle. Probably, the development of new technologies will emphasize the fact that small changes in the activity of nonregulated enzymes can affect the Calvin cycle, while significant changes in the activity of so-called and long-known regulated enzymes do not. It will then be probably necessary to reassess these terms.
To conclude, photosynthesis and carbon fixation are co-limited by enzymes such as RuBisCO and SBPase that catalyze irreversible reactions and are subject to fine regulation. Moreover they are also co-limited by enzymes that are not regulated and freely catalyze reversible or equilibrium reactions such as the aldolase and the transketolase reactions. The interconnections with other metabolic pathways probably also require further investigation. As it is not possible to analyze every step in the photosynthetic and related processes, the predictive mathematical modeling approach will continue to be a desirable goal to identify likely targets. Utilization of clustering information with microarray data in the context of various pathways is also a challenging and promising approach to evaluate the effects and relationships of biological perturbations that may lead to new insights into the regulatory potentials of enzymes.

Acknowledgements

The authors are indebted to Dr A.L. Haenni for critical reading of the manuscript and helpful discussions.

References

123. V. Villeret, S. Huang, Y. Zhang and W.N. Lipscomb (1995) Structural aspects of the allosteric inhibition of fructose-1,6-bisphosphatase by AMP: the binding of both the substrate analogue...
2,5-anhydro-D-glucitol 1,6-bisphosphate and catalytic metal ions monitored by X-ray crystallography. *Biochemistry* **34**, 4307–4315.

160. S. Lebreton and B. Gontero (1999) Memory and imprinting in multi-enzyme complexes. Evidence for information transfer from glyceraldehyde-3-phosphate dehydrogenase to phospho-

8 Control of phosphoenolpyruvate carboxylase in plants
Hugh G. Nimmo

8.1 Introduction

In both C_4 and Crassulacean acid metabolism (CAM) plants, photosynthetic CO_2 fixation displays metabolic adaptations that improve water use efficiency and negate the oxygenase activity of Rubisco. In the various permutations of C_4 metabolism (NADP-malic enzyme type, NAD-malic enzyme type or phosphoenolpyruvate carboxykinase type), the C_4 cycle brings about the pumping of CO_2 into the vicinity of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the bundle sheath cells. In CAM plants, the nocturnal fixation of atmospheric CO_2 and accumulation of malic acid permit the decarboxylation of malate and re-fixation of CO_2 by Rubisco behind closed stomata during the following day. Central to both processes is the primary fixation of CO_2 catalysed by phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31). Photosynthetic CO_2 assimilation in C_4 and CAM plants is controlled at many different levels. The focus in this chapter is on control exerted through the reversible phosphorylation of PEPC and particularly on the properties and control of PEPC kinase, which is encoded by the PPCK gene family.

PEPC plays many different roles in the metabolism of vascular plants apart from its involvement in photosynthesis in C_4 and CAM species [1–3], and several recent developments in our understanding of PEPC in green algae and C_3 plants are also included.

The basic features of the PEPC system have been known for many years. Most PEPCs are homotetramers, comprising identical subunits of ~110 kDa (but see an exception in Section 8.4). Crystal structures have been established for the maize and Escherichia coli enzymes [3–6]. All PEPCs show allosteric properties: vascular plant PEPCs are inhibited by L-malate and activated by glucose 6-phosphate [1–3]. In addition, (i) aspartate and glutamate are potent inhibitors of PEPCs in non-green plant tissues active in N-assimilation and/or transamination reactions, thus providing a link between C- and N-metabolism [7–10] and (ii) the activity of vascular plant PEPC is controlled by phosphorylation of a single, highly conserved serine residue close to the amino-terminal end of the polypeptide [2, 3, 11, 12] (but see in Section 8.4). This results in reduced sensitivity of the enzyme to inhibition by malate and increased sensitivity to activation by glucose 6-phosphate, and hence to greater flux through the enzyme in vivo. For prolonged CO_2 fixation in C_4 leaves, PEPC must function in the face of the high concentration of malate in mesophyll cells that is required to sustain its diffusion to bundle sheath cells. Similarly, PEPC must
function during the accumulation of large amounts of malic acid in CAM leaves. There is now extensive evidence that phosphorylation of PEPC is required [2, 11]. For example, in elegant work on the C₄ species *Sorghum vulgare*, Bakrim *et al.* [13] prevented light-induced phosphorylation of PEPC by pre-treatment of leaves with cycloheximide. This blocked the primary fixation of CO₂ by PEPC but allowed a low rate of CO₂ assimilation directly via Rubisco. In several studies of CAM species, good correlations have been observed between nocturnal CO₂ fixation and the phosphorylation state of PEPC [11]. Hence much attention has been focused on the protein kinase that phosphorylates PEPC (PEPC kinase) [12] and, to a lesser extent, on the protein phosphatase 2A that dephosphorylates PEPC [14, 15].

This area of research has been reviewed recently [12]. In outline, the phosphorylation state of PEPC is controlled mainly by the activity of PEPC kinase. This enzyme is the smallest known protein kinase, comprising a catalytic domain with no extensions that could contribute regulatory properties. It is present at low abundance (less than 1 in 10⁶ of soluble protein [16]), turns over rapidly and is controlled largely at the level of transcript abundance [17–19]. PEPC kinase activity is increased in response to a range of different signals, for example light in C₄ leaves, a circadian oscillator in CAM leaves, light and N supply in C₃ leaves and photosynthate in legume root nodules [2, 3, 11, 12]. In some cases the *PPCK* genes that are expressed in response to these signals have been identified [12]. The potential role of a protein inhibitor of PEPC kinase [20] has not yet been clarified. Malate inhibits PEPC kinase activity [17, 21], possibly by interacting with PEPC [21] but it is not clear if this effect is physiological. Izui’s group has suggested that C₄ PEPC kinase may be controlled by thiol-disulfide interchange [16, 19], but evidence for the operation of this mechanism *in vivo* is still lacking (see below). There are no other known ways of controlling PEPC kinase activity *in vivo* apart from synthesis/degradation. A protein phosphatase 2A holoenzyme active against PEPC has recently been purified [15]. This appears to be a heterotrimer, similar to protein phosphatase 2A holoenzymes from other eukaryotes. However it is not specific for PEPC and no physiologically relevant control mechanisms have been identified [15].

8.2 PPCK genes and their roles

Following the first cloning of a *PPCK* cDNA from the CAM species *Kalanchoë fedtschenkoi* and the resulting identification of Arabidopsis *PPCK1* [17], *PPCK* genes and cDNAs have now been cloned and sequenced from many plant species. The data available in early 2003 were summarised in [12]. Some additional sequences are now available and these are included in the phylogenetic tree shown in Figure 8.1. This work has shown quite clearly that many (perhaps all) plants contain a small *PPCK* gene family. However it has proved very difficult to ascribe particular functions to individual gene family members.

Arabidopsis contain two *PPCK* genes, rice three, and both soybean and maize contain at least four genes (Figure 8.1) [12, 17, 22, 23]. The different genes in any one species can show marked differences in expression pattern. However there is no
Figure 8.1 Phylogenetic analysis of PPCK genes. The tree is based on full-length deduced amino acid sequences. At, Arabidopsis thaliana, Bv, Beta vulgaris, Cm, Clusia minor, Ft, Flaveria trinervia, Gm, Glycine max, Hv, Hordeum vulgare, Kf, Kalanchoë fedtschenkoi, Le, Lycopersicon esculentum, Lj, Lotus japonicus, Mc, Mesembryanthemum crystallinum, Os, Oryza sativa, Pt, Pinus taeda, Sb, Sorghum bicolor, St, Solanum tuberosum, Ta, Triticum aestivum and Zm, Zea mays. Accession numbers are as given in [8, 19, 27]; Z. mays PPCK1-4 are AY911413-AY911416; C. minor PPCK1-2 are AY478419 and AY478420, Oryza sativa PPCK1-3 are AK101080, XM466833 and AK066885 respectively. S. bicolor PPCK1 (TC95314), T. aestivum PPCK1-2 (TC241735 and TC255931) and H. vulgare PPCK (TC148750) are full length, unambiguous tentative consensus sequences in the TIGR database (see http://www.tigr.org/tdb/tgi/). The scale bar represents 0.1 substitution per site.
evidence that expression of any one gene is restricted to a single organ or cell type. For example, soybean contains four PPCK genes [23] (more than originally reported [24]). Three are expressed in nodules, of which two (GmPPCK2 and GmPPCK3) show expression controlled by photosynthate; these are thought to contribute the PEPC kinase activity that is up-regulated by photosynthate. However these genes are also expressed in leaves, roots and flowers [23]. The GmPPCK2:GmPPCK3 transcript ratio is much lower in flowers than in other tissues [23]. Xu et al. [24], who only studied GmPPCK1 and GmPPCK2 (which they termed NE-PpcK), suggested that GmPPCK2 and the soybean nodule-enhanced PEPC gene (GmPEPC7) might comprise expression partners, with the implication that the PEPC GmPEPC7 might be a dedicated target of the kinase GmPPCK2. However GmPEPC7 is not expressed in leaves, whereas GmPPCK2 and GmPPCK3 are [23]. Thus the targets of these kinases in leaves cannot be the same as their target in nodules (GmPEPC7). Although no fully systematic studies of specificity have yet been reported, it seems clear that PEPC kinases are able to phosphorylate plant PEPCs in general, even those from other species, albeit not necessarily at the same rates [2,20,25]. Hence at this stage one can suggest that any given PEPC kinase will probably phosphorylate the PEPCs present in the same cell without much distinction between them.

The difficulty in ascribing functions to PPCK genes is further illustrated by our recent work on maize (M. Shenton et al., unpublished; see Figure 8.1). Of the four genes that we have identified, ZmPPCK1 clearly encodes the ‘C₄-type PEPC kinase’. This gene is expressed in leaf mesophyll cells but not bundle sheath cells and its transcript abundance is strongly and rapidly increased by high-intensity light. However it is also expressed in other organs such as ears, tassels and roots where it must clearly play a different role. Surprisingly, since the role of PEPC in C₄ photosynthesis is mesophyll cell-specific, another gene (ZmPPCK2) is expressed in the bundle sheath cells. The expression of this gene is higher in the dark than the light, and its role is not clear. The focus on PEPC in C₄ leaves has been on the mesophyll cell enzyme whose role is the primary fixation of CO₂. There is little information about the identity and possible roles of PEPC in the bundle sheath. One possibility is that the ZmPPCK2 gene product may control an anaplerotic PEPC. This gene also is expressed in a range of organs.

The phylogenetic analysis shown in Figure 8.1 provides few guides to the function of PPCK genes. In general, the closest relative to any particular PPCK gene is another gene from the same species or a gene from a closely related species. However there are some interesting exceptions. ZmPPCK1 is clearly the ‘C₄-type’ gene, and is very similar to a sorghum PPCK (SbPPCK1, for whose function there is as yet no evidence). However these genes are more closely related to PPCK genes from the C₃ grasses rice and wheat than to the other PPCK genes in maize or sorghum. Light does increase the expression and activity of PEPC kinase in C₃ leaves [2,12,22,23] but it is not yet known whether the ZmPPCK1-like genes of rice and wheat are expressed in leaves or are light-induced. In any event, their physiological functions clearly could not be the same as that of ZmPPCK1 in maize leaves.
It is noteworthy that, while the soybean genes \textit{GmPPCK1-3} group with the \textit{PPCK} genes from other legumes, \textit{GmPPCK4} is more closely related to the \textit{PPCK2} genes of tomato and potato than to other soybean \textit{PPCK}s. Similarly, the \textit{PPCK1} genes of tomato and potato are more closely related to the well-authenticated ‘\textit{C}_4\text{-type}’ \textit{PPCK} of \textit{Flaveria trinervia} [19] than to the tomato and potato \textit{PPCK2} genes. These observations suggest that a duplication of an ancestral \textit{PPCK} gene must have occurred relatively early in the evolution of flowering plants. Possibly the evolution of Arabidopsis (which has only two, closely related \textit{PPCK} genes) involved the loss of any descendent from one of the two ancestral genes.

\textit{GmPPCK4} exhibits another property that seems to confuse the issue of the functions of \textit{PPCK} genes. It is well known that CAM species show persistent circadian rhythms of \textit{CO}_2 metabolism [11,26]. One factor that contributes to these rhythms is the circadian phosphorylation and dephosphorylation of PEPC, driven by circadian expression of \textit{PPCK} [17,27,28]. The role of the phosphorylation is probably in controlling the amplitude of the rhythms rather than as the sole driving force [11,27]. However, until recently, the available evidence suggested that \textit{PPCK} expression is not controlled circadianly in \textit{C}_3 species [22]. While such species can show circadian rhythms of photosynthetic \textit{CO}_2 assimilation [29,30] there is no reason to implicate PEPC in this.

Sullivan \textit{et al.} [23] showed that the transcript abundance of \textit{GmPPCK4} cycles robustly in both constant light and contrast darkness, peaking in subjective afternoon. This is the first example of circadian control of \textit{PPCK} expression other than in CAM species. Cycling was detectable in leaves but not in roots. This observation is itself interesting, because it represents the first example of organ specificity in the circadian control of gene expression in plants. Of course, it is yet to be shown that the circadian control of \textit{GmPPCK4} expression in leaves is physiologically important. Assuming this to be the case, the function of \textit{GmPPCK4} presumably pertains to some circadian feature of metabolism in soybean leaves that is not relevant in roots. However, it is difficult to envisage why a \textit{PPCK} gene should be under circadian control in the leaves of some \textit{C}_3 species but not others such as Arabidopsis [22]. The promoter of \textit{GmPPCK4}, but not those of the other soybean \textit{PPCK} genes, contains an ‘evening element’ thought to be responsible for this temporal expression pattern [23]. It will be intriguing to see whether any other \textit{PPCK} genes contain similar elements that might also give rise to circadian expression.

Another surprising feature of some \textit{PPCK} genes is the existence and potential role of alternative splicing. Most \textit{PPCK} genes contain a single intron close to the 3’ end of the coding sequence, interrupting the codon for a conserved Arg residue in the sequence Arg.X.aromatic.hydrophobic at the end of the protein kinase catalytic domain [12]. However all solanaceous species examined to date (tomato, potato, aubergine and tobacco) contain a \textit{PPCK} gene (termed \textit{PPCK2} in tomato and potato) that contains a second intron [31]. This is in the middle of the coding sequence, shortly beyond the end of the N-terminal ATP-binding domain of the protein kinase. Alternative splicing gives rise to three transcripts, all of which can be detected \textit{in vivo}, representing unspliced, incorrectly spliced and correctly spliced
transcripts. The intron contains an in-frame stop codon such that both the unspliced and the incorrectly spliced transcripts code for a non-functional, truncated protein. Two lines of evidence suggest that this alternative splicing may have some functional significance. First, the nucleotide sequence of the intron is as highly conserved between the different solanaceous species as is the coding sequence, indicating conservation pressure. Secondly, the ratio of the different transcripts in tomato depends on tissue, conditions and metabolic context [31]. However, while several possibilities have been suggested [31], there is no firm evidence in favour of a function and this phenomenon is still a curiosity. As shown in Figure 8.1, the closest known relative of the tomato and potato PPCK genes is GmPPCK4, which contains only one intron, as for most PPCK genes.

Overall, no clear correlation between sequence, expression and function has so far emerged from studies of PPCK genes in different species. They contain different numbers of genes controlled in different ways, likely reflecting the many different roles of PEPC in plant metabolism. Even where clear functions can be ascribed to specific genes, such as the role of ZmPPCK1 in the light activation of C4 PEPC, these genes probably play other roles in other cell types, and very similar genes in other species also play different roles. In general, the question of the number and function of PPCK genes in any plant species must be treated on its own merits and may give rise to unique answers.

8.3 Signalling pathways that control PPCK expression in CAM and C4 plants

Following the first demonstration that light stimulates the phosphorylation of PEPC in maize leaves [32], the control of PEPC kinase expression and activity has been studied in range of C4 species. Izui’s group cloned a PPCK gene from the C4 dust F. trinervia and showed that light increased the transcript abundance of this gene in leaves [19]. As noted above, maize contains four PPCK genes, one of which (ZmPPCK1) shows that properties expected of a ‘C4-type PPCK’, namely mesophyll-specific expression and light induction. However it is not yet clear whether light affects the rate of transcription or the turnover of PPCK mRNA or both.

In analysis of the signalling pathways by which light affects PPCK transcript abundance and activity, and the phosphorylation of PEPC, use of mesophyll-cell protoplasts from Digitaria sanguinalis has proved particularly important. First it was shown that both light and increases in cytoplasmic pH are required for the induction of PEPC kinase activity, and that induction was blocked by pharmacological agents that perturb Ca2+ signalling [33]. Further work [34] showed that the signalling pathway includes transient activation of a phosphoinositide-dependent phospholipase C and production of inositol 1, 4, 5-trisphosphate which is thought to open tonoplast calcium channels. This places changes in [Ca2+] as a signalling component upstream of the induction of PEPC kinase activity, which is itself Ca2+-independent. The role of Ca2+ might be to stimulate one of the calcium-dependent
protein kinases [33,34], which are very numerous in plants [35]. One of the best understood components of Ca\(^{2+}\)-dependent signalling systems is animal protein kinase C (PKC), whose activity depends on both Ca\(^{2+}\) and phospholipids. No clear PKC gene has been found in plants, although there are several reports of PKC-like activities. Recently Osuna et al. [36] showed the existence of a PKC-like activity and protein in \textit{D. sanguinalis} mesophyll protoplasts. The properties of this activity are consistent with the view that it may be involved in the PPCK signalling pathway: for example, inhibitors of the PKC activity also block the light-induced phosphorylation of PEPC in mesophyll-cell protoplasts [36]. However these inhibitors are non-specific and they probably inhibit many, if not all, the conventional plant calcium-dependent protein kinases. Hence the precise nature and target of the Ca\(^{2+}\)-dependent step in the signal transduction pathway in C\(_4\) plants remains unclear. Further progress is likely to depend on identification of the transcription factors involved in controlling the expression of the \textit{C}\(_4\) \textit{PPCK} genes and hence the mechanisms through which transcription is controlled. It will also be important to assess whether the light induction of \textit{PPCK} expression in \textit{C}\(_3\) species involves a similar pathway.

Izui’s group has suggested another mechanism through which the activity (but not expression) of PEPC kinase may be controlled in \textit{C}\(_4\) plants [16]. Maize PEPC kinase was inactivated rapidly by incubation with oxidised glutathione. This effect was reversed by subsequent incubation with reducing agents. Dithiothreitol-dependent reactivation was greatly enhanced by the presence of thioredoxin [16]. Similar findings have been made with the product of the \textit{F. trinervia} PPCK gene expressed heterologously [19]. Thus it is possible that \textit{C}\(_4\) PEPC kinase is light-activated via thiol-disulfide exchange. However there is as yet no evidence that this mechanism is physiologically significant. It will be important to prepare tissue extracts and then measure PEPC kinase activity using conditions (such as extracts from darkened or illuminated plants, assayed in the presence or absence of dithiothreitol) that could reveal control by this mechanism.

Several other factors may impact on \textit{PPCK} expression in \textit{C}\(_4\) species. Ueno et al. [37] noted that the phosphorylation state of PEPC in maize leaves was increased in N-limited seedlings, apparently compensating for a decrease in the abundance of PEPC itself. Another interesting finding of this study was that the phosphorylation state of PEPC did not correlate with illumination. In field-grown plants (cultivar H84) phosphorylation started to increase before dawn and declined well before sunset. Similar observations were made using glasshouse-grown seedlings (cultivar Golden Cross Bantam) but not with H84. Given the nocturnal increase in \textit{ZmP-PCK2} transcripts, which are located in bundle sheath cells (see Section 8.2), it will be important to test whether any of the dark phosphorylation of PEPC occurs in bundle sheath tissue. In \textit{Sorghum vulgare} phosphorylated PEPC and PEPC kinase activity can be detected in the dark in salt-stressed plants but again the cells involved have not been identified [38,39]. Little is known about the signalling through which N status and salt stress can affect PEPC kinase activity.

It is clear that CO\(_2\) fixation in CAM species can be under circadian control [11,26,40]. Associated with this, the phosphorylation state of PEPC exhibits circadian
oscillations [27] driven by circadian changes in the activity and transcript abundance of PEPC kinase [17,28]. Recent work has focused on the possible involvement of metabolites in controlling PPCK expression and on the nature of the circadian oscillator that controls PPCK and the overall process of CAM.

Early studies showed that the timing of the activation/inactivation of PEPC in CAM depends on the storage capacity of the vacuole for malate [41–43]. Borland et al. [44] examined the effects of treatments that disturb malate accumulation in the expression and activity of PEPC kinase. The data were consistent with the view that cytoplasmic malate (or a related metabolite) causes feedback inhibition of PPCK expression. Assuming that a ‘central oscillator’ controls gene expression as is the case in Arabidopsis [45, 46] (see below) the hypothesis was developed that circadian control of PPCK in CAM is actually secondary to a primary effect on malate transport across the tonoplast [11]. Consistent with this, the effects on PPCK expression of temperature changes (which affect permeability of the tonoplast) seem to be ‘gated’ by the circadian clock [47]. While the precise nature of the metabolite(s) that control PPCK expression remain elusive, other work has also provided evidence for such control. For example, Taybi et al. [48] studied PPCK expression in four species of Clusia with different photosynthetic patterns. The level of PPCK transcripts showed pronounced diurnal variations in species performing CAM but not in species performing C3. However this appeared to represent a down-regulation of PPCK expression during the day in CAM rather than an up-regulation at night. The diurnal control of PPCK transcript abundance seemed to reflect the diurnal cycling of metabolites rather than to act as the primary controlling factor that drives the temporal separation of the two carboxylation processes in CAM.

Apart from CO2 fixation in CAM, many other processes in vascular plants are under circadian control, including hypocotyl elongation, leaf movements and the expression of numerous genes such as CAB and CHS. Many of the components of a central ‘clock’ that drives these rhythms have been identified in Arabidopsis. In particular, the two related single Myb transcription factors ‘circadian clock associated1’ (CCA1) and ‘late elongated hypocotyl’ (LHY) and the pseudo response regulator ‘timing of CAB expression1’ (TOC1) form at least part of the central clock [45,46]. These form an autoregulatory negative feedback loop in which CCA1/LHY are synthesised around dawn and repress expression of TOC1. As dusk approaches, the levels of CCA1 and LHY decrease, TOC1 is synthesised and acts as a positive factor in the control of CCA1 and LHY expression. Clearly a similar clock could control expression of genes involved in CAM, including PPCK.

An alternative view is that the machinery of CAM could itself be a self-sustaining oscillator. Transport of malate into and out of the vacuole, with the tonoplast functioning as a discrete hysteresis switch, could form the basis of a biophysical oscillator [40]. Indeed computer modelling of this oscillator showed that it could sustain robust rhythmicity of CAM compatible with experimental data [49]. However this model predicts that prevention of nocturnal malate accumulation should cause phase delays in the rhythm of CO2 uptake [50]. In a careful study of Kalanchoë daigremontiana, such delays were not observed [50]. This seems to rule out the
possibility that the accumulation of malic acid in the vacuole is the central pacemaker in CAM.

In contrast, recent evidence supports the view that CAM is under the control of a central oscillator similar to that in Arabidopsis. Boxall et al. [51] reported the cloning of seven cDNAs including CCA1/LHY and TOC1 from the inducible CAM species Mesembryanthemum crystallinum that are orthologous to clock-associated genes in Arabidopsis. The transcript abundance of all seven M. crystallinum genes oscillated both in normal diurnal conditions and in constant conditions. Furthermore these oscillations were little affected by development or by salt stress, as would be expected of central clock components. It is also clear that numerous genes that encode components involved in CAM are under circadian control at the level of expression. Dodd et al. [52] showed that starch phosphorylase and β-amylase transcripts are under circadian control in CAM-induced leaves of M. crystallinum. In both cases, the oscillation was 180° out of phase with that of PPCK transcripts [52]. Hartwell [53] has now reported that many CAM genes fall under circadian control following induction of CAM in M. crystallinum by salt stress. Moreover some genes that are under circadian control in both C₃ and CAM-induced leaves show a pronounced phase shift in expression after induction of CAM [53], even though the phase of the central clock is unaffected [53]. This work suggests that the induction of CAM leads to the appearance of some components that bring about or affect the coupling of gene expression to the central oscillator.

The machinery involved in this coupling remains obscure. Pharmacological studies showed that the nocturnal appearance of PEPC kinase activity in detached CAM leaves could be blocked by inhibitors of Ca²⁺/calmodulin-like interactions, phosphoinositide-dependent phospholipase C, tonoplast calcium channels and protein phosphatases [47,54,55]. Bakrim et al. [54] suggested that increases in cytoplasmic pH might initiate the signalling pathway leading to PPCK expression in CAM, rather as in C₄ leaves. However the treatment of Kalanchoë fedtschenkoi leaf discs with NH₄Cl to increase cytoplasmic pH had no effect on the nocturnal phosphorylation of PEPC [56]. There have been several reports of circadian oscillators of free Ca²⁺ in plants [i.e., 57], but at this stage the view that Ca²⁺ might be involved in the signalling pathway between the central oscillator and the expression of PPCK in CAM remains merely one attractive hypothesis.

Metabolite sensing may well be involved in the control of PPCK genes other than those in CAM leaves. For example, in soybean nodules expression of GmPPCK2 and GmPPCK3 seems to be strongly affected by the availability of photosynthate [23,24]. In leaves, both genes are more highly expressed in the light than the dark, though not as strikingly as in nodules [23]. Metabolite sensing may operate in both organs. Several other systems which may involve metabolite sensing of PPCK expression, or in which the phosphorylation of PEPC is at least contingent upon metabolism, have been reviewed in [12].

Most of the attention on the control of PEPC kinase in both C₄ and CAM has been at the level of expression. Of course, turnover of the PEPC kinase protein may also be involved. One important question concerning PEPC kinase has remained unresolved for several years. Analysis of PEPC kinase polypeptides by renaturation
and activity staining after SDS gel electrophoresis has consistently resolved two polypeptides of 30–33 kDa and 37–39 kDa [2] in several systems. However the PPCK genes cloned to date encode 30–33 kDa polypeptides [12]. This led to the suggestion that PEPC kinase may be turned over by the ubiquitin/proteasome system and that the higher Mr form of PEPC kinase may be a mono-ubiquinated species [12]. Agetsuma et al. [58] have now obtained strong evidence for this hypothesis from a study in which tagged *F. trinervia* PEPC kinase was expressed in maize mesophyll protoplasts. Degradation of PEPC kinase polypeptide was blocked by the proteasomal inhibitor MG132, which enhanced the accumulation of a ‘ladder’ of PEPC kinase species with sizes separated by about 8 kDa owing to ubiquitination. It will now be important to ascertain whether the turnover of PEPC kinase is under separate control, for example by light in C₄ leaves or by the circadian clock in CAM leaves.

8.4 The ‘bacterial-type’ PEPC

As noted in Section 8.1, it had been assumed for many years that all vascular plant PEPCs can be controlled by phosphorylation at a serine residue close to the N-terminus of the PEPC polypeptide. However Sanchez and Cejudo [59] made the groundbreaking discovery that Arabidopsis and rice also contain a gene apparently encoding a non-phosphorylatable PEPC that is more closely related to bacterial PEPCs. A similar gene has been observed in soybean and several ESTs from various plant species corresponding to a ‘bacterial-type’ PEPC have been observed [23]. There are as yet no reports showing that the protein has been expressed successfully, but the possible function of this putative PEPC is a topic of great interest.

The ‘bacterial-type’ PEPCs are most closely related to the *Ppc2* sequence of the green alga *Chlamydomonas reinhardtii* [23,60]. Analysis of the PEPCs from both *C. reinhardtii* and (in more detail) another green alga, *Selenastrum minutum*, has shown the existence of two PEPC classes. In *S. minutum*, the Class 1 enzyme is a homotetramer of 102 kDa subunits while there are three Class 2 enzymes, which are larger complexes containing not only the 102 kDa subunit but also immunologically unrelated 130, 73 and 65 kDa subunits. The 130 kDa polypeptide seems to be another PEPC catalytic subunit that is very sensitive to an endogenous protease [61]. Similarly, in *C. reinhardtii* [62] the Class 1 PEPC is a homotetramer of 100 kDa subunits while the Class 2 PEPC is a larger complex containing additional subunits. Chollet’s group [60] has now cloned, sequenced and expressed two *Ppc* genes from *C. reinhardtii*. *Ppc1* clearly encodes the 102 kDa subunits common to the Class 1 and Class 2 enzymes. While biochemical evidence is still lacking, largely due to high protease sensitivity of the product, *Ppc2* seems to encode the 130 kDa subunit of the Class 2 forms. Neither of the *C. reinhardtii* PEPC catalytic subunits contains the phosphorylation site typical of the vascular plant forms of the enzyme. Expression studies suggested that both play a non-photosynthetic, anaplerotic role [60]. In earlier work on *S. minutum*, two forms of PEPC were partially purified [63]. Both forms were inhibited by Glu, Asp and 2-oxoglutarate and
activated by Gln, with the smaller form being appreciably more sensitive to these effectors. Analysis of the flux through PEPC in the dark following re-supply of NH$_4^+$ to N-limited cultures showed that the function of PEPC was anaplerotic and suggested that it was controlled by the Glu/Gln ratio [63,64].

Recent work has shown that vascular plants can also contain heteromeric PEPCs. Blonde and Plaxton [10] reported that developing castor oilseed endosperm contains high and low molecular mass forms of PEPC that bear remarkable physical and kinetic similarities to previously characterized Class 1 and Class 2 PEPCs from unicellular green algae. The smaller castor oilseed PEPC1 is a homotetramer of 107 kDa subunits, whereas the larger PEPC2 (native size 681 kDa) contains the same 107 kDa subunit found in PEPC1 associated with an immunologically unrelated 64 kDa polypeptide. It was hypothesised that PEPC1 (allosterically inhibited by malate, Asp and Glu) and PEPC2 (much less sensitive to effectors) support respectively storage protein synthesis and storage lipid synthesis in developing castor oilseed endosperm [10]. Sequence data from the 64 kDa polypeptide of PEPC2 obtained by mass spectrometry showed marked similarity to the C-terminal half of the deduced sequences of the putative Arabidopsis and rice ‘bacterial-type’ PEPCs. However, the authors did not determine whether the 64 kDa species might be a degradation product of a larger polypeptide. Nevertheless, one attractive possibility is that, as is the case with high molecular mass Class 2 PEPCs from green algae, the vascular plant ‘bacterial-type’ PEPC polypeptide usually exists as a heteromeric complex with the typical plant-type subunit. However, this area of research presents fascinating challenges. Isolation of antibodies specific to the ‘bacterial-type’ PEPC polypeptide will be crucial.

The expression pattern of the ‘bacterial-type’ PEPC gene in plants does not give strong clues as to its function. In Arabidopsis this gene is expressed exclusively in siliques, flowers and roots [59]. However the corresponding soybean gene shows a much broader expression pattern [23]. Although neither the Class 1 nor the Class 2 PEPCs of the green algae contain the phosphorylation site of the ‘vascular plant-type’ PEPCs, there is some evidence that both the 102 kDa and 130 kDa PEPC subunits of S. minutum can be phosphorylated [65]. The possibility that plants can phosphorylate the ‘non-phosphorylatable, bacterial-type’ PEPC should not be discounted at this stage.

8.5 Conclusions

The cloning of PPCK genes has allowed huge advances in our understanding of the control of PEPC but at the same time has opened up many further, often unexpected, fields for investigation. One example is the relation between the function of particular PPCK genes and cell specificity of their expression. Another is the recent evidence for turnover of PEPC kinase via ubiquitination which will lead to important questions about whether (and, if so, how) this process is controlled. In addition, the identification of the ‘bacterial-type’ PEPC gene in unicellular green algae and vascular plants and studies of the properties of the encoded polypeptide seem likely to show that the views about the control of PEPC which have been held for many
years are in fact a great oversimplification. There have been several recent reports on the expression of heterologous PEPCs in transgenic plants. Altering the amount of PEPC activity and its properties can have profound effects on metabolism [66–69]. Hence studies of the functions and control of PEPC kinases and of the expression and roles of the ‘bacterial-type’ PEPC are not only of great intellectual interest but also of potential biotechnological importance.

Acknowledgements

I would like to thank several colleagues who have provided information prior to publication.

References

9 Control of sucrose biosynthesis
Elspeth MacRae and John Lunn

9.1 Introduction

Sucrose lies at the heart of plant metabolism. This disaccharide sugar is one of the main products of photosynthesis and the most common carbohydrate transported by vascular plants as a source of carbon and energy for non-photosynthetic tissues. Sucrose also acts as a signal molecule in plants, influencing both metabolism and morphological development by regulation of gene expression at multiple levels [1, 2]. It is a storage reserve in many plant species and serves as a compatible solute when they are faced with osmotic or low temperature stress. Sucrose-derived oligosaccharides, e.g. raffinose, are also used for transport and storage and some plants use sucrose esters as insecticides [3]. Few metabolites can rival the dominance of sucrose in plant metabolism, and none can replace it entirely.

In plant physiology textbooks the pathway of sucrose synthesis is usually described in the context of photosynthesis, and it is in leaves that we have the best understanding of how flux through the pathway is controlled and where most recent advances have been made. Therefore, in this chapter we focus mainly on sucrose synthesis in leaves. We begin by outlining the main pathways of sucrose synthesis in leaves, both in the light and in the dark, and then describe what is known about regulation of each step in the pathway. We then re-examine current models of how regulation of individual steps is integrated to control flux through the pathway as a whole, and how these might need to be updated in light of recent discoveries.

9.2 Pathways of sucrose biosynthesis in leaves

The committed pathway of sucrose biosynthesis contains just two steps and is essentially the same in all tissues. The first reaction, catalysed by sucrose-phosphate synthase (SPS; EC 2.4.1.14), is the synthesis of sucrose-6F-phosphate (Suc6P) and UDP from UDPglucose (UDPGlc) and fructose 6-phosphate (Fru6P) (Figure 9.1) [4]. In the second reaction, Suc6P is hydrolysed by sucrose–phosphatase (SPP; EC 3.1.3.24), producing free sucrose and inorganic phosphate (Pi) (Figure 9.1) [5]. This reaction is irreversible and pulls the reversible SPS reaction in the direction of sucrose synthesis in vivo [6, 7]. Although some early work appeared to indicate that sucrose could be synthesised within chloroplasts, later studies established that SPS and SPP, and consequently sucrose synthesis, are restricted to the cytosol in both photosynthetic and non-photosynthetic tissues [8–11]. Another
Figure 9.1 Sucrose biosynthetic pathways in the leaves during the day or night. The committed steps of sucrose synthesis are given in the black boxes. The other steps can contribute to other biosynthetic pathways as well as to sucrose synthesis. Precursor compounds enter the cytosol from the chloroplast or the vacuole, and sucrose is transported from the leaf via the apoplast and phloem to other parts of the plant. During the day, sucrose biosynthesis is primarily controlled by availability of precursor from the plastid and activity of cytFBPase and SPS. F2,6P2, the product of F2KP, acts primarily as a regulator of cytFBPase, and Pi produced and consumed during sucrose synthesis are important for communication between cytosolic and plastidial metabolism. During the night, the precursors exported from the plastid change and cytFBPase is no longer an important control point. Instead SPS, transport of available precursor across both apoplast and plastid (and or vacuole) membranes and Pi regulate sucrose synthesis. In sink tissues, it is assumed (but not yet clearly demonstrated) that sucrose synthesis is regulated in a manner more analogous to the night pathway in leaves. The enzymes are numbered as follows (arrows indicate direction): 1. SPP, 2. SPS (dotted reverse arrow indicates a theoretical reverse reaction, not yet proven in vivo), 3. UGPase, 4. PGI, 5. PGM, 6. F2KP, 7. fructokinase or hexokinase, 8. sugar phosphate phosphatase, 9. cytFBPase, 10. aldolase and triose-phosphate isomerase, 11. glucokinase or hexokinase, 12. sugar phosphate phosphatase, 13. reductases, isomerases and polyl phosphate phosphatases (the precursor can be either Glu6P e.g. sorbitol or Fru6P e.g. mannitol), 14. UDPgalactose/glucose epimerase, 15. galactinol synthase/α-galactosyltransferase, 16. fructosyltransferase, 17. glucosyltransferase, 18. sucrose synthase, 19. invertase, 20. PFP, 21. ATP dependent phosphofructokinase. Compartmentation and membranes for transport across or diffusion through are denoted by arrows and letters as follows: A. maltose transporter, B. hexose phosphate transporter, C. TPT, D. glucose transporter, E. glucose transfer, F. fructose transfer, G. sucrose transfer, H. fructan and sucrose-oligosaccharide transfer and I. sugar transport across the plasmamembrane. (Abbreviations are contained in the text.)
cytosolic enzyme, sucrose synthase (SuSy; EC2.4.1.13), catalyses the reversible synthesis of sucrose and UDP from UDPGlc and fructose. This enzyme can produce sucrose under some circumstances in sink tissues in vivo [12, 13], but it usually operates in the direction of sucrose cleavage [14], and labelling studies in leaves showed that SuSy makes little or no contribution to photosynthetic sucrose synthesis [15].

Photosynthetic CO₂ fixation directly supplies the necessary precursors for sucrose synthesis during the day, but at night UDPGlc and Fru6P are supplied by breakdown of transitory starch in the chloroplasts or metabolism of other carbohydrates, such as hexoses or fructans stored in the vacuole. These pathways overlap to some extent, but there are also important differences, and in the following two sections we chart the main pathways of sucrose synthesis in illuminated and darkened leaves.

9.2.1 Sucrose synthesis in leaves during the day

In photosynthesising leaves, Fru6P and UDPGlc come from the carbon fixed in the chloroplasts by photosynthesis. The initial product of CO₂ fixation, 3-phosphoglycerate (3PGA), is converted to triose-phosphates – glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone-phosphate (DHAP) – in the chloroplast stroma [16]. Triose-phosphates are exported to the cytosol in exchange for Pi via the triose-phosphate/phosphate translocator (TPT) in the inner membrane of the chloroplast envelope (Figure 9.1). In addition to triose-phosphates, this translocator can equally well transport the divalent anionic form of 3PGA. However, the high stromal pH in the light and the equilibrium position of the triose-phosphate isomerase reaction in the stroma favour the export of DHAP [16].

In the cytosol, DHAP is equilibrated with G3P by the cytosolic triose-phosphate isomerase, and these two triose-phosphates are condensed by aldolase to form fructose-1,6-bisphosphate (Fru1,6P₂) (Figure 9.1). Both of these reactions are freely reversible in vivo, unlike the next step in the pathway, the dephosphorylation of Fru1,6P₂ to Fru6P by the cytosolic fructose-1,6-bisphosphatase (cytFBPase). Although the reaction catalysed by the cytFBPase is irreversible, another enzyme, pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP), reversibly catalyses the conversion of Fru1,6P to Fru6P, using Pi as co-substrate and producing PPI.

Fru6P enters the hexose-phosphate pool, where it is converted to glucose 6-phosphate (Glc6P) by phosphoglucose isomerase (PGI), and then to glucose 1-phosphate (Glc1P) by phosphoglucomutase (PGM) (Figure 9.1). Glc1P is used to synthesise UDPGlc by UDPGlc pyrophosphorylase (UGPase), with the consumption of UTP and production of inorganic pyrophosphate (PPI). All three reactions interconverting hexose-phosphates and UDPGlc are close to equilibrium and freely reversible in vivo [6, 16].

Up to this point, carbon is not committed to sucrose synthesis. For example, triose-phosphates can be respired via glycolysis, hexose-phosphates can enter the oxidative pentose phosphate pathway or be used to form polyols and UDPGlc has
CONTROL OF SUCROSE BIOSYNTHESIS

multiple fates, including production of cell wall precursors and protein glycosylation. Nevertheless, much of the flux through these reactions is directed towards sucrose synthesis. Several reactions in the pathway release Pi, which is returned to the chloroplast in exchange for further triose-phosphate. As will be discussed in more detail below (Section 9.5), the transport and levels of Pi in the cytosol and stroma play a major role in the control of sucrose synthesis and photoassimilate partitioning in the light.

9.2.2 Sucrose synthesis in leaves at night

Leaves continue to export sucrose even at night when photosynthetic carbon fixation can no longer supply the precursors for sucrose synthesis \textit{de novo}. Some of this comes from pools of sucrose stored in the leaves during the day, but these are small in many species, and sucrose for export is synthesised \textit{de novo} from other carbohydrate accumulated during the day. Transitory starch, which is made in the chloroplasts, is one of the most common and quantitatively important sources of precursors for sucrose synthesis in leaves at night. There have been some major advances in our understanding of this process over the last few years, especially from studies of \textit{Arabidopsis thaliana} mutants with impaired starch catabolism, and transgenic approaches with potato. These have shown that, at least in Arabidopsis, starch is broken down predominantly by \(\beta\)-amylases to form maltose. Some glucose is also produced by the stromal disproportionating enzyme acting in concert with debranching enzymes (Figure 9.1) [17, 18]. Other enzymes, including \(\alpha\)-amylase, starch phosphorylase, glucan:water dikinase and phosphoglucan:water dikinase play less well defined roles [19–21]. Maltose is exported to the cytosol via a specific maltose transporter on the inner membrane of the chloroplast envelope [17].

The conversion of maltose to sucrose in the cytosol is poorly understood. It appears to involve a cytosolic disproportionating enzyme and synthesis of a transitory glycan, which is presumably degraded to supply hexoses or hexose-phosphates for sucrose synthesis, although details remain sketchy (Figure 9.1) [22, 23]. Glucose is also exported from the chloroplasts to the cytosol by another transporter, where it is phosphorylated by hexokinase or glucokinase to produce Glc6P, which then enters the hexose-phosphate pool to become available for sucrose synthesis (Figure 9.1).

Some plants store appreciable amounts of glucose and fructose rather than sucrose in their vacuoles [24, 25]. Fructans are polymers of fructose attached to a sucrose molecule and are also stored in the vacuoles in some species. The turnover of fructans by fructan exohydrolase (FEH) releases free fructose and a small amount of sucrose (Figure 9.1) [26]. Stored hexoses or fructose from fructan breakdown are transported to the cytosol, where they can be used to synthesise sucrose after phosphorylation by hexo-, gluco- or fructokinases (Figure 9.1). It is worth noting here that the flow of carbon into sucrose from starch, hexose or fructan in leaves at night bypasses the cytFBPase, which, as we shall see in a later section (Section 9.5), is a key regulatory point in photosynthetic sucrose synthesis. Similarly, in non-photosynthetic tissues, such as germinating seeds, sprouting tubers or ripening fruits, sucrose synthesis from starch, fructan, oligosaccharides (e.g. planteose and
raffinose), polyols or hexoses does not need cytFBPase activity either. In contrast, gluconeogenesis from oil reserves in germinating oilseeds does require this enzyme [27, 28].

9.3 Control of sucrose biosynthesis – the precursors

Sucrose biosynthesis in plants is controlled in many ways. Expression of genes encoding enzymes in the pathway is often developmentally regulated at the level of transcription, including during the sink–source transition in developing leaves, or the mobilisation of storage reserves in germinating seeds and ripening fruits. Post-transcriptional regulation of mRNA stability and translation also influence gene expression, and sucrose itself can affect expression of some genes [29]. However, at present, we know very little about the contribution such regulation might make to control of sucrose synthesis, nor what proteins might be involved. At the protein level, several of the enzymes in the pathway are activated or inhibited by metabolite effectors. Post-translational protein modification, especially by phosphorylation, plays a particularly important role in the control of sucrose synthesis and can influence interactions between different proteins and protein turnover. In the following sections we examine how each of the individual steps in the cytosolic pathway of sucrose synthesis is regulated and then discuss how these regulatory mechanisms are integrated to control flux through the pathway as a whole.

9.3.1 The conversion of triose-phosphate to hexose-phosphate

The TPT is not known to be regulated, but its total activity can be an important factor affecting photoassimilate partitioning between sucrose and starch. It is generally expressed only in photosynthetic tissues [30, 31]. Partial reduction in activity through antisense approaches led to a reduction in the maximal rate of photosynthesis and greater partitioning of photoassimilate into starch in potato and tobacco [32, 33]. TPT knock-out mutants in Arabidopsis compensated for complete loss of translocator activity by up-regulating the synthesis and turnover of starch and other high molecular weight polysaccharides in the light. This allowed carbon to be exported from the chloroplasts as maltose or glucose for sucrose synthesis in the cytosol, thus bypassing the missing translocator and also cytFBPase [34, 35]. The use of these ‘night time’ options indicates considerable flexibility in metabolic response in the leaf.

The reactions catalysed by the cytosolic triose-phosphate isomerase and aldolase are freely reversible in vivo. These enzymes have few known regulatory properties and are usually considered to be unimportant in control of flux through the pathway. There is also little information on the control of expression of the genes encoding these enzymes. However, a recent report that the cytosolic triose-phosphate isomerase is a target of glutathionylation, and is inhibited by oxidised glutathione, raises the possibility that its activity is sensitive to some form of redox regulation [36]. A cytosolic aldolase-like protein was also reported to be a binding
target for the cytosolic thioredoxin h, suggesting that this enzyme might also be under redox control [37].

In contrast to the last two enzymes, the reaction catalysed by the cytFBPase is known to be irreversible in vivo and highly regulated. There are no reports on gene promoter studies, and only limited information on the regulation of expression of the genes encoding the protein, or on the levels of protein accumulation. In pea leaves, the enzyme and mRNA accumulated slowly in the presence of light, and transcripts and enzyme activity but not protein level declined with a dark treatment [38], suggesting some control by reversible enzyme modifications. Minimal variation in transcript and activity was also found during a diurnal cycle in Arabidopsis [39]. Antisense repression of the enzyme in potato and Arabidopsis plants significantly reduced the rate of sucrose synthesis, redirecting photoassimilates into starch [40, 41]. The enzyme is a homotetrameric protein and is sensitive to a wide range of metabolites including AMP and the signal metabolite fructose-2,6-bisphosphate (Fru2,6P2). This has been shown both with purified enzyme [16] and recombinant protein [42]. Fru2,6P2 is a potent competitive inhibitor of the cytosolic FBPase, which, at submicromolar concentrations, decreases the enzyme’s affinity for Fru1,6P2 by up to 100-fold, and induces strongly sigmoidal substrate saturation kinetics [16]. Fru2,6P2 is synthesised and degraded by a bifunctional enzyme that has both fructose-6-phosphate,2-kinase and fructose-2,6-bisphosphatase activities (F2KP) [43].

The F2KP enzyme has been purified and genes encoding the protein from potato, Arabidopsis and spinach have been cloned and expressed in vitro [44–46]. Although there is no information yet on transcriptional regulation, the protein is highly regulated. The enzyme is encoded by a single gene in Arabidopsis, and the same appears to be true for other plants [43]. The individual catalytic activities are sensitive to a wide range of allosteric effectors, effectively driving the direction of enzyme activity. The kinase activity is activated by Pi, Fru6P and pyruvate and inhibited by PEP, 3PGA, DHAP, 2PGA and PPI, whereas the phosphatase activity is inhibited by Pi, Fru6P, 6-phosphogluconate and Fru1,6P2 [43]. It is worth noting that both Pi and Fru6P have reciprocal effects on the two activities, amplifying the impact of changes in their concentrations on the level of Fru2,6P2. In addition to the two catalytic domains, the F2KP protein has a long N-terminal domain, which modifies the kinetic properties of the catalytic domains, and is essential for assembly of the native homotetrameric protein [47]. In Arabidopsis, this domain has two phosphorylation sites, Ser220 and Ser303, of which the latter is conserved in all known plant F2KPs [43, 48]. Both of these sites can be phosphorylated by the Arabidopsis calcium-dependent protein kinase isoform 3 (CPK3), and Ser303 can also be phosphorylated by a mammalian homologue of the SNF1-related protein kinases. When phosphorylated at Ser303, F2KP can bind 14-3-3 proteins, although this appears to have no effect on the enzyme’s activities [48]. Nevertheless, the phosphorylation status of the enzyme does change diurnally [49], and a comparison with analogous enzymes in animals suggests that this could affect the ratio of kinase:phosphatase activity, and therefore the level of Fru2,6P2 in the cell. Transgenic plants with heterologous expression of mammalian F2K and thus higher
levels of F2,6P2 showed less carbon flux into sucrose in leaves. In contrast, down-regulation of F2KP in leaves of several species led to increased flux into sucrose (and/or hexose) [43]. These results indicate that the enzyme is an important regulator in directing photosynthate into sucrose.

As noted previously (Section 9.2.1), the enzyme PFP can also catalyse the conversion of Fru1,6P2 to Fru6P but, in contrast to cytFBPase, the reaction is freely reversible, with PPI serving as the phosphate donor for phosphorylation of Fru6P in the reverse reaction. Interestingly, both the forward and reverse reactions of PFP are strongly activated by Fru2,6P2. It seems almost perverse that this enzyme occurs in plants as it seems to override the complex regulatory mechanisms in place for controlling the cytosolic FBPase, and this apparent paradox has not yet been resolved satisfactorily. The maximum extractable activity of PFP is usually lower than that of the FBPase, and perhaps its activity in vivo is even lower due to inhibition by inorganic anions (e.g. Pi, sulfate and nitrate) to which the enzyme is very sensitive. Thus the function of PFP remains enigmatic, particularly as antisense plants with greatly reduced PFP activity showed no morphological phenotype and little alteration in metabolic fluxes [50, 51].

9.3.2 The hexose-phosphate pool and UDP-glucose pyrophosphorylase

The interconversions of Fru6P, Glc6P and Glc1P catalysed by PGI and PGM are freely reversible in vivo. There have been no reports on control of transcription or translation for these enzymes, and neither appears to have significant regulatory properties, or make an appreciable contribution to control of flux through the pathway of sucrose synthesis under normal conditions [52]. Nevertheless, the activity of PGM is not present in huge excess and antisense repression of a cytosolic PGM in potato did have a severe effect on the photosynthetic capacity and growth of the plants, but sucrose synthesis was relatively unaffected [53, 54]. Labelling studies and metabolite profiling showed that photoassimilate was diverted away from other pathways to maintain the rate of sucrose synthesis, indicating that sucrose synthesis can take priority when available resources are scarce.

UGPase does not appear to make a major contribution to control of sucrose synthesis in potato leaves. In antisense transgenic plants, a loss of up to 96% of total extractable enzyme activity had no appreciable effect on flux into sucrose, or on growth and development [55]. However, a smaller reduction (30%) in activity was reported to lead to lower sugar levels in Arabidopsis leaves [56]. Ectopic expression of an Escherichia coli pyrophosphatase in the cytosol of tobacco and potato led to a reduction in the amount of PPI and an increase in the UDPGlc/hexose-phosphate ratio [57], consistent with a higher flux through the UGPase reaction. The growth of the plants was retarded, and it is unclear whether the higher levels of sucrose, hexoses and starch observed in the leaves [57] were mainly attributable to the increased provision of UDPGlc for sucrose synthesis or reduced sucrose export, due to impaired sucrose metabolism in sink tissues.

There are two Ugpl genes encoding UGPase in Arabidopsis, and two genes have also been isolated from several other species [56]. Seven Ugpl genes have been
isolated from potato, although some of these probably represent homologues from the tetraploid genome and/or allelic variants [58]. Expression of one of the Ugp genes in Arabidopsis is upregulated by sucrose, and this response is mediated via changes in the phosphorylation status of an unknown phosphoprotein [59]. When the phosphoprotein is dephosphorylated, the Ugp gene is unresponsive to sucrose. Low temperature or Pi deficiency upregulates expression of at least one of the Ugp genes expressed in Arabidopsis leaves, and in potato tubers one Ugp gene is upregulated by low temperature [59–63]. In addition to transcriptional control, the activity of the barley UGPase is affected by the degree of oligomerisation of the enzyme, with only the monomeric form having catalytic activity [64].

Potato and barley UGPases have been successfully expressed in bacteria, and both enzymes have been subjected to site-directed mutagenesis to identify residues involved in substrate binding and catalysis [64, 65]. The structure of the barley UGPase has been modelled on the experimentally determined crystal structure of the related human AGX-1 protein, and the predicted structure of the enzyme indicated that residues Gly91, Gly99, Trp191, Lys260 and Trp302 are likely to be involved in substrate binding and catalysis, in agreement with mutational analysis of the barley and potato enzymes [56].

9.4 The committed enzymes of sucrose biosynthesis

9.4.1 Sucrose-phosphate synthase

As the first enzyme in the committed pathway of sucrose synthesis, SPS lies at a strategic point for controlling flux of photoassimilate into sucrose, and the enzyme is one of the most highly regulated in plant metabolism. Numerous studies on transgenic plants with reduced or increased SPS activity have clearly shown that this enzyme makes a major contribution to control of flux through the pathway of sucrose synthesis, and changes in the activity of the enzyme often have far reaching effects on photosynthesis, growth and stress tolerance [66–78]. The flux control coefficient of SPS for sucrose synthesis was calculated to be 0.5 in photosynthesizing potato leaves of antisense SPS plants with different levels of reduced enzyme activity [79], showing that SPS is an important regulator of the rate of sucrose synthesis. Leaf SPS activity has often been found to be highly correlated with growth rates and/or yield in crop plants, suggesting that the enzyme has been under strong selective pressure during domestication and breeding for higher yielding varieties ([80] and references therein).

For several years after the first genes encoding SPS were cloned from maize and spinach (Spinacia oleracea) [66, 81, 82], it was thought that plants contained a single SPS gene. However, multiple SPS genes were later found in several species, including Satsuma orange (Citrus unshiu), sugarcane and the resurrection plant Craterostigma plantagineum [83–85]. Full genome sequencing of Arabidopsis revealed that this species has four SPS genes: one each on chromosomes 1 (AtSPS1; At1g04920) and 4 (AtSPS4; At4g10120) and two on chromosome 5 (AtSPS5a;
At5g11110 and AtSPS5b; At5g20280) [86]. Many more SPS sequences are now available from the flurry of genome and expressed sequence tag (EST) sequencing projects in recent years, and detailed phylogenetic analysis has shown that these fall into four distinct families, designated A, B, C and D, with the first three having distinct mono- and dicotyledonous branches [1, 80, 86]. Of the four SPS genes in Arabidopsis, AtSPS5a and AtSPS5b belong to the A family, AtSPSI to the B family and AtSPS4 to the C family. The fully sequenced genome of rice contains five SPS genes: OsSPSI (family B), OsSPS2 (family D), OsSPS6 (family D), OsSPS8 (family A) and OsSPS11 (family C), and the whole genome shotgun sequence of the black cottonwood tree (Populus trichocarpa) contains representatives from family A (three genes), family B (two genes) and family C (one gene) ([80] and unpublished data). In addition to these three species, EST or cDNA sequences from each of the A, B and C families have now been identified from a wide range of mono- and dicotyledonous species, including tomato, Satsuma orange, maize, wheat, barley, sugarcane and sorghum (Sorghum bicolor) [1, 80]. This leads us to predict that all Angiosperms have at least one gene from each of these gene families. Maize, wheat, barley, sugarcane and sorghum, like rice, each possess at least two SPS genes belonging to the D family [80]. So far, D-family genes have only been found in species from the family Poaceae (grasses), and the proteins they encode have some unique structural properties that are likely to affect their regulation. In at least three polyploid species: kiwifruit (Actinidia spp.), wheat and sugarcane, one or more SPS gene families are represented by homologous genes from the different sub-genomes and several homologues are expressed [80, 87].

The functional significance of this multiplicity of SPS genes is as yet only partially understood. Microarray experiments on Arabidopsis indicate that each of the four genes has different spatial and temporal expression patterns [39, 88, 89]. Similarly, northern hybridisation analysis in wheat, and analysis in silico of ESTs from several species, pointed to organ- and developmental stage-specific expression of the different SPS genes [80, 86]. Although some overlap in gene expression has often been observed at the tissue level [80, 83, 86, 90], it is still unclear whether there is co-expression of different SPS genes in the same cell, as most tissue samples would contain several different cell types. Native SPS is known to be a dimeric or tetrameric enzyme, but whether the holoenzyme contains different types of subunits is unknown. So far it has not been possible to assign specific functions to any one SPS gene family, as no consistent patterns of expression have been observed across species. For example, B-family genes appear to encode the major leaf isoforms in maize and rice, but expression of the wheat and barley B-family genes is restricted to anthers and germinating seedlings [80]. Although current evidence suggests that no broad generalisations about the function of each SPS gene family can be made, it has been speculated that selective pressure might have greatly altered the expression patterns of some SPS genes [80]. Therefore, as most of the available expression data are from domesticated species this might obscure any conserved functionality.

Analysis of publicly available microarray data from Arabidopsis indicated expression of each gene can respond to different signals (http://www.weigelworld.org;
http://web.uni-frankfurt.de/fb15/botanik/). The C-family gene, *AtSPS4*, shows a diurnal pattern of expression in leaves, peaking during the night, whereas *AtSPSSb* (A-family) transcript abundance increased during the day and decreased at night [39, 88]. Transcript levels of the second A-family gene, *AtSPS5a*, did not change during the diurnal cycle, but were greatly increased by osmotic or cold stress treatments. This suggests that the *AtSPS5a* gene encodes a stress-induced isoform, which might contribute to the increased rates of sucrose synthesis and accumulation observed under osmotic or cold stress conditions ([91–94] and references therein). This gene has also been shown to be upregulated by glucose in a manner requiring new protein synthesis [95]. Transcripts of the B-family gene, *AtSPS1*, were below the level of detection in leaf samples using microarrays. Interestingly, transcripts from this gene are relatively abundant in stamens and siliques, resembling to some extent the expression pattern of the B-family genes observed in wheat and barley.

The rice B-family gene, *OsSPS1*, is the only SPS gene whose promoter region has been investigated in any detail. A short region just upstream of the ATG translation start codon was found to direct gene expression in photosynthetically active cells and not in the vascular tissue of leaves [96, 97]. This matched localisation *in situ* of the corresponding mRNA and was not overridden by elements contained within a further 1700 bp upstream. The full promoter directed the gene to express in parallel with the source–sink transition in leaves. Expression was regulated by light and dependent on plastid development. The *OsSPS1* promoter also directed GUS expression in pollen and the scutellum of germinating seeds. In the latter, expression was independent of light or plastid development, and was co-regulated with secretory α-amylase expression. It was suggested that gibberellin responsive elements common to both promoters were responsible for this co-regulation. In rice, there appears to be an endogenous antisense gene that has been suggested to repress expression of the homologous *OsSPS11* gene (C-family) by post-transcriptional gene silencing [80].

SPS proteins have been purified to near homogeneity from only a few tissues, including spinach leaves (A-type), maize leaves (B-type) and germinating pea seeds [6, 81, 98], and even the most highly purified preparations have usually contained proteolytic cleavage products of the enzyme. Most of our knowledge of the leaf enzyme’s properties comes from spinach and maize, which historically have been the main model species for photosynthesis research. The spinach enzyme was estimated to have a V_{max} of 150 U mg$^{-1}$ protein [81, 99]. The spinach (A) and maize (B) leaf enzymes, and the C-family isoform from Arabidopsis, *AtSPS4*, have all been expressed in *E. coli* and shown to have catalytic activity and lack Pi sensitivity [66, 81, D. Gong and E.A. MacRae, unpublished data], but we still do not know whether the D-type SPSs from grasses are catalytically active.

Leaf SPSs are allosterically activated by Glc6P and inhibited by Pi [100]. The allosteric site of the protein has not yet been identified. Although the enzyme does not appear to be subject to redox control, thiol-inactivating agents were reported to affect the enzyme’s allosteric properties [101], suggesting that the allosteric site contains a reduced Cys residue. The smaller SPS enzyme found in the cyanobacterium
Synechocystis sp. PCC6803 is not allosterically regulated [102], and when its sequence is aligned with plant SPSs, it can be seen to lack several regions containing highly conserved Cys residues. Although these regions are obvious candidates for the allosteric site, to our knowledge they have not yet been investigated experimentally.

In some species, especially those that store a large amount of starch in their leaves, SPS is reported to be inhibited by sucrose, but most reports have not been verified using preparations free from SuSy or SPP activities, which can interfere with studies of sucrose inhibition of SPS. The purified pea seed enzyme, which was shown to be free of contamination by SuSy and SPP, was not inhibited even by 0.5 M sucrose [6]. Neither the pea seed nor spinach leaf enzymes are inhibited by Suc6P at physiological concentrations [6, 7].

In many plants, the activation state of the leaf SPS increases in the light and decreases in the dark. Spinach leaf SPS (A-family) is deactivated in the dark by phosphorylation of Ser158, which can be catalysed by several protein kinases, including an SNF1-related protein kinase (SnRK1) and a calcium-dependent protein kinase (CDPK) ([94] and references therein). Activation in the light is brought about by dephosphorylation of the phospho-Ser158 by a type 2A protein phosphatase [103, 104]. At least one SPS kinase from spinach is inhibited by Glc6P, and the protein phosphatase is inhibited by Pi [105]. The sensitivity of the phosphatase to Pi inhibition was found to change during the diurnal cycle, possibly due to synthesis and binding of different regulatory subunits [106, 107]. In the B-family maize leaf SPS, Ser162 is in a comparable position to Ser158 in the spinach enzyme and has been shown to be the light-dark regulated phosphorylation site [100, 108]. Light activation alters the kinetic properties of these two enzymes in a broadly similar manner; the affinity for the substrates and Glc6P is increased, and sensitivity to inhibition by Pi is decreased. Contrary to some early reports, the V_{max} of the enzyme does not change in either species [109]. A consensus motif: B·H·X·B·X·X·S*·X·X·X·H, where B is a basic residue, H is a hydrophobic residue, X is any amino acid and S* is the phosphorylation site, has been identified [110], and this is present in almost all known A, B and C family SPS sequences from higher plants [1, 80]. The corresponding motif in the Arabidopsis AtSPS1 lacks a basic residue at the –6 position, but an oligopeptide containing the AtSPS1 motif was still phosphorylated by plant kinases [111]. Interestingly, the unusual D-family SPSs from grasses contain a homologous Ser residue, but lack most other elements of the consensus phosphorylation site motif [80]. A Pro residue in the –4 position, as found in most A- and D-family SPSs, is reported to block phosphorylation by CDPKs [112], and so determine the specificity of interaction with protein kinases. Other residues outside the phosphorylation site motifs themselves, in what have been called docking domains, may also influence the interaction between SPS and protein kinases [94].

The spinach leaf SPS contains a second phosphorylation site on Ser424, which is involved in osmotic stress-induced activation of the enzyme, and occurs within a similar motif to Ser158 [113]. However, in this instance, phosphorylation of Ser424 activates the enzyme. All known A- and C-family SPSs, except the A-type from mistletoe [114], contain this motif, as do the B-family SPSs but not the D-family...
SPSs from grasses. The motif is also absent from the B-family SPSs from dicotyledonous plants. A third phosphorylation site, Ser229 in spinach, within the following motif R·X·X-S*-X·P, is involved in the binding of 14-3-3 proteins [115, 116]. The Ser residue, or a conservative substitution by Thr, is found in all known A-, B- and C-family SPSs, except an A-type from alfalfa and the B-type from Arabidopsis (AtSPS1), but is universally absent from the D-family enzymes [1, 80]. There is one report that binding of 14-3-3 proteins inhibits \(V_{\text{max}} \) activity [115]. However, another study found the opposite effect of 14-3-3 protein binding on ‘sugar-phosphate synthase’ activity, which included both SPS and trehalose-phosphate synthase activities, although the contribution of the latter was almost certainly insignificant [116]. This discrepancy remains unresolved. Plants contain several isoforms of 14-3-3 proteins. For example, there are 13 genes in Arabidopsis, but in tobacco only two isoforms appear to bind to SPS [117]. The possible significance of 14-3-3 protein binding to SPS is discussed further in Section 9.4.3. (See also Moorhead et al., Chapter 5, this volume) for further information on the role of 14-3-3 proteins in the control of primary metabolic enzymes.)

9.4.2 Sucrose-phosphatase

The characterisation of the last enzyme in the pathway of sucrose synthesis, SPP, has been something of a ‘Cinderella’ story. SPP was for many years dismissed as unimportant because its activity was thought to be in large excess of SPS and so unlikely to exert any control on flux through the pathway. However, re-evaluation of older data suggested that SPS activity had often been underestimated, and more recent measurements have shown that the maximal catalytic activity of SPP is not much more than that of SPS in several tissues, [118, 119]. Nevertheless, results from antisense tobacco plants indicate that, even though the enzyme is not present in large excess over SPS, it has a low flux control coefficient [119]. This suggests that SPP makes little contribution to control of flux through the pathway in tobacco leaves.

The maize ZmSPP1 gene was the first SPP gene to be cloned [118], and homologous genes from many other plants have now been identified. Like SPS, plants contain multiple SPP genes, with at least two in maize, three in rice and the black cottonwood tree (\(P. \ trichocarpa \)) and four in Arabidopsis. Phylogenetic analysis indicates that these cluster into two broad families ([120] and unpublished data). Northern analysis in wheat and analysis \textit{in silico} of microarray and EST data from other species suggest that one family predominates and is expressed in most tissues ([80] and unpublished data). As yet, little is known about regulation of transcription or post-transcriptional modifications of SPP.

Crystal structures of the cyanobacterial SPP from \textit{Synechocystis} sp. PCC6803, alone and as a complex with various ligands i.e. crystallised as protein only and also crystallised with SPP or sucrose or glucose, etc., have recently been solved and suggest a two-step reaction mechanism involving transfer of the phosphate group of Suc6P to a conserved Asp residue (Asp9) in the active site, followed by hydrolysis of the phospho-Asp-enzyme intermediate to release free sucrose and Pi [121]. The
crystal structures also revealed the importance of a glucose-binding site for substrate recognition and showed that the weak competitive inhibition of the enzyme by sucrose (typical $K_i > 200$ mM) is due to binding in the active site.

9.4.3 Evidence for a metabolon in sucrose biosynthesis

Studies on partially purified rice leaf SPS and SPP indicated that the two enzymes can form a stable complex [122]. Intriguingly, cloning of the ZmSPP1 gene revealed that SPS contains an SPP-like domain at its C-terminus (Figure 9.2), and it was speculated that this might be involved in binding SPP to form a complex [118]. Modelling of the SPP-like domain of SPS on the Synechocystis SPP structure suggested that all the residues involved in Suc6P-binding, except the critical Asp residue needed for catalysis, were conserved in the SPS [121], indicating that the function of this domain might be to channel Suc6P within an SPS-SPP metabolon. However, at present, the existence of an SPS-SPP metabolon must be regarded as speculative. Additional binding studies and detailed kinetic analyses using purified enzymes are urgently required to test this hypothesis.

Although its existence remains unproven, the presence of an SPS-SPP metabolon might offer further levels of regulation of sucrose synthesis. When Arabidopsis cells were starved of sucrose, the SPS protein was no longer bound by 14-3-3 proteins and was proteolytically cleaved [123]. The truncated enzyme retained catalytic activity and was about the size expected (~90 kDa) if the SPP-like domain had been removed. If the model for an SPS-SPP metabolon is correct, the truncated SPS would presumably be unable to form a complex with SPP and metabolite channeling between the enzymes would be abolished. Thus there is circumstantial

![Figure 9.2](image-url)
evidence that proteolytic processing of SPS might play some role in controlling the activity of the two enzymes in the committed pathway of sucrose synthesis [1]. Interestingly, purified SPS preparations often contain protein fragments of about 30 kDa and 90 kDa in size, suggesting that the enzyme is particularly prone to proteolytic cleavage in a linker region, of about 80–90 residues, between the larger N-terminal catalytic domain and the SPP-like domain. Curiously, the D-family SPSs from grasses, which appear to lack most of the protein phosphorylation site motifs, also lack this linker region with its putative proteolytic cleavage site. Consequently, these unique isoforms appear to have much less regulatory potential than other types of SPS.

9.5 Integrated pathway control

The pathway of sucrose synthesis in the cytosol must be coordinated with the rate of photosynthetic CO₂ fixation in illuminated leaves. If flux is too high the release of excessive Pi in the cytosol and exchange via the triose-phosphate/phosphate translocator could drain too much triose-phosphate from the chloroplast stroma, limiting the regeneration of ribulose-1,5-bisphosphate. Conversely, if the flux is too low, the build-up of phosphorylated intermediates in the stroma would deplete the stromal Pi pool and so inhibit photophosphorylation. In some species, especially those that store relatively little sucrose in their leaves, the rate of sucrose synthesis decreases as sucrose accumulates in the leaf and photoassimilates are diverted into other pathways, e.g. starch synthesis. A model, based originally on data from spinach leaves, was proposed to explain how changes in stromal and cytosolic concentrations of metabolites, e.g. triose-phosphates, Fru2,6P₂, hexose-phosphates and Pi, could link sucrose synthesis in the cytosol to photosynthetic CO₂ fixation and starch synthesis in the chloroplast in the light [16]. The original model described two basic processes: (i) feed-forward activation and (ii) feedback inhibition. In brief, triose-phosphate export from the plastid following photosynthesis in exchange for Pi increases triose-phosphate and decreases Pi levels in the cytosol. These changes allosterically regulate F2KP lowering the concentration of Fru2,6P₂. This change and the synthesis of Fru1,6P₂ from triose-phosphates increase flux through the cytFBPase into hexose-phosphates, and higher hexose-phosphate and UDPGlc levels feed-forward to activate SPS. In contrast, feedback inhibition of SPS and/or SPP by sucrose was proposed to lead to accumulation of hexose-phosphates, including Fru6P, which would override the allosteric regulation of F2KP causing an increase in Fru2,6P₂ and inhibition of the cytFBPase. Together these changes would restrict the release of Pi in the cytosol and so limit export of triose-phosphate from the chloroplast. The resulting build-up of 3PGA and fall in stromal Pi levels would activate ADPglucose pyrophosphorylase (AGPase), diverting surplus photoassimilate into starch synthesis.

This basic model has evolved considerably over time as new discoveries have been incorporated [1, 94, 100, 109, 124], with a greater emphasis on the importance of changes in amount and activation state of key enzymes, such as SPS by protein
phosphorylation, and AGPase by redox-modulation [125]. Studies with transgenic plants with constitutively higher or lower levels of Fru2,6P₂ have confirmed the importance of this metabolite in coordination of chloroplast and cytosolic metabolism, but downplay its role in control of photoassimilate partitioning between sucrose and starch [126–132]. The recent discovery that F2KP too might be subject to regulation by protein phosphorylation [43] adds yet another dimension to the control of the pathway, as does the potential for redox-modulation of several of the enzymes (triose-phosphate isomerase, aldolase and UGPase) in the pathway.

Our knowledge of short-term feedback regulation of sucrose synthesis is still fragmentary, and there appear to be important differences between species. In fact, there may not even be short-term feedback regulation in plants that store a lot of sucrose e.g. maize and wheat [133, 134]. Sucrose-induced inactivation of SPS has been reported for spinach leaves [135], and attributed to changes in phosphorylation status, but this has not yet been verified experimentally. Although sucrose does inhibit SPP, under most circumstances this is probably unimportant as the K_i is so high. There is also no obvious mechanism for subsequent feedback inhibition of SPS, as the enzyme is not inhibited by Suc6P [6, 7]. Direct inhibition of SPS by sucrose may occur in some starch-storing species. In pea, potato and Arabidopsis leaves (all starch storers), accumulation of sucrose induces redox activation of AGPase [125], and competition from increased rates of starch synthesis for precursors would also be expected to slow the rate of sucrose synthesis. In fructan-storing plants, accumulation of sucrose induces transcription and functional expression of the fructosyltransferases that synthesise fructan, and this response is mediated by protein kinases and phosphatases [136]. Long-term source–sink imbalances that lead to accumulation of sucrose in the leaves are compensated for by down-regulation of photosynthesis-related genes [137].

As already noted, sucrose synthesis in leaves at night derived from other stored carbohydrates, be it starch, hexoses or fructans, effectively bypasses regulation by the cytFBPase, and presumably any involvement of Fru2,6P₂. Therefore, it seems likely that much of the regulation of the cytosolic pathway falls on SPS. Microarray data from Arabidopsis suggest that different SPS isoforms, perhaps with different substrate affinities and allosteric properties, are expressed at different times of day, possibly indicating that there is a ‘day shift’ and a ‘night shift’. Analysis of diurnal changes in the various SPS proteins and their kinetic properties will be needed to test this hypothesis.

9.6 Future perspectives

It is clear that we know a great deal about the control of sucrose synthesis in leaves, at least in the light, and arguably, this is one of the best understood of all pathways in plant primary metabolism. Nevertheless, there seems little doubt that our understanding of pathway control will continue to evolve as new information becomes available, and we conclude this chapter with some crystal ball gazing into the future.
The wealth of publicly available microarray data from Arabidopsis, and increasingly other species, is already leading to identification of co-regulated genes and discovery of the promoter regulatory elements they have in common. This in turn should help us to identify the transcription factors that control their expression. Although microarray data can offer us great insight into control of gene expression at the level of transcription, we must not lose sight of the many other possible ways in which gene expression, in its broadest sense, can be controlled, ranging from regulation of mRNA stability and translation to post-translational modification and proteolytic turnover. Perhaps a new version of the old proverb – ‘There’s many a slip betwixt the cup and the lip’ – might read: ‘There’s many a slip betwixt the chip and the clip’. This caution is especially justified in the case of sucrose synthesis, where we know that transcript abundance does not always mirror enzyme activity or vice versa [39]. Nor should we forget that several glycolytic enzymes can also act as transcription factors [138], and therefore bear in mind that enzymes in the pathway of sucrose synthesis might also have dual functions.

Quantitative trait loci (QTL) affecting leaf sucrose accumulation, and activities of SPS and sucrose-metabolising enzymes have been identified in maize and sugarcane [139, 140]. Evidence suggesting coordinated regulation of several sugar metabolising genes has been demonstrated in Arabidopsis through QTL analysis, with some genes mapping very close to their QTL for enzyme activity [141]. Hence the promoter regions may have some common element and use a common regulatory molecule. Genome sequencing, EST projects and generation of markers based on microsatellites or single nucleotide polymorphisms have opened up a rich seam of genetic resources for narrowing down the search for QTL and the genes that contribute to multi-genic traits.

Large scale sequencing efforts have also revealed an often unexpected multiplicity and diversity of genes encoding enzymes and other proteins of interest, where previously only single genes were known – SPS being a good example. This presents us with the challenge of discovering the functional significance of the different isoforms. Analysis of spatial and temporal expression patterns, and heterologous expression and characterisation of proteins will be required for a fuller understanding of gene diversity. Resolution of crystal structures is starting to reveal the intimate secrets of some of the enzymes of sucrose synthesis, including their catalytic mechanisms and how they are regulated. SPS, with its wealth of regulatory properties, must surely be a high priority for such studies. Three-D structures are needed to understand options for oligomeric arrangements and how the catalytic site and regulatory sites function. For example, do all subunits become phosphorylated, or does only one? Do different subunits have different serines phosphorylated? Do different subunits come from different genes? How might interactions with other proteins take place?

Redox regulation in plants is one area that is receiving increasing attention, and there is clear evidence that it extends far beyond the classical redox-sensitive enzymes, such as the plastidial FBPase, NADP-malate dehydrogenase and phosphoribulokinase, in the chloroplasts [142]. There are already tantalising hints that several of the cytosolic enzymes involved in sucrose synthesis (e.g. triose-
phosphate isomerase, aldolase and UGPase) might be regulated in this way. Another type of post-translational modification, protein phosphorylation, is well established as a major player in control of sucrose synthesis, but we still know too little about the signal cascades that lead to modulation of the target enzymes, such as SPS, or the ramifications of having promiscuous protein kinases and phosphatases. Other signalling pathways and mechanisms might also be involved. For example, it has been suggested that hexokinase signalling could coordinate starch degradation and sucrose synthesis during the night in leaves linked to the transfer of non-phosphorylated intermediates between the chloroplasts and the cytosol [78]. Our knowledge of protein turnover is even more rudimentary than our understanding of these various signalling pathways.

In this chapter we have only been able to touch on sucrose synthesis in non-photosynthetic tissues. Essential functions of non-photosynthetic sucrose synthesis include remobilisation of storage reserves in germinating seeds, ripening fruit, sprouting tubers or woody stems of perennial plants, generation of concentration gradients to drive phloem unloading and protection against drought, salinity or cold stress. Its function in other tissues is more obscure. For example, there appear to be isoforms of SPS and SPP that are almost specific to pollen in Arabidopsis and some grasses ([80] and unpublished data), but the need for sucrose synthesis in pollen is unclear. Futile cycles of sucrose cleavage by SuSy or invertases, and resynthesis via SPS and SPP have been proposed to regulate net rates of sucrose utilisation in sink tissues [143], with possible implications for sink strength and plant yield. The little information that is available suggests that regulatory mechanisms similar to those in leaves at night also operate in non-photosynthetic tissues, although they may be adapted to meet the special needs of different tissues.

The flexibility of plant metabolism, demonstrated by several examples of mutants or transgenic plants with unexpected phenotypes, indicates that there are many regulatory networks still to be discovered. A good example of this is the unexpected regulation of secondary metabolism through carbohydrate accumulation caused by a mutation in a sucrose transporter [144]. Ironically, increasing amounts of information and better knowledge of these networks will probably make it more difficult for any one individual to conceptualise control of metabolic pathways. It seems likely that only computer modelling and simulation will allow us to handle such complexity, and the development of such tools will be essential to understand control of sucrose synthesis in plants.

References

34. A. Schneider, R.E. Häusler, Ü. Kolukisaoglu et al. (2002) An Arabidopsis thaliana knockout mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished. The Plant Journal 32, 685–699.

10 Control of starch biosynthesis in vascular plants and algae
Matthew K. Morell, Zhongyi Li, Ahmed Regina, Sadiq Rahman, Christophe d’Hulst and Steven G. Ball

10.1 Introduction

Vascular plants store reserves of carbohydrate on both short- and long-term time basis in order to be able to meet changing metabolic requirements. Short-term storage is required in leaves to provide a store of carbohydrate that can be accessed to maintain metabolic functions when photosynthesis is inactive. Longer term storage of carbohydrate is necessary in tubers and seeds to support reproductive tissue development based on tuber stores and germination of seeds respectively. Given that water is limiting for terrestrial plants, that pathogen attack be resisted and that long-term survival of seeds is often required, it is necessary that the storage compound be dehydrated. Plants have found four general solutions to this problem: starch, nonstarch polysaccharides such as the mannans, glucans and xylans, lipids and seed storage proteins. Because of the ubiquitous nature of starch and its importance in economically important crops that provide staple foods, it is important to understand the intricacies of the starch biosynthetic pathway and its control. There are significant opportunities to manipulate starch synthesis in plants for improved food and industrial functionality.

Starch in vascular plants is synthesized within the plastid by a complex metabolic pathway. There are four basic steps in the biosynthetic process: substrate activation (catalyzed by ADPglucose pyrophosphorylase), polymer elongation (starch synthases), polymer branching (branching enzyme) and debranching (debranching enzymes). For recent reviews on starch biosynthesis see [1–3]. For each of the four steps in the pathway, multiple isoforms of each enzyme are found, encoded by complex families of genes. Mutational analysis demonstrates that while these genes have overlapping functions, complete functional redundancy is rare, indicating that each class of genes has a defined role in the pathway. Understanding how each of these genes contributes to the synthesis of starch in the various tissues of the plant and in different orders of plants remains a key objective of the field. In working toward this understanding, studies of nonvascular plant systems such as algae, as well as bacterial glycogen synthesis, have proved highly informative [2] and will be discussed in this review. While the major steps in the synthesis of the starch polymer are now well understood, the control of the synthesis of the starch granule is much less understood and remains an open field of research.
Starch is a deceptively simple material, being composed of just one monomeric unit, glucose, polymerized through two types of linkages, \(\alpha,1-4 \) and \(\alpha,1-6 \). However, differences in chain length and the frequency and clustering of \(\alpha,1-6 \) linkages mean that very complex polydisperse molecules result from this simple building block. The polydisperse molecules making up starch are usually classified into two groups based on the frequency of \(\alpha,1-6 \) linkages and molecular size. Amylopectin contains high molecular weight species (degree of polymerization, typically ranging from 5000 to 50000) and frequent \(\alpha,1-6 \) linkages (4–5% of \(\alpha,1-6 \) linkages). In contrast, the amylose fraction contains molecules of lower molecular weight (DP 500–3000) and infrequent \(\alpha,1-6 \) linkages (less than 1%). The starch granule shows complex organization across a wide range of dimensions, leading to description of the granule as a ‘hierarchical material’ in which structure at one scale defines the properties of the material at the next scale [4]. Such materials are widely known in nature and frequently have capacity for self-assembly.

Starch synthesis in higher plants is subject to complex control. The first level of control is transcriptional. Multiple genes for each of the classes of starch biosynthetic genes have been identified in the genomes of *Arabidopsis thaliana* and rice. However, differing subsets of these genes are involved in synthesis in differing tissues, indicating precise control over transcription. Secondly, there is evidence that the expression of some of these genes is under circadian control. Thirdly, there is redox control of some enzymes in the pathway, and finally, there is evidence for the formation of complexes of starch biosynthetic enzymes and their potential regulation by phosphorylation.

In this chapter, starch synthesis will be described from a range of species and tissues, with a view to illustrating the different physiological requirement for starch synthesis and the ways in which control mechanisms may act in shaping the synthesis of starch.

10.2 Synthesis of bacterial glycogen

The blueprint for higher plant starch synthesis is found in bacterial glycogen synthesis, where synthesis proceeds via an ADPglucose dependent pathway (Figure 10.1),

![Figure 10.1](bacterial_glycogen.png)

Figure 10.1 Bacterial glycogen synthesis. 1. ADPglucose pyrophosphorylase (catalyzes the synthesis of ADPglucose and PPi from glucose-1-P and ATP). 2. Glycogen synthase (transfers the glucosyl moiety of ADPglucose to the nonreducing end of an \(\alpha,1-4 \) glucan polymer, forming an additional \(\alpha,1-4 \) linkage). 3. Glycogen branching enzyme (cleaves a region of \(\alpha,1-4 \) glucan polymer, transferring the cleaved chain to a second \(\alpha,1-4 \) glucan polymer via an \(\alpha,1-6 \) linkage).
involving single ADPglucose pyrophosphorylase, glycogen synthase and glycogen branching enzyme genes [5]. However, the end result of this pathway is a relatively unstructured glycogen rather than starch, indicating that either these enzymes do not possess the specificities required to synthesize starch, or other activities are required. A glycogen debranching enzyme, glgX, is present in bacteria but elimination of its activity leads to overaccumulation of glycogen, suggesting its role is primarily in glycogen degradation rather than synthesis [6]. Interestingly, no genes have been identified in *E. coli* saturation mutagenesis programs that are required for the initiation of the glycogen molecule, suggesting that glycogen synthase is able to synthesize glycogen from ADPglucose without a separate priming activity or precursor molecule. Given that this core set of enzymes alone is insufficient to drive starch synthesis, the differences between bacterial glycogen synthesis and vascular plant starch synthesis warrant further analysis.

10.3 Synthesis of starch in vascular plants

As in bacterial glycogen synthesis, starch synthesis in vascular plants involves substrate activation, polymer elongation, polymer branching and an involvement from debranching enzymes. However, vascular plant starch synthesis involves a number of key differences. Firstly, multiple copies of each of the biosynthetic enzymes is typically present, and secondly, there is spatial separation of elements of the pathway. These enzymatic steps provide an explanation for the synthesis of the polymers present within the starch granule, but they do not provide a facile explanation for the synthesis of the starch granular structure [7]. The absence of a clear class of mutants that disrupts granular structure suggests that the granule is largely the result of ‘self-assembly’ driven by the physicochemical properties of the nascent starch polymers. Schematic representations of starch synthesis in the cereal endosperm and leaf are shown in Figures 10.2 and 10.3 respectively.

10.3.1 Substrate supply and activation

The first step in starch biosynthesis can be defined as the first reaction that irreversibly draws carbon from general metabolic pools into starch synthesis. Given this definition, the synthesis of ADPglucose from glucose-1-phosphate, catalyzed by ADPglucose pyrophosphorylase, can be considered the first step in the pathway [8]. However, it is clear that mutations affecting the supply of glucose-1-phosphate, such as the sucrose synthase mutant (*sh1*) in maize [9], reduce starch content and can influence starch structure by influencing the concentration of substrate pools available to the biosynthetic enzymes.

As the first step in the pathway, ADPglucose pyrophosphorylase is a key site for regulation of starch synthesis. However, this regulation is complex and involves a range of mechanisms including transcriptional control, differential compartmentation, redox control and allosteric regulation [3]. Initial studies
of the enzyme demonstrated that ADPglucose pyrophosphorylase is subject to complex allosteric regulation by metabolites [10]. In vascular plants, the enzyme is activated by 3PGA and inhibited by inorganic phosphate. In other systems, such as bacteria and cyanobacteria, the allosteric activators differ in order to reflect the differing metabolic pools and pathways operating in those organisms, but typically include activators such as F6P and inhibitors such as AMP (for a review, see [5]). Bacterial enzymes tend to be homotetrameric [5], whereas higher plant enzymes are
heterotetrameric, containing two ‘large’ and two ‘small’ subunits [8]. There are marked differences between the regulatory sensitivity of leaf chloroplast and endosperm-located ADPglucose pyrophosphorylases, with the enzymes in the chloroplast being highly dependent on 3PGA concentration when compared with the endosperm-located ADPglucose pyrophosphorylases [11]. This dependence is in keeping with a requirement for sensitive response to flux in the highly dynamic photosynthetic environment of the leaf, when compared with the endosperm where starch accumulation occurs over weeks.

Early reports demonstrated that in maize [12] and barley [13] endosperm, there were both plastidic and cytosolic forms of ADPglucose pyrophosphorylase. In wheat, Burton et al. [14] examined the nature of the small subunit genes encoding ADPglucose pyrophosphorylase and concluded that the cytosolic and plastidial
small subunits were highly likely to be the products of separate genes. This conclusion was further reinforced by the analysis of a barley mutant, RisØ 16, which lacks the cytosolic small subunit of ADPglucose pyrophosphorylase, but the plastidial ADPglucose pyrophosphorylase activity was unaffected [15]. The low starch phenotype of the mutant suggests that a large part of the flux into the starch biosynthesis pathway proceeds via the cytosolic ADPglucose pyrophosphorylase. This result is consistent with observations of the low starch bt2 and sh2 mutants in maize endosperm where mutations abolish cytoplasmic ADPglucose pyrophosphorylase but a trace amount of plastidic enzyme remains. The distribution of genes for the large subunits of ADPglucose pyrophosphorylase is less well defined. The Arabidopsis genome contains six genes coding for ADPglucose pyrophosphorylases of which two are classified as small subunit types and four are classified as large subunits [16, 17]. Of the small subunit genes, ApS1 is expressed in all tissues of the plant. Among the large subunit genes, ApL1 is present in source tissues, whereas ApL3 and ApL4 are present in sink leaves. The expression of ApL3 and ApL4 can be induced by sugars, and the gene products are less sensitive to allosteric regulators when compared with the forms expressed in source leaves [16, 17].

Studies on the maize brittle-1 mutant [18] and the lys5 mutation in barley [19] demonstrate the brittle-1/lys5 gene product is responsible for the transport of ADPglucose from the cytosol into the plastid in cereal endosperm. There are conflicting results concerning the role of extraplastidial ADPglucose pyrophosphorylases in tissues other than the cereal endosperm. Beckles et al. [20] concluded that a cytosolic ADPglucose pyrophosphorylase was a feature of the graminaceous endosperm, but not other storage organs. Evidence has been presented for a plastidial location of ADPglucose pyrophosphorylase in tomato fruit [21]. In contrast, Baroja-Fernandez [22] using transgenic potato plants expressing an adenosine diphosphate sugar pyrophosphatase (ASPP) from E. coli found results consistent with cytosolic production of the majority of the ADPglucose in the tissue. Further research is required to resolve this issue.

10.3.2 Amylose synthesis

The synthesis of amylose occurs within the starch granule and requires the action of granule-bound starch synthase (GBSS). While other enzymes contribute to amylose synthesis, extensive genetic evidence across a range of species demonstrates that GBSS activity is absolutely required for amylose synthesis. In both monocotyledonous and dicotyledonous species, two forms of GBSS are present, designated GBSSIa and GBSSIb [23, 24]. GBSSIa is expressed in the endosperm only, whereas GBSSIb is expressed in tissues other than the endosperm. There may be differences between these enzymes with respect to the structure and function of the polymers synthesized. However, there have been no cross-complementation studies that allow concrete conclusions to be drawn.

While amylose is frequently described as a ‘linear’ molecule, there is good evidence suggesting that amylose does contain infrequent branch points (<0.5%)
and that some of the branches may be small (of the order of 15–25 glucose units), but can range up to chains with a DP of ca 3000. This observation suggests that one or more of the branching enzymes are also involved in amylose synthesis. However, neither the specific isoform(s) involved or their mode of action within the granule has been defined.

Amylose synthesis is believed to occur within the starch granule, presumably involving the action of granule bound enzymes (granule-bound starch synthase, GBBSS, plus one or more branching enzymes) [25]. Also present with the granules of many species are starch synthases (SSI and SSIIa), but, there is no clear definition of the roles, if any, that these enzymes play in amylose synthesis [26–28]. Interestingly, SSIIa mutants in both wheat and barley lack essentially all the SSI, branching enzyme (BEIIa and BEIIb) protein normally present in the granule and have a reduced content of GBSS [29, 30]. The manner of synthesis of amylose in the granule is unclear. It is presumed that an essentially immobile GBSS entrapped within the granule matrix synthesizes amylose from ADPglucose that diffuses into the granule. Evidence that GBSS proceeds via a ‘progressive’ rather than ‘dissociative’ mechanism supports this hypothesis [31]. The emerging polymer is thought to thread its way into the existing matrix, finding gaps between crystalline amylopectin, and within and between amorphous regions of amylopectin. There is evidence to suggest that malto-oligosaccharides can stimulate amylose synthesis, both directly (by providing additional primer for synthesis) and indirectly, through stimulation of the catalytic capability of GBSS [31, 32]. Evidence for GBSS-catalyzed amylose synthesis through extension of amylopectin chains in Chlamydomonas [33] is discussed in a later section.

10.3.3 Amylopectin synthesis

Amylopectin synthesis is thought to occur at the interface of the developing granule and the stroma [34]. While some enzymes of amylopectin synthesis are trapped within the starch granule matrix, others, such as SSIII, isoamylase and BEI, are not.

In vascular plants, at least seven starch synthase genes are present: two forms of GBSS (GBSSI and GBSSII), SSI, two forms of SSII (SSIIa and SSIIb), SSIII and SSIV. The role of SSII has been examined in a number of species, including pea [35], wheat [30], barley [29], rice [36] and maize [37]. A consensus picture has emerged that demonstrates that loss of SSII leads to a phenotype in which there is a reduction in the percentage of amylopectin chains of intermediate length (DP12-18) and a concomitant increase in chains of DP 6-11, and above DP19. In all species except rice, there is a reduction in starch content associated with loss of SSII activity, which can be as severe as a 50% reduction depending on the species. Clearly neither SSI or SSIII can fully compensate for the loss of SSII activity.

In monocotyledonous species there are two forms of SSII, designated SSIIa and SSIIb. Gene expression analysis suggests that SSIIa is predominantly expressed in
the endosperm, whereas SSIIb is more highly expressed in the leaf [38]. Consistent with this observation are the phenotypes associated with loss of SSIIa in rice, maize, barley and wheat. Neither SSI nor SSIIb mutants have been reported, so the role of these genes in both leaf and endosperm synthesis remains to be defined. Mutations which eliminate SSIII activity have been identified in maize [39] and in \textit{Chlamydomonas reinhardtii} [40]. In each case, there is a reduction in starch synthesis, involving predominantly a reduction in the long chains of amylopectin.

The role of branching enzymes is to introduce the α-1,6 branch points into starch. In dicotyledonous plants, two examples of high amylose starches are known: wrinkled pea and potato. In pea, a high amylose phenotype was obtained through a lesion that inactivates BEII (also known as branching enzyme A) [41]. In potato, the antisense technology [42, 43], and a unique antibody expression approach [44], was used to generate high amylose starches. Suppression of either BEI or BEII alone [42] generated either no increase in amylose (BEI) or only a moderate increase in amylose (BEII, to approximately 30%). However, suppression of both BEI and BEII resulted in an amylose content greater than 70% [45]. Interestingly, Arabidopsis appears to lack a homolog of BEI, yet accumulates apparently normal leaf starch. Arabidopsis contains two forms of the BEII genes but their respective roles have not been individually defined. The number of individual genes encoding BEII-type enzymes in other dicotyledonous plants such as pea and potato is not known.

In monocotyledonous species, three forms of BE are found, designated BEI, BEIa and BEIb. In a range of monocotyledonous species, suppression of BEI resulted in no significant phenotype in wheat [46] and maize endosperm, or in maize leaf [47]. In rice, subtle changes in amylopectin chain length distribution were reported [48]. The observation that high amylose starches are found in rice and maize (\textit{amylose extender}) through mutations down-regulating BEIIb activity has focused attention on this isoform of the enzyme [49]. In maize, a mutator element induced mutation of BEIa does not have a clear phenotype in the endosperm, but does yield a highly altered starch structure in the leaf [50]. BEIa expression in the endosperm is low relative to BEIIb and high in the leaf (where BEIIb is not expressed). In wheat, BEIa is expressed at higher levels when compared with BEIIb (Ahmed Regina, personal communication) and so the control over amylose content in these cereals may differ from maize.

In both monocotyledonous and dicotyledonous species, the debranching enzyme genes present include three forms of isoamylase and one pullulanase gene [51, 52]. Debranching enzymes specifically hydrolyze α-1,6 linkages of glucan polymers and can be categorized as isoamylases or pullulanases depending on their substrate specificities across a range of substrates including amylopectin, glycogen and pullulan [53]. In some tissues of dicotyledonous species, isoamylase1 (Isa1) and isoamylase2 (Isa2) are present in a heteromultimeric complex and mutation in either enzyme abolishes the complex formation and results in decreased amylopectin synthesis, and increased production of a glycogen-like polysaccharide known as phytoamyllose [52, 54, 55]. The role of Isa2 in vascular plants has not been defined. There are two general hypotheses for the role of isoamylases in
higher plants. First is the glucan trimming model in which isoamylase (or more accurately, the isoamylase multimeric assembly) interacts with amylopectin and ‘edits’ the structure of the polymer such that it is competent for crystallization [4, 34]. An alternative hypothesis suggests that the activity of isoamylase is required to remove soluble glucan that would otherwise compete with amylopectin and granular starch synthesis [52, 56]. There is no definitive resolution of the role of the enzyme at this point. However, it is interesting to note that alterations in Isoamylase1 expression levels in cereal through transgenic approaches [57] provide evidence of a correlation between isoamylase expression level and several aspects of starch granule structure, including chain length distribution and gelatinization temperature. These observations tend to support some direct role of isoamylase in shaping amylopectin structure. Further research is required to finalize this point.

There have been suggestions for roles of other enzymes in starch biosynthesis. The identification of mutants in the D-enzyme of C. reinhardtii with reduced starch has led to speculation on the role of this enzyme in higher plants [57, 58]. However, down regulation of the enzyme in Arabidopsis suggests that the role of D-enzyme, at least in Arabidopsis leaves, is primarily in starch degradation [60]. The role of starch phosphorylase has also been revisited [61]. However, in Arabidopsis leaves, no evidence was obtained for a significant phenotype when the plastidic phosphorylase was eliminated through mutation [62]. The role of cytoplasmic phosphorylase in not known, and is somewhat problematic given that it is unlikely to encounter polymeric starch under normal physiological conditions.

10.4 Starch synthesis and breakdown in leaves and tubers

Transient starch synthesis occurs in leaves through the incorporation of atmospheric CO2 by photosynthesis during the illuminated period. It is degraded at night to supply energy and a carbon source to the whole plant and/or to sustain the accumulation of storage starch in sink tissues. Although clearly distinct in terms of physiology, both Arabidopsis leaves and potato tubers (Solanum tuberosum) are very useful models to study transient and storage starch metabolism respectively. The rapid development of genomics tools, together with the ease in manipulating starch synthesis and degradation in Arabidopsis leaves and potato, has facilitated rapid progress in this area of plant biology during the last decade. In this section, particular attention will be paid to (1) the function of starch debranching enzymes, (2) the importance of starch phosphorylation as a signal for degradation, (3) the involvement of β-amylases during starch mobilization and the further metabolization of maltose and finally (4) the recent view about the control of starch metabolism in leaves and tubers.

10.4.1 Isoamylases are directly involved in the synthesis of amylopectin but also during starch mobilization

The function of debranching enzymes (DBEs) in starch metabolism has been a subject of debate during the last few years. Several reports over recent years have suggested
that DBEs, initially suspected to only fulfill a catabolic function, might also represent a major determinant of amylopectin synthesis [63–67]. However, two contradictory models have been postulated based on divergent interpretations of the observed phenotypes [34, 67]. Three genetically distinct forms of isoamylases and one pullulanase have been annotated in the nuclear genome of A. thaliana: AtISA1 (At2g39930), AtISA2 (At1g03310), AtISA3 (At4g09020) and AtPU1 (At5g04360) (see http://www.starchmetnet.org for a complete description). Mutation at either AtISA1 or AtISA2 loci leads to deficiency in one specific form of isoamylase. This correlates with a strong decrease in starch biosynthesis and the accumulation of glycogen-like water-soluble polymers [68]. Moreover, amylopectin structure is profoundly modified in both mutants [68]. These observations support a direct function of this isoamylase in the synthesis mechanism of amylopectin and validate the discontinuous model previously suggested by Ball et al. [34]. AtISA1 and AtISA2 polypeptides are likely to belong to the same heteromultimeric complex as described in potato [69]. AtISA2 might correspond to the inactive subunit of the complex as essential amino acids for debranching activity are missing in the sequence [69]. However, this remains to be formally demonstrated in Arabidopsis. The function of the pullulanase seems to be at least partially redundant compared to the function of the heteromultimeric isoamylase encoded by AtISA1 and AtISA2 [68]. This result suggests a role for pullulanase in the synthesis of amylopectin in Arabidopsis, in common with other species such as maize and rice [51, 70].

Although its catalytic function is to cleave α-1,6 linkages, the biological function of AtISA3 seems to be essentially limited to starch mobilization at night in leaves. Mutation at this locus leads to a starch-excess phenotype, observed both in the light and dark cycles [68]. This starch-excess phenotype is commonly observed when starch-degrading enzymes are knocked down in Arabidopsis (for example sex1 and sex4 [71, 72]. However, a function for AtISA3 during amylopectin synthesis might not be yet excluded since starch granules are still synthesized at very low level even when the functions of both the pullulanase and the heteromultimeric isoamylase are simultaneously abolished in Arabidopsis.

10.4.2 Glucan phosphorylation is the key signal of starch degradation in both leaves and tubers

Although described a long time ago and considered, originally, as an exotic feature of starch, phosphorylation is now assumed to play a central role in the metabolism of this polymer. First discovered and described as R1 protein in potato [73], the enzyme responsible for starch phosphorylation is a high mass glucan water dikinase (GWD) that preferentially phosphorylates C6 positions of glucose residues and is specifically associated with the granule [74, 75]. Antisense inhibition of this GWD in potato leads to a strong reduction of the phosphorylation level of starch coupled with an excess of starch in the leaves of the plant even after a prolonged period of darkness [73]. The same activity has been described in Arabidopsis leaves and elimination of this activity encoded by the sex1 locus (At1g10760) leads to a starch-excess phenotype [71]. Therefore, GWD has been considered as the major...
determinant for starch mobilization in plants. However, the mechanism by which phosphorylation of starch can trigger its degradation is not yet understood. It has been shown recently that addition of ATP to isolated starch granules improves its degradation by starch associated proteins [76]. However, GWD does not represent the exclusive starch-phosphorylating enzyme involved in starch mobilization in Arabidopsis. Recently, a phosphoglucomutase water dikinase (PWD) encoded by gene At5g26570 has been described in Arabidopsis [77, 78]. This PWD preferentially introduces phosphate groups in C3 positions but only after prephosphorylation of starch with GWD. Interruption of the At5g26570 locus results in a starch excess phenotype together with the loss of C3 phosphorylation of starch. It is therefore proposed that both GWD and PWD proteins control starch turnover in Arabidopsis leaves in close collaboration with other starch-degrading enzymes that remain to be identified.

10.4.3 Starch degradation essentially occurs through β-amylolysis in leaves

The physiological function of β-amylases has remained elusive since the pioneering description of antisense potato plants where the activity of one chloroplastic β-amylase has been down regulated [79]. A starch excess phenotype in the leaves of these plants suggests a direct function of the chloroplastic β-amylase in starch mobilization. β-amylases are exo-amylases that release β-maltose from glucans through an inverting mechanism (β-amylases belong to glycoside hydrolase 14 (GH14) family of the carbohydrate active enzyme (CAZy) classification available at http://afmb.cnrs-mrs.fr/CAZY/). Therefore, if β-amylolysis denotes the major route for starch degradation in leaves, β-maltose metabolization should represent the next step toward the redistribution of energy and the exportation of carbon to other plant tissues. This issue has been recently addressed in Arabidopsis after the findings that β-maltose is the exported form of carbon from the chloroplast at night [80, 81] and that a specific chloroplastic maltose exporter named Mex1 (encoded by locus At5g17520) is responsible for this transfer [82]. After export, the cytosolic β-maltose seems to be subsequently converted to hexose and sucrose by a yet unknown mechanism. However, it has been suggested that a cytosolic glucan-otransferase (named DPE2 and encoded by gene At2g40840), whose sequence is similar to that of the bacterial MalQ protein, is likely to be involved in this process [83, 84]. DPE2 transfers glucosyl residues from maltose to glycogen to produce longer glucans and glucose. A mutant of Arabidopsis that is defective in DPE2 activity overaccumulates both starch and maltose [83]. However, the acceptor molecule for maltose and DPE2 is still not identified in the cytosol and the mechanism by which the longer glucans produced by DPE2 are degraded is not known yet.

10.4.4 Starch metabolism is tightly controlled by several levels of regulation

Arabidopsis leaves and potato tubers have been extensively studied to uncover the regulatory processes of starch metabolism. It has been shown in vivo in potato tubers that the ADP-glucose pyrophosphorylase is tightly regulated not only by allosteric
effectors produced during photosynthesis [8] but also by a redox mechanism [85, 86]. This redox mechanism might lead to a balanced state of enzyme conformation through, for instance, the formation or breakage of disulfide bonds between the different subunits of the holoenzyme. More recently, the formation of the starch granule growth rings has been investigated in potato tubers. Growth rings correspond to regularly alternating zones of amorphous and semicrystalline materials of the starch granule. The formation of these growth rings is neither under diurnal control nor influenced by a change in photoperiod length (24–40 h), suggesting a potential control by the circadian clock [87]. Such circadian oscillations have been described in Arabidopsis leaves at the level of GBSSI transcription and activity but not at the protein content level [88]. This may suggest that yet unidentified posttranslational mechanisms may be active in the cell to tightly regulate the activity of the enzyme, in common with ADP-glucose pyrophosphorylase.

10.5 Control of starch biosynthesis in monocotyledonous species

The majority of research on monocots has focused on the analysis of starch biosynthesis in the developing endosperm. This is largely because of the economic importance of starch in this tissue, but also because many monocots do not accumulate large amounts of starch in their leaves.

A range of systems have now been extensively studied, with much of the early work performed on maize. This is because of the utility of this species as a model system for plant genetics and the availability of induced and spontaneous mutants and the technology for the identification of mutator element induced mutations. However, through the sequencing of the rice genome, this species has emerged as a very powerful additional model for the analysis of starch synthesis in monocotyledonous species. Both wheat and barley have attracted considerable interest in recent years. Barley is used because it is an additional and useful system for forward genetics with large well characterized mutant collections that are available for reevaluation given the knowledge and tools now available. Wheat has also been a target because of its economic importance, but now, even wheat can be considered as a nonintractable system for reverse genetics through the development of tools such as TILLING [89].

The range of informative mutants in starch biosynthesis available in maize is shown in Table 10.1. The mutants are classified into two types: those identified through ‘forward genetics’ involving the identification of lesions in genes underpinning traits, and ‘reverse genetics’, in which mutations are induced in specific genes in order to identify their roles.

Mutations in nine genes have been identified by forward genetics. Four of the mutations affect substrate supply, namely Shrunken-1 (a lesion in sucrose synthase), and mutations in two of the ADPglucose pyrophosphorylase subunits (Brittle-2 and Shrunken-2 respectively). Mutations in the waxy gene have been known for many years and were amongst the first examples of mutations that were characterized such that the mutation, gene and protein encoded were linked [84]. The identification of the causal basis of sugary-1 (isoamylase1) [64] and dull1 (du1) [39] was a major achievement of its time and further cemented the
importance of the maize system in defining the molecular basis of mutations for which there were no obvious candidate genes.

Given that multiple alleles of mutations identified through forward genetics have been identified, it would be reasonable to expect that mutations not yet identified either have no major phenotype or are lethal. The mutations identified by reverse genetics have in fact turned out to have quite subtle phenotypes, at least in the endosperm where the primary screening for starch mutants has been focused. For example, BEI has no obvious phenotype in either endosperm or leaf [47], elimination of BEIIa activity gave a high amylose phenotype in the leaf but not the endosperm, and a lesion in the pullulanase 7gene yields a significant phenotype only in the absence of isoamylase [51].

Mutations in a range of known genes are yet to be identified, again suggesting that their absence leads to either subtle or lethal phenotypes. These genes include SSI, SSIIb, SSIV, cytosolic phosphorylase, plastidic phosphorylase and the plastidic pyrophosphorylase genes.

Recently, Wilson et al. [91] have linked phenotypes in the maize endosperm to six starch biosynthetic genes: amylose extender1 (ae1), brittle endosperm2 (bt2), shrunken1 (sh1), sh2, sugary1 and waxy1. Starch composition and quality traits (pasting properties and amylose levels) were measured. Significant associations between bt2, sh1, and sh2 and kernel composition traits were found. Starch pasting properties were associated with ae1 and sh2, and ae1 and sh1 were associated with amylose levels.
10.5.1 Genes in the rice genome

The availability of rice genome sequences has facilitated an examination of the starch genes in the genomes of monocotyledonous species. Rice starch biosynthetic genes were identified using Blast and annotation based searches of the NCBI database, and are shown in Table 10.2. In rice, single isoforms of GBSSI, GBSSII, SSI, SBEI, SBEIIa, SBEIIb, ISA1, ISA2, ISA3, pullulanase, cytoplasmic phosphorylase

<table>
<thead>
<tr>
<th>Genes</th>
<th>Chromosome location</th>
<th>Accession number</th>
<th>Annotation</th>
<th>Ortholog</th>
<th>Tissue expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADPGPP SS</td>
<td>9</td>
<td>AP004756</td>
<td>Small subunit</td>
<td>Wheat ADPGPP small subunit</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>AP004459</td>
<td>Small subunit</td>
<td>Wheat ADPGPP small subunit</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>AP004317</td>
<td>Large subunit</td>
<td>Wheat ADPGPP large subunit</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>AC096689</td>
<td>Large subunit</td>
<td>Wheat ADPGPP large subunit</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>AC007858</td>
<td>Large subunit</td>
<td>Wheat ADPGPP large subunit</td>
<td>NA</td>
</tr>
<tr>
<td>GBSSI</td>
<td>6</td>
<td>X53694</td>
<td>GBSSI</td>
<td>Wheat GBSSI, maize GBSSI</td>
<td>Endosperm, pollen</td>
</tr>
<tr>
<td>GBSSII SSI</td>
<td>7</td>
<td>AP005325</td>
<td>GBSSII SSI</td>
<td>Wheat GBSSI SSI</td>
<td>Leaf</td>
</tr>
<tr>
<td>SSII-1</td>
<td>10</td>
<td>AC0087547</td>
<td>NA</td>
<td>Wheat SSIIa, maize SSII</td>
<td>Endosperm, leaf, root</td>
</tr>
<tr>
<td>SSII-2</td>
<td>2</td>
<td>AP005297</td>
<td>SSIIb</td>
<td>Maize SSIIb</td>
<td>Mainly in leaf</td>
</tr>
<tr>
<td>SSII-3</td>
<td>6</td>
<td>AP003509</td>
<td>SSIIa</td>
<td>Maize SSIIa, maize SSIIa</td>
<td>Endosperm</td>
</tr>
<tr>
<td>SSIII-1</td>
<td>4</td>
<td>AL606645</td>
<td>SSIII</td>
<td>Wheat SSIII, maize SSIII</td>
<td>Leaf, root, endosperm</td>
</tr>
<tr>
<td>SSIII-2</td>
<td>8</td>
<td>AP004660</td>
<td>NA</td>
<td>Wheat SSIII</td>
<td>Endosperm</td>
</tr>
<tr>
<td>SSIV-1</td>
<td>5</td>
<td>AC096428</td>
<td>NA</td>
<td>Wheat SSIV</td>
<td>Leaf, endosperm</td>
</tr>
<tr>
<td>SSIV-2</td>
<td>5</td>
<td>AP003509</td>
<td>SSIV</td>
<td>Wheat SSIV</td>
<td>Endosperm, leaf</td>
</tr>
<tr>
<td>SBEI</td>
<td>6</td>
<td>AP004685</td>
<td>SBEI</td>
<td>Wheat SBEI, maize SBEI</td>
<td>Endosperm</td>
</tr>
<tr>
<td>SBE3</td>
<td>2</td>
<td>AP004879</td>
<td>SBEIIb</td>
<td>Wheat SBEIIb, maize SBEIIb</td>
<td>Endosperm</td>
</tr>
<tr>
<td>SBE4</td>
<td>4</td>
<td>AL662959</td>
<td>SBEIIa</td>
<td>Wheat SBEIIa, maize SBEIIa</td>
<td>Endosperm, leaf</td>
</tr>
<tr>
<td>ISA1</td>
<td>8</td>
<td>AP005509</td>
<td>Isoamylase1</td>
<td>Wheat isoamylase1</td>
<td>Endosperm, leaf</td>
</tr>
<tr>
<td>ISA2</td>
<td>5</td>
<td>AC132483</td>
<td>N/A</td>
<td>Wheat isoamylase2</td>
<td>Endosperm, leaf</td>
</tr>
<tr>
<td>ISA3</td>
<td>9</td>
<td>AP005574</td>
<td>N/A</td>
<td>Wheat isoamylase3</td>
<td>Endosperm, leaf</td>
</tr>
<tr>
<td>Pulullanase</td>
<td>4</td>
<td>A1662959</td>
<td>Pulullanase</td>
<td>Wheat pulullanase</td>
<td>Endosperm</td>
</tr>
<tr>
<td>Starch phosphorolase</td>
<td>3</td>
<td>AC079887</td>
<td>Plastid starch phosphorylase</td>
<td>Wheat plastid starch phosphorylase</td>
<td>NA</td>
</tr>
<tr>
<td>Starch phosphorolase</td>
<td>1</td>
<td>AP004072</td>
<td>Cytosolic starch phosphorylase</td>
<td>Wheat cytosolic starch phosphorylase</td>
<td>NA</td>
</tr>
</tbody>
</table>
and plastidic phosphorylase are present. In contrast, multiple forms of SSIIa and SSIII and SSIV occur with varying copy number and varying relative expression levels in leaf, root and endosperm. These data are consistent with findings presented by Jiang et al. [92] and Hirose and Terao [93]. The biological drivers for the generation of multiple genes are unknown, although this multiplication of the gene families clearly provides a mechanism for independent control of expression of the gene in different tissues. Two ADPglucose pyrophosphorylase small subunit genes (as in Arabidopsis) and three ADPglucose pyrophosphorylase large subunit genes (compared with four in Arabidopsis) are found.

10.6 Starch synthesis in green algae

10.6.1 Chlamydomonas reinhardtii defines the best microbial system to study plant starch metabolism

Starch biosynthesis in most species is thought to be derived from a unique endosymbiotic event thought to have occurred over 1.5 billion years [94]. This endosymbiosis consisted of the capture of an ancestral cyanobacterium by a nonphotosynthetic flagellated eukaryote and gave birth to all present-day plastids [95]. Among the three lines that are directly derived from this unique event, the green algae are the only ones to accumulate polysaccharide within the plastid stroma. The terrestrial plants are known to be derived through evolution of the green algae and therefore, among all known eukaryote microorganisms, green algae were expected to be the simplest model systems that could account for starch biosynthesis in plants. Early work performed on this group of organisms clearly showed the presence of a polysaccharide structure closely related to that of vascular plant starch [96]. Some enzymes, such as ADP-glucose pyrophosphorylase [97, 98] or the phosphorylases [99], had been studied to some extent and set the stage for more detailed investigations. Among all green algae, C. reinhardtii defines, by far, the most intensively studied system (reviewed in Ball [100]). The so-called green yeast allows easy selection of mutants, crossing and genetic transformation. It is a facultative autotroph allowing for easy manipulation of not only photosynthesis but also respiration and organelle DNA transformation [101, 102]. It accumulates starch around the pyrenoid (a Rubisco-containing cellular structure involved in CO₂ concentration in aquatic plants) or close to the thylakoid membranes [103, 104]. Most importantly, starch seems to be completely dispensable for growth or germination of encysted zygotes, thus allowing the selection of the whole suite of viable starch defective mutants [105].

10.6.2 The Chlamydomonas single cell can account for both transitory or storage starch synthesis

Log phase cultures submitted to 12 h light and 12 h darkness growth regimes are subjected to recurrent phases of starch synthesis and degradation [104, 106].
conditions where the cells are actively dividing, cell growth and division acts as a powerful sink for carbon, driving the carbon out of the plastid and into the cytoplasm for building novel cellular material. Under these conditions the synthesis of starch acts as a transitory overflow for photosynthate at particular times of the circadian cycle. This starch is recurrently degraded at other times of the cycle when the demand for carbon in the cytoplasm generally exceeds its supply through photosynthesis. Such a system mimics the recurrent starch synthesis and degradation occurring in plant leaf chloroplasts, where degradation is thought to be triggered at night to ensure a constant supply of carbon for the nonphotosynthetic roots. Indeed, the structure of starch accumulated under these conditions closely resembles that of plant leaf transitory starch [107]. Therefore these log phase cultures can, to some extent, be used to study transitory starch metabolism. Upon starvation of nitrogen, the cells engage in one or at most two successive rounds of division, become non-photosynthetic and stop dividing. Under these conditions, cellular material is actively degraded and carbon redirected to the plastid where it is engaged in active starch biosynthesis [108]. This situation mimics the starch storing organs of vascular plants, such as the potato tuber or the cereal endosperm. The polysaccharide structure under these conditions was found to be identical to that of maize endosperm starch [107]. Both nitrogen starvation and active growth are natural physiological conditions faced by the Chlamydomonas single cell. These conditions are exceedingly easy to trigger and master in laboratory conditions where cultures can be produced and studied within 5 days with sufficient biomass to achieve standard biochemical characterization, a situation unparalleled by any model land plant system.

10.6.3 What have we learned from Chlamydomonas?

A genetic screen based on the spraying of iodine vapors on the nitrogen starved cell patches has been extensively used to isolate mutants defective for various aspects of starch metabolism. Eleven loci have been identified by forward genetic approaches. Mutants of the Chlamydomonas heterotetrameric ADPglucose pyrophosphorylase have been produced for both small and large subunits of the enzyme [105, 109]. Studies on those of the large subunit have, at the time, contributed to prove the requirement in vivo of 3-phosphoglycerate activation of ADPglucose pyrophosphorylase in order to obtain significant starch synthesis [103]. In addition, these mutants have helped to establish that controlling the flux of ADP-glucose into starch had a profound consequence on the polysaccharide structure which, under low glycoside-nucleotide supply, adopts the structure of transitory starch [104]. This conclusion was subsequently verified in pea and potato [111, 112]. The characterization of mutants of GBSSI, the enzyme responsible for amylose synthesis, have suggested that GBSSI is an important contributor to amyllopectin synthesis [113]. The isolation of a soluble starch synthase defective mutant that was later proved to be analogous to the vascular plant SSIII enzymes contributed to establish that distinct soluble starch synthases had specific roles in building different size classes of amyllopectin chains [40]. However, the most important finding came with the
description of low starch mutants that completely substituted starch synthesis with a small amount of glycogen [66]. These mutants proved to lack a high mass isoamylase complex because of the absence of one of its subunits [114–117]. The phenotype of the *Chlamydomonas* mutant appears much more severe than those of the vascular plant counterparts, and led the authors to propose that debranching of an amylopectin precursor (preamylopectin) defined the step that distinguished glycogen from starch synthesis [34]. This step is deemed to be mandatory to obtain semicrystalline material aggregating into macrogranular insoluble structures. Again, the isolation of other mutants of *C. reinhardtii* strongly suggested the presence of an active heteromultimeric isoamylase whose quaternary structure defined an important component of the polysaccharide aggregation mechanism [115, 116]. This suggestion was subsequently proved by the isolation of the corresponding genes and products in potato [69]. More recently, mutants defective for the D-enzyme (an α-1,4 glucanotransferase) established the first link between this family of enzymes and starch metabolism [55, 58, 59]. Because of the low starch phenotype of these mutants, the D-enzyme was inferred to play an important role in starch biosynthesis by recycling chains produced through isoamylase. Finally, the selection of mutants defective for one plastidial form of starch phosphorylase displayed the first evidence *in vivo* for a function of this enzyme in starch catabolism. *C. reinhardtii* also harbors a GBSSI enzyme whose specific activity is between 10-fold and 100-fold superior to those reported for the plant enzymes. This property was used to establish synthesis *in vitro* of amylose with purified starch granules [33]. These typical biochemical approaches established that the *C. reinhardtii* enzyme synthesizes amylose chains by extension of an amylopectin chain followed by cleavage of mature amylose chain at the site of its synthesis. They also established that GBSSI does not contribute only negatively to the polysaccharide’s crystallinity but is also responsible for the formation of a low but significant number of B-type crystals [118].

10.6.4 Similarity and differences between starch metabolism in plants and algae

The full genome sequence of two unicellular green algae *C. reinhardtii* and *Ostreococcus tauri* has recently been made available. *O. tauri*, the smallest of all eukaryotes, is a member of the prasinophytes, a subdivision of green algae that are thought to have diversified at the earliest stage during evolution of the green plants. Bioinformatic mining of these resources coupled with functional studies performed in both organisms clearly establish that green algae use a pathway very similar, if not identical, to those of vascular land plants [119]. In fact it is truly astonishing to realize that an organism such as *O. tauri*, which has streamlined the complexity of many pathways because of its tiny genome size, has conserved the whole 30 or so genes thought to be active for starch metabolism in higher plants. This finding has two important consequences. First it validates green algae as model systems for studies
dealing with plant starch metabolism. Second it demonstrates that the complexity of starch metabolism, and in particular the number of isoforms concerned for each type of enzyme activity, is a very ancient feature that evolved shortly after endosymbiosis. The maintenance of this complexity in *O. tauri* suggests further that the whole suite of enzymes work as an exceptionally networked unit precluding the loss of any of its multiple components to accommodate the small genome size. This comes in stark contrast to the streamlining and simplification of other networks such as those governing the cell division cycle in this organism [120]. The *O. tauri* and *C. reinhardtii* genomes do have two distinctive features with respect to vascular plant starch metabolism. First they appear to contain a distinctive set of plastidial phosphorylases, and second they appear to lack glycogenin genes. Glycogenin is inferred to be active in the priming of plant starch synthesis [121]. It must be stressed that the absence of these genes in the algal genomes should be treated with caution. Indeed, the genome sequences are not entirely sequenced and assembled, and so a unique glycogenin sequence might have escaped detection. If the absence of glycogenin is confirmed, it would suggest that either this protein is not involved in polysaccharide priming in green plants, or there exist several distinct pathways of polysaccharide synthesis priming and of granule seeding. In *O. tauri*, the chloroplast contains, in most cases, a single granule at the center of the tiny plastid. Microscopic observations performed during plastid division establish that partition of this single granule is performed into the two dividing plastids through localized degradation [119]. Thus this study on *O. tauri* may suggest that targeted degradation of starch granules might be the way the seeds of novel granules are produced.

10.6.5 The future of starch research in green algae

At the beginning of the 1990s, *C. reinhardtii* defined the best system to tackle genetic dissection of starch metabolism. However, in the last 8 years Arabidopsis has attracted far more attention compared with *Chlamydomonas*. This mainly reflects the production of two unique resources that are available only in Arabidopsis. First, the Arabidopsis full genome sequence became available 5 years before *C. reinhardtii*. Second and above all, multiple mutant libraries have been generated in Arabidopsis consisting of T-DNA insertions whose flanked sequences have been determined (the FST resource). These libraries cover over 90% of all genes discovered in the genome sequence. It is possible nowadays to order seed heterozygote for any gene suspected to be involved in starch metabolism. This has diverted groups from the study of other organisms to focus attention on Arabidopsis. One limitation is that Arabidopsis is mainly useful for the study of mature leaf starch synthesis which defines only a subset of physiological constraints that have led to the selection of the starch metabolism network. *C. reinhardtii* will probably remain one of the best systems if not the best system to perform forward genetic mutant screens. Its usefulness will however very much depend on the pace at which the reverse genetic tools such as an FST resource are built. At the time of writing this chapter,
there is no way of telling if these resources will be as extensive and as rapidly available as those generated for Arabidopsis by a far greater number of research groups.

10.7 Starch synthesis in other systems

10.7.1 Bacterial cells may have a primitive starch synthesizing machinery

All present evidence points to the presence of a pathway in green plants that was derived from bacterial glycogen synthesis. The photosynthetic eukaryotes are indeed thought to have acquired at least part of their polysaccharide synthesis machinery through endosymbiosis of the chloroplast. Most bacteria were initially thought to accumulate a storage polysaccharide structure that resembled structures reported for fungi and animal cells, with no evidence for the presence of semicrystalline structures. However, this picture is now slowly changing with a very recent report of the existence of amylopectin-like polysaccharide in a small number of cyanobacteria [122] which behaves as a high mass polymer with a chain-length distribution that is intermediate between amylopectin and glycogen. It is presently not known if these polymers aggregate into insoluble semicrystalline granules. In one of the very few cases where the structure of carbohydrate storage granules has been investigated, the authors have demonstrated that large size granules in *Cyanothece* correlated with the presence of polymers that were apparently more related to glycogen [123]. However, mathematical modeling suggests that glycogen particles could not theoretically exceed a diameter of 40 nm [124]. It remains possible, therefore, that these organisms store polymers that resemble amylopectin rather than glycogen. Nevertheless, the vast majority of bacteria, including the cyanobacterial model species, accumulate glycogen. Therefore, the comparison of glycogen metabolism in these organisms to that of the cyanobacteria accumulating amylopectin-like molecules will probably be enlightening.

In the meantime glycogen accumulating model bacteria such as *E. coli* and *Synechocystis* have yielded a number of important insights concerning storage polysaccharide metabolism (for reviews of glycogen metabolism in bacteria, see [5, 125, 126]). In *E. coli* in particular, mutants have been obtained for the unique genes coding for the ADP-glucose requiring glycogen synthase, ADP-glucose pyrophosphorylase and branching enzyme. These have been a great help in establishing the nature and function of the bacterial pathway (reviewed [125]), while in the glycogen accumulating *Synechocystis*, mutants of branching enzyme have been recently reported [127].

However these genetic studies are somewhat incomplete since the effect of many other relevant genes has not been investigated through mutant approaches. Recently, Dauvillée et al. have reported the effect of disruptions of bacterial glycogen debranching enzyme GlgX [6]. This result is relevant to the understanding of starch metabolism in plants since the GlgX protein belongs to the same family of
enzymes as the isoamylases which are thought to be responsible for amylopectin crystallization [34]. The glycogen excess phenotypes of the mutants were consistent with the previously inferred function in glycogen catabolism of this enzyme [128]. Indeed, the debranching specificity of this enzyme was shown to be restricted to the branches from outer chains consisting of four glucose residues. These are the structures generated by the action of glycogen phosphorylase during polysaccharide breakdown. This work shows that glycogen accumulating species display a debranching enzyme with a marked specificity that distinguishes them from the preamylopectin trimming enzymes. The work performed on the bacterial pathway has been a past inspiration for the studies performed on algae and plants. Presently, the emphasis on bacteria has been toward establishing a number of 3D structures for the important enzymes of the glycogen-starch pathway such as the branching enzyme [129] or glycogen synthase [130]. Another important issue of relevance to our understanding of starch synthesis is the nature of the polysaccharide priming mechanism in bacteria. As in green algae, no evidence for the presence of glycogenin could be found. Interestingly, a recent report demonstrates the presence of a priming activity of the bacterial glycogen synthase [131].

10.7.2 UDPglucose-based systems that produce starch

Green algae and land plants are the only organisms that store starch within the plastid among the three lineages derived from the primary endosymbiosis event of a cyanobacterial-like cell. The other two lineages (the glaucophytes and the red algae) store the same type of polysaccharide in the cytoplasm. The name ‘floridean’ starch has been coined to describe the type of storage polysaccharide accumulated by red algae (reviewed by Viola et al. [132]). This material was thought to differ from the classic type of starch structure because of the absence of amylose. However, since the initial description of floridean starch, amylose has been found in the starch of several distinct red algal species [133], and a schematic view of starch biosynthesis in red algae is shown in Figure 10.4. The nature of the pathway involved has been somewhat controversial, as earlier studies favored an ADP-glucose based pathway, while more recent work pointed to the existence of an UDP-glucose pathway [134]. Red algae have themselves been the subject of either a single or multiple endosymbiotic events by other nonphotosynthetic eukaryotes. This offers a convenient explanation for the finding of floridean starch in the cytoplasm of dinoflagellates and apicomplexa parasites.

Coppin et al. [135], using bioinformatics and functional studies on the apicomplexa parasite Toxoplasma gondii, clearly established the mosaic nature of the starch pathway. T. gondii contained genes coding for several enzymes that are either only found in, or display phylogenies which relate them to the glycogen accumulating eukaryotes such as fungi or animals (for example, glycogenin, indirect debranching enzyme, branching enzyme [136], UDP-glucose utilizing glycogen (starch) synthase). Other genes encode enzymes that are typical of, or display
Figure 10.4 The putative starch synthesis pathway in the cytosol of red algae. The proposed role of isoamylase is speculative rather than based on loss of function studies; however, the enzyme is known to be present in red algae synthesizing starch (Coppin et al. [135]) [129]. Enzyme activities are as defined in Figures 10.1, 10.2 and 10.3.

phylogenies that relate them to, the bacterial pathway (α-1,4 glucanotransferase, isoamylase). Together with functional studies, these results establish floridean starch metabolism as UDPglucose based with a suite of enzymes that can clearly distinguish this pathway from those operating in the green algae and terrestrial plants. Of particular interest is the restricted number of isoforms found in the genomes of both *T. gondii* and the red algae *Cyanidioschyzon merolae* [135]. The finding of isoamylase in floridean starch accumulating organisms confirms the requirement for this enzyme for semicrystalline polysaccharide biogenesis. Further, Coppin et al. [135] hypothesize that both the UDPglucose and ADPglucose based pathways are mosaics of genes of prokaryotic and eukaryotic origin that resulted from the confrontation of the two pathways within the endosymbiont and in the cytoplasm of the host after endosymbiosis of the chloroplast. The astonishingly simple pathway revealed in *T. gondii* might make this organism an unexpected model to understand the specific features of starch granule biogenesis.

10.8 Control of starch biosynthesis

The majority of the discussion of starch synthesis in this chapter has focused on the elucidation of differences in the biosynthetic pathway, compartmentation and gene expression in differing species and tissues. Over the past 5 years, evidence has begun to accumulate concerning the fine transcriptional and posttranscriptional control of starch biosynthesis, processes that could be expected to influence both the amount of starch synthesized in a given time period, and the composition of that starch. The types of regulation that have been postulated to be important in starch biosynthesis are:

1. *Circadian control of gene expression*: Observations from a range of species indicate that enzymes involved in starch synthesis and degradation are
under circadian control. In rice, Dian et al. [137] identified a GBSS gene (designated GBSSII), showed that the product of this gene was present in the starch granule and concluded that the enzyme was responsible for leaf starch synthesis. The expression of this gene was shown to be under circadian control [137]. In sweet potato, Wang et al. [138] concluded that GBSSI expression in leaves was also regulated by the circadian clock. In Arabidopsis leaves, Tenorio et al. [88] showed that GBSSI expression oscillated on a diurnal light/dark cycle. In a more comprehensive analysis of gene expression across the starch synthesis pathway, Smith et al. [139] used affymetrix arrays to investigate oscillations in starch gene expression in Arabidopsis leaves. They concluded that GBSSI and SSII oscillated on a diurnal light/dark cycle. Further studies are required to study whether similar processes are occurring in storage tissues such as tubers and the endosperm.

2. Redox regulation: ADPglucose pyrophosphorylase from potato tuber has been shown by Fu et al. [140] to be partially inactivated by oxidation of disulfide bonds between the small ADPglucose pyrophosphorylase subunits. In subsequent work, Tiessen et al. [86] and Hendriks et al. [141] extended these observations to identify redox control of ADPglucose pyrophosphorylase in leaves of potato, pea and Arabidopsis. Tiessen et al. [86] also showed that redox control of ADPglucose pyrophosphorylase occurred in response to sucrose availability. Preliminary reports suggest that ADPglucose pyrophosphorylase from barley and wheat endosperms is also regulated by redox control [3].

3. Phosphorylation: In wheat endosperm, Tetlow et al. [142] showed that several enzymes (BEI, BEIIa, BEIIb and plastidic phosphorylase) were phosphorylated (on serine residues) in amyloplasts labeled with 32P-ATP, and dephosphorylation of these enzymes resulted in a reduction in enzyme activity. A range of other phosphoproteins have been identified in stromal extracts, including SSIIa and an unidentified form of starch synthase. The significance of protein phosphorylation as a general mechanism for regulation of starch synthesis in plants requires further research.

4. Complex formation: Tetlow et al. [142] also demonstrated through immunoprecipitation experiments that complexes of starch biosynthetic enzymes exist in the wheat endosperm, including a complex containing SBEI, SBEIIb and starch phosphorylase. As noted previously, isoamylases in C. reinhardtii [116], potato [69] and Arabidopsis [54, 68] have been demonstrated to exist in multimeric aggregates. It appears that protein–protein interactions leading to the formation of these complexes may be a general feature of starch biosynthesis. However, further work is required to define the number, composition, function and formation/disintegration behavior of such complexes. The presence of multimeric enzyme complexes provides a further point of difference between glycogen synthesis in bacteria and higher plant starch synthesis. It is conceivable that such complexes are important in providing substrate channeling or chaperonin-like protection
of nascent amylopectin molecules that are important to the crystallization or amylopectin and the synthesis of starch granules.

10.9 Opportunities for the manipulation of starch synthesis and structure

The study of starch synthesis and its regulation has two general purposes. The first is to provide an understanding of the mechanisms underpinning the process. The second is to provide the information necessary to direct efforts to manipulate starch structure and function in ways that contribute to economic and societal goals. Some of the discussion in this review has alluded to the use of genetic manipulation to investigate the role of specific members of gene families involved in starch synthesis and such modifications of cereal starches for food and industrial use have recently been reviewed [2, 143]. The end use targets of starch modification include:

1. **Food industry use**: Modification of starch for the food industry use involves the range of starch from waxy to high amylose and includes starches, such as sugary-2 and dull, with intermediate amylose contents but altered amylopectin structure and functionality.

2. **Delivery of nutritional benefits**: The development of novel starches focuses on high amylose starches, which are believed to provide human health benefits through the provision of resistant starch and reduced glycemic index.

3. **Industrial end uses**: Starches for industrial use range from readily digestible starches for ethanol and feedstock generation to high amylose starches for biodegradable plastics, films and adhesives.

4. **Animal feeds**: The general focus of starch modification for animal feeds is to increase the rate of feed conversion as measured by metabolizable energy.

5. **Pharmaceutical applications**: The focus of manipulation is on the development of starches that can provide specific functionalities such as slow release of encapsulated compounds. One additional method for modifying starch structure and functionality using genetic engineering technologies is the use of starch binding proteins. Several recent studies have shown that such proteins can be fused to other functionalities, providing a ‘payload’ system for delivering functionality to starches and conferring properties such as controlled release [144]. It should be noted that genetic modification is just one mechanism for enhancing starch functionality for specific applications. The current methods of choice for enhancing starch functionalities in most fields of use are thermophysical and chemical modification. However, with an enhanced understanding of starch synthesis and the ability to rapidly generate diversity, opportunities are likely to arise for developing more valuable applications of native starches. The opportunities will be driven not only by knowledge of the core genes of the starch biosynthesis pathway, but also by how they are regulated and how that regulation
itself can be modulated. A primary, and early, example of this approach is the use of unregulated ADPglucose pyrophosphorylase in engineering of potato starch synthesis [145].

10.10 Conclusions

The past decade has seen a rapid expansion of our knowledge of starch biosynthesis and its regulation. This rapid development has been fueled by the genome sequencing initiatives which have clarified the gene families found in the key species, Arabidopsis and rice. These initiatives have allowed extensive expression profiling and mutagenesis programs to define the roles of individual members of the families. Furthermore, improved tools such as proteomics have allowed the identification of proteins and their posttranslational modifications. Techniques such as TILLING and high throughput RNAi techniques hold out the promise that the next decade will see all the known members of the starch biosynthetic enzyme gene families assayed for function in the key target species.

Solving the core problems of identifying the genes and their primary functions was expected to lead to a comprehensive understanding of starch biosynthesis. However, three factors suggest that there is considerable way to go yet before we can claim to understand starch synthesis. The first factor is the presence of interactions between starch biosynthetic enzymes, for example, the complex formed by isoamylase1 and isoamylase2, and the complexes defined by Tetlow et al. [142]. These interactions suggest that the phenotypes of some of the mutants that have been characterized may result not only from effects on the target genes, but from pleiotrophic effects on other proteins with which the target protein interacts. Secondly, the mechanisms through which the starch biosynthetic enzymes, or assemblies of starch biosynthetic enzymes, interact at the granule surface and in the interior of the starch granule to form the granular architecture are unknown. Given the saturation mutagenesis programs that have been undertaken, and the repetitive isolation of alleles of the major mutants, it seems unlikely that other proteins with major impact on starch synthesis will be found that mediate granule assembly. However, this does not rule out roles for proteins in fine tuning granule assembly that have not been picked up in the screens used to date. Finally, the events involved in the initiation of the starch granule, as well as the initiation of amylose and amyllopectin molecules, remain poorly defined and these processes need further research. It is therefore not unreasonable to state that the next decade of starch research promises to be as exciting and informative as the past decade.

References

89. E. Hirst, D. Manners and I.R. Pennie (1972) /H9251-1,4-glucans part XXI – the molecular structure of starch-type polysaccharide from *Haematococcus pluvialis* and *Tetraselmis carteriiformis*. *Carbohydrate Research* 22, 5–11.

92. J. Preiss and E. Greenberg (1967) Biosynthesis of starch in *Chlorella pyrenoidosa*: I purification and properties of the adenosine diphosphoglucose: /H9251-1,4-glucan, /H9251-4-glucosyl transferase from *Chlorella*. *Archives of Biochemistry and Biophysics* 118, 702–708.

11 The organization and control of plant mitochondrial metabolism
Allison E. McDonald and Greg C. Vanlerberghe

11.1 Introduction
Plant mitochondria are well known for their central role in energy metabolism but it is also clear that other metabolic and cellular activities occur in these organelles. Our understanding of this organelle has advanced considerably in recent years, and an important development has been the use of proteomic approaches to investigate the protein complement [1] (also see Chapter 2). The mitochondrial proteomes of cells from tissues of several plant species have now been investigated, in many cases leading to novel discoveries. Approximately 400 different proteins have been directly identified in highly purified mitochondria, about 70 of which lack similarity to any protein of known function. Nonetheless, it is estimated that the organelle may contain 2000–3000 different gene products, indicating that, despite some progress, our understanding of plant mitochondria is still far from complete [1]. The purpose of this chapter is to outline the central components of mitochondrial metabolism and highlight recent advances in our understanding of metabolism and its control in this organelle.

11.2 Organization of the tricarboxylic acid cycle and mitochondrial electron transport chain
The following describes the major components of energy metabolism in plant mitochondria. Their organization is summarized in Figure 11.1.

11.2.1 Tricarboxylic acid cycle and associated enzymes
Pyruvate dehydrogenase (PDH) links glycolysis to the tricarboxylic acid (TCA) cycle by catalyzing: pyruvate + NAD\(^+\) + CoA → acetyl-CoA + NADH + CO\(_2\). This multienzyme complex consists of three primary components: pyruvate dehydrogenase (E1; consisting of E1α and E1β), dihydrolipoyl acetyl-transferase (E2) and dihydrolipoyl dehydrogenase (E3). It includes the bound co-factors thiamine pyrophosphate, lipoic acid and FAD. When PDH was reduced in tobacco anthers using an antisense gene and tapetum-specific promoter, plants were male sterile, indicating the importance of PDH during reproductive development [2].
Mitochondrial PDH is the only TCA cycle enzyme whose regulatory properties have been investigated in considerable detail [3]. Activity is subject to product inhibition by NADH and acetyl-CoA (both with K_i of ~20 μM). Importantly, PDH is controlled by reversible phosphorylation of two Ser residues of the E1α-subunit, with phosphorylation inhibiting activity. The phosphorylation state is controlled by PDH kinase and phosphopyruvate dehydrogenase phosphatase, both of which are associated with the PDH complex. Phosphopyruvate dehydrogenase phosphatase does not appear to be subject to control, indicating that PDH phosphorylation status is primarily dependent upon PDH kinase activity. PDH kinase is inhibited by pyruvate and ADP, while being activated by NH$_3$, through an increased affinity for ATP. An important consequence of this is an inactivation (phosphorylation) of PDH in the light due to increased matrix ATP, increased NH$_3$ (from photorespiration) and increased NADH levels. In contrast, high pyruvate levels may overcome some of this inhibition.
Citrate synthase catalyzes: oxaloacetate + acetyl-CoA \rightarrow \text{citrate} + \text{CoA}. The plant enzyme exists as a homodimer composed of 50 kDa subunits [4, 5]. Little is known about regulatory properties of the enzyme. Surprisingly, reduction of citrate synthase activity in transgenic potato plants to 6% or less of normal levels had little impact on shoot growth or tuber yield [5]. However, flower development was aborted in plants with less than 30% of normal levels, presumably due to the high energetic demands associated with this development.

Aconitase (ACO) catalyzes: citrate \rightarrow \text{isocitrate}. As in animals, plants contain both mitochondrial and cytosolic aconitases, but it is unresolved whether these represent different gene products or a dual-targeting of gene products. Interestingly, the animal cytosolic enzyme has an additional role in controlling Fe homeostasis. This ‘Fe regulatory protein’ role of ACO is due to its ability to bind mRNAs containing a Fe-responsive element consensus sequence, thereby regulating their stability or translation. Residues involved in mRNA binding are conserved in the plant cytosolic enzyme, indicating that it may play a similar role to its animal counterpart, but this is yet to be investigated [6]. Relatively few molecular or biochemical analyses of the plant mitochondrial ACO have been undertaken [6, 7–9]. Analyses that have been undertaken have shown that various molecules commonly associated with plant stress are capable of inactivating ACO \textit{in vitro} by impairing the active site Fe–S cluster. These include H$_2$O$_2$ [7], nitric oxide [6] and salicylic acid [10]. However, few data are available to assess if and when such inactivation may occur \textit{in vivo} [11].

Isocitrate dehydrogenase (ICDH) catalyzes: isocitrate + NAD(P)$^+$ → 2-oxoglutarate + NAD(P)H. Plant mitochondria contain both NAD$^+$- and NADP$^+$-specific isoforms of ICDH [12, 13], with the NADP$^+$-specific isoforms also present in several other compartments. While NAD$^+$-ICDH is generally considered the predominant isoform of the TCA cycle, relatively few biochemical studies of the enzyme have been reported, but it is known that the enzyme is subject to product inhibition by NADH [14].

2-oxoglutarate dehydrogenase (OGDH) catalyzes: 2-oxoglutarate + NAD$^+$ + CoA \rightarrow \text{succinyl-CoA} + \text{NADH} + \text{CO}_2. Analogous to PDH, OGDH has three principal components: 2-oxoglutarate dehydrogenase (E1), dihydrolipoamide succinyl-transferase (E2) and dihydrolipoamide dehydrogenase (E3). Unlike PDH, OGDH E1 is not subject to control by phosphorylation, but in common with other TCA cycle dehydrogenases, OGDH activity is inhibited by NADH [14]. It is also activated by AMP.

Proteins within the OGDH complex have been characterized in potato [15]. Interestingly, this study found that a large proportion of OGDH is associated with the membrane fraction, perhaps in direct association with complex I, and similar to that observed in animals. It was also found that association of E3 within the OGDH complex is relatively weak, compared with the association of E3 within the PDH complex. Since these two complexes may share a common pool of E3, this finding may have implications for OGDH function.

Succinate thiokinase catalyzes: succinyl CoA + ADP + Pi \rightarrow \text{succinate} + \text{ATP} + \text{CoA}. Relatively little molecular or biochemical characterization of the plant enzyme has been undertaken.
Succinate dehydrogenase (SDH) is both a TCA cycle enzyme (catalyzing: succinate $+ \text{FAD}^+ \rightarrow \text{fumarate} + \text{FADH}_2$) and a component of the electron transport chain (ETC), passing electrons from FADH$_2$ to ubiquinone (Q). It is the only TCA cycle enzyme that is an integral membrane protein of the inner mitochondrial membrane (IMM)(see complex II below).

Fumarase catalyzes: fumarate \rightarrow malate. Plant fumarase is of the class II type in which the enzyme exists as a homotetramer. There are only a few reports of molecular and biochemical characterization of the plant enzyme [16, 17].

Malate dehydrogenase (MDH) catalyzes: malate $+ \text{NAD}^+ \rightarrow$ oxaloacetate $+ \text{NADH}$. Since the reaction equilibrium lies strongly in favor of malate, operation of the TCA cycle depends upon the nonreversible citrate synthase reaction to remove oxaloacetate. MDH enzymes in other cellular compartments have been studied in some detail, but there are relatively few molecular or biochemical characterizations of the mitochondrial enzyme [18].

Malic enzyme (ME) catalyzes: malate $+ \text{NAD(P)}^+ \rightarrow$ pyruvate $+ \text{NAD(P)H} + \text{CO}_2$. While not considered a TCA cycle enzyme, the significance of ME is that it may represent an alternative mechanism to generate intramitochondrial pyruvate. This could support TCA cycle activity under conditions when substrate other than pyruvate (i.e., malate) is being imported into the mitochondrion. ME consists of two similar subunits, can exist in a range of oligomeric forms and is activated by fumarate and CoA [19, 20]. The different aggregation states of ME also display different kinetic properties. The effects of these regulatory properties on flux in vivo remain unknown.

Studies on maize root tips indicate that pyruvate generation via ME is a very minor flux relative to pyruvate generation via pyruvate kinase [21, 22]. In an attempt to assess the impact of ME activity on respiratory metabolism, Jenner et al. [23] generated transgenic potato tubers in which the maximum catalytic activity of ME was reduced by up to 60%. This level of reduction had no effect on TCA cycle flux, although a change in the level of some glycolytic metabolites was seen. Further studies are required to determine what metabolic conditions may enhance pyruvate generation via ME.

The combined action of the glycine decarboxylase complex (GDC) and serine hydroxymethyltransferase (SHMT) catalyzes: 2 glycine $+ \text{NAD}^+ + \text{H}_2\text{O} \rightarrow$ serine $+ \text{CO}_2 + \text{NH}_3 + \text{NADH}$. This is not part of the TCA cycle, but rather is a matrix-localized component of the photorespiratory pathway in photosynthetic cells. In the light, this activity represents the major intramitochondrial source of NADH, particularly given that PDH is inactivated in the light by phosphorylation (see above).

The GDC complex has been studied in great molecular and biochemical detail [24]. The dihydrolipoamide dehydrogenase component of this complex is also shared by PDH and OGDH (see above). Since mitochondrial glycine metabolism is dependent upon large amounts of the enzyme cofactors lipoic acid and tetrahydrofolate, all the enzymes necessary for the biosynthesis of these cofactors are present in plant mitochondria [25, 26]. GDC activity will be subject to product inhibition by serine and NADH, unless these products are rapidly removed.
As is apparent from the above discussion, there is a paucity of detailed molecular and biochemical characterization for many TCA cycle and associated enzymes. Hence, there is still much general speculation regarding control of carbon flux through the cycle. However, the regulation of PDH and other dehydrogenases by the NADH/NAD$^+$ ratio is likely to be more certain and an important aspect of control [3, 14].

11.2.2 Electron transport chain complexes I–V

As analytical techniques improve, information regarding the protein composition of the ETC complexes (I–V) of the IMM continues to improve. Such analyses have unexpectedly uncovered many plant-specific proteins of unknown function in these complexes. These proteins may have regulatory roles or may represent additional activities of these complexes not directly related to electron transport. A good example of such bifunctionality is complex III, which includes the mitochondrial processing peptidase that removes the N-terminal targeting signal of proteins targeted to the mitochondria [27].

Complex I (NADH dehydrogenase) catalyzes the oxidation of matrix NADH, coupled with reduction of Q and proton pumping from the matrix to intermembrane space (IMS). Electron transfer within the complex involves a flavin adenine mononucleotide and several Fe–S clusters. The complex is inhibited by rotenone and by diphenyleneiodonium.

Recently, 2D blue-native/SDS-PAGE coupled with mass spectrometry has further elucidated the protein composition of complex I from plants [28]. This study identified 30 different proteins in Arabidopsis thaliana and 24 different proteins in rice. Of these proteins, 14 are orthologs of the core components of the functional bacterial complex and 9 represent accessory proteins highly conserved amongst eukaryotes. Interestingly, both plant species also contained orthologs of GRIM-19, a mammalian protein identified as component of complex I and a regulator of apoptosis [29]. This suggests a potential link in plants and animals between the mitochondrial ETC and cell death pathways. Of further interest was the finding of several plant-specific complex I proteins, not found in other organisms. Their function is unknown, but some may represent proteins functioning in the storage or sensing of Fe [28].

Complex II (SDH) is the only TCA cycle enzyme tightly associated with the IMM. It catalyzes the oxidation of succinate, coupled with reduction of FAD. Electrons are then transferred to Q via several Fe–S clusters. A heme b group of unknown function is also present.

As with complex I, the subunit composition of complex II has been recently investigated in Arabidopsis using 2D blue-native/SDS-PAGE coupled with mass spectrometry [30]. The complex is presently thought to consist of eight proteins (SDH1–SDH8). SDH1-4 are the four classic subunits found in both bacteria and eukaryotes. The soluble SDH1 and SDH2 subunits carry FAD and Fe–S clusters, respectively, while the hydrophobic SDH3 and SDH4 subunits anchor the complex to the IMM. Unexpectedly, the complex also retains four additional plant-specific proteins (SDH5-8) not seen in other organisms. The function of these proteins is unknown.
Plant SDH is well known to be activated by ATP. This was recently confirmed by a novel approach in which SDH activation state was assessed in isolated mitochondria by using simultaneous measurements of oxygen uptake rate and Q reduction state [31]. This study found that SDH was also activated by succinate, ADP and complex V inhibitors while being inactivated by K⁺ and uncouplers. The results are consistent with SDH activity being modulated in a novel way by membrane potential [31].

Complex III (cytochrome (cyt) c reductase) catalyzes the oxidation of Q, coupled with reduction of cyt c and proton translocation from the matrix to IMS. The electron transfer (Q-cycle) components include cyt b, Fe-S centers and cyt c₁. Antimycin A and myxothiazol are inhibitors, each blocking electron transport at different sites within the Q-cycle. Complex III consists of 10 subunits, some of which are involved in the processing of proteins being imported into the mitochondrion [32].

Complex IV (cyt oxidase) catalyzes the oxidation of cyt c, coupled with reduction of O₂ to H₂O and proton translocation from matrix to IMS. Electron transfer involves a copper sulfur cluster, cyt a, and a binuclear center consisting of cyt a₃ and a Cu atom. CN and CO inhibit the complex by binding to cyt a₃.

Interestingly, complex IV appears to exist in two forms: IVa (300 kDa) and IVb (220 kDa), in which IVa contains additional unique proteins [33]. The functional significance of these two forms is unknown. Millar et al. [30] found that complex IV consisted of eight proteins similar to those described in other organisms as well as six additional small proteins of unknown function. Because of difficulties in resolving this complex, the association of these six proteins with complex IV requires further confirmation.

Complex V (ATP synthase) accomplishes oxidative phosphorylation by facilitating the translocation of protons down their electrochemical gradient (from IMS to matrix) coupled with the synthesis of ATP from ADP + Pi. ATP synthase consists of the F₀ complex that forms a proton channel through the IMM and the F₁ catalytic complex that is anchored to F₀ and extends into the matrix. Oligomycin inhibits the complex by preventing proton translocation.

In several plant species, ATP synthase is shown to contain 13 subunits, 6 defining F₁ and 7 defining F₀ [33, 34]. The entire complex can be present in a dimeric form [33].

11.2.3 Additional electron transport chain and associated components

Besides complex I, the plant ETC contains alternate rotenone-resistant NAD(P)H dehydrogenases [35]. These likely include: (i) an NADH-specific enzyme on the internal side of the IMM (NADHₐₙ); (ii) an NAD(P)H-utilizing enzyme on the internal side of the IMM (NAD[H]ₐₙ); (iii) an NADH-specific enzyme on the external side of the IMM (NADHₑₐₙ) and (iv) an NAD(P)H-utilizing enzyme on the external side of the IMM (NAD[P]Hₑₐₙ). The internal dehydrogenases have access to matrix NAD(P)H while the external dehydrogenases have access to extra-mitochondrial NAD(P)H. All of these dehydrogenases are rotenone-resistant (in comparison to the rotenone-sensitive Complex I) and all will act to reduce the energy yield of respiration since they are non-proton pumping and bypass the proton-pumping complex I.
The various dehydrogenase activities outlined above have been well documented in isolated mitochondria or submitochondrial particles, and proteins that could account for these activities have been purified. The identification of corresponding genes is beginning to be elucidated, but this process is still incomplete. Analysis of an Arabidopsis T-DNA knockout line has identified a gene encoding an NAD(P)H$_{\text{in}}$ [36]. This evidence is based upon the high homology of this protein to proteins characterized in microorganisms, a large decline in NAD(P)H$_{\text{in}}$ activity in mitochondria from the knockout line and demonstration that an in vitro translation product of the gene is imported into mitochondria and localized to the inside of the IMM. Recently, Michalecka et al. [37] identified the gene encoding an NAD(P)H$_{\text{ex}}$. This was based on showing that overexpression of the gene product in transgenic plants resulted in increased external NADPH oxidation in isolated mitochondria. Several of the genes encoding known or potential alternate NAD(P)H dehydrogenases include amino acid sequence similar to EF-hand motifs for Ca$^{2+}$/H$^{+}$ binding [38]. This is in keeping with the observation that both the external activities and the NAD(P)H$_{\text{in}}$ activity are Ca$^{2+}$-dependent [35].

Besides complex IV, all plants contain an additional terminal oxidase called alternative oxidase (AOX) that catalyzes the oxidation of Q and reduction of O$_2$ to H$_2$O [39]. AOX is also non-proton pumping and since it bypasses proton-pumping complexes III and IV, electron flow to AOX will dramatically reduce the energy yield of respiration. Site-directed mutagenesis has been used to identify conserved Glu and His residues that coordinate the di-iron center of AOX, as well as to identify Tyr residues essential for activity [40, 41]. AOX is encoded by a multigene family but the functional significance of the different gene products is not yet clear [42]. AOX genes appear to be widely distributed in nature as they have been recently found in numerous marine eubacteria [43] as well as several animal invertebrate phyla [44].

The current molecular model of plant AOX indicates that it is an interfacial membrane protein on the matrix side of the IMM and that it exists as a homodimer (the state of which impacts the kinetic properties of the enzyme) (Figure 11.2) [45, 46]. Specifically, the dimer may be either noncovalently linked (reduced form) or covalently linked by a regulatory disulfide bond between the two monomers (oxidized form) [47]. A conserved Cys residue toward the N-terminus and within the matrix is responsible for this disulfide bond [48, 49]. Reduction of the disulfide bond is facilitated by the oxidation of specific TCA cycle substrates and, based upon the substrate specificity, it is hypothesized that specifically the generation of mitochondrial NADPH provides the reducing power for this regulatory reduction [50]. Consistent with this, overexpression of NADP$^+$-ICDH has recently been shown to favor conversion of AOX from its oxidized to reduced form [51]. Once reduced, AOX is sensitive to activation by specific α-keto acids, most notably pyruvate [50, 52]. It has been shown that pyruvate activation is due to its ability to interact with the exposed sulfhydryls of the regulatory Cys to produce a thiohemiacetal [48]. Activated AOX has been shown to effectively compete with the cyt pathway for electrons.

The above studies indicate that AOX activity is increased by a two-step process involving reduction of the regulatory disulfide bond and subsequent activation by
A working model for the structure and control of the plant mitochondrial AOX. AOX is an interfacial membrane protein on the matrix side of the IMM and is present as a homodimer. It is activated by a two-step process involving reduction of a regulatory disulfide bond (between CysI residues of the two subunits), followed by interaction of the component sulfhydryls with pyruvate to generate a thio-hemiacetal (indicated by the solid stars). Putative iron-binding residues (Glu and His residues) are indicated by black triangles. Residue numbering corresponds to a tobacco AOX gene (accession number S71335) (see text for details).
pyruvate (Figure 11.2). In this way, the partitioning of electrons to AOX is controlled in a feed-forward fashion by upstream metabolism and is responsive to both the redox (NADPH) and carbon (α-keto acid) status of the matrix. While this regulatory model is widely supported by extensive studies in both isolated plant mitochondria and yeast or bacterial expression systems, the significance of this control in vivo is yet to be directly demonstrated. Also, some plant AOX proteins lack the regulatory Cys and appear to exhibit other regulatory properties [53] or possess the regulatory Cys but appear not to require pyruvate for activation [54]. In addition, while absence of the regulatory Cys (due to site-directed mutagenesis) produced an enzyme that lacked pyruvate activation and displayed little activity in isolated mitochondria (as expected), the enzyme nonetheless displayed high activity in vivo [49]. The above studies indicate that our understanding of AOX activation remains incomplete.

Because of its non-energy-conserving nature, considerable effort has been put toward understanding the physiological role of AOX respiration, in addition to its well established role to generate heat in highly specialized thermogenic tissues such as the voodoo lily inflorescence [55]. In general, AOX provides flexibility to a metabolic process that otherwise couples carbon metabolism to electron transport and ATP synthesis. This could prevent redox and carbon imbalances, hence promoting metabolic homeostasis. However, it is not clearly established under what metabolic, environmental or developmental conditions such a role for AOX is of importance. It is also unclear what the full consequences of AOX activity are: what is the ‘metabolic cost’ of such a non-energy-conserving activity? For example, to what degree does it compromise overall plant productivity? In contrast, what is the ‘metabolic advantage’ of such activity? For example, to what extent does the promotion of metabolic homeostasis by AOX impact tolerance to stress conditions, which typically act to disrupt homeostasis? Some of these questions have been investigated using transgenic tobacco cells lacking AOX. For example, it has been suggested that AOX respiration represents an important mechanism to modulate growth rate in response to nutrient availability [56] and that a lack of AOX increases susceptibility to programmed cell death [57, 58]. It should be kept in mind that AOX could also provide a means to maintain electron transport if cyt oxidase were directly inhibited. For example, the potent cyt oxidase inhibitors cyanide, nitric oxide and sulfide are all normal products of metabolism and may be produced directly within the mitochondrion. AOX also provides a ‘heme-independent’ respiratory pathway that may be important during anoxia to air transitions, when the cyt-containing respiratory complexes are not yet functional [59].

Plant uncoupling proteins (UCPs) are members of a large family of mitochondrial anion carriers that are integral proteins of the IMM [60]. Similar to animals, the plant UCPs can catalyze proton conductance from the IMS to matrix, hence uncoupling electron transport from ATP synthesis. Arabidopsis contains three putative UCPs: UCP1 (formerly called PUMP), UCP2 and UCP4, a naming based on orthology to animal UCPs [61]. An important question is how the proton conducting activity of the plant UCPs is controlled, and a major advance in our understanding of this control is discussed later.
11.3 Posttranslational control of mitochondrial metabolism and function

New high-throughput proteomic approaches have not only been used to document the protein complement of plant mitochondria but have also given an insight into posttranslational means by which metabolism and function in this organelle may be controlled. Some of these new findings are highlighted below.

11.3.1 Phosphorylation – dephosphorylation

Reversible phosphorylation is a posttranslational modification that regulates the activity of many enzymes in primary metabolism. Table 11.1 lists the plant mitochondrial proteins shown to be phosphorylated. Many of these proteins have only been identified recently by using 2D gel electrophoresis followed by mass spectrometry [62]. It includes proteins involved in the TCA cycle, electron transport, oxidative phosphorylation and responses to stress. However, the reversible inactivation

<table>
<thead>
<tr>
<th>Table 11.1</th>
<th>Phosphoproteins of the plant mitochondrial proteome identified to date (see text for details).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>Reference</td>
</tr>
<tr>
<td>TCA cycle and associated enzymes</td>
<td></td>
</tr>
<tr>
<td>Pyruvate dehydrogenase (E1α subunit)</td>
<td>[3]</td>
</tr>
<tr>
<td>Aconitase</td>
<td>[62]</td>
</tr>
<tr>
<td>NAD-isocitrate dehydrogenase</td>
<td>[62]</td>
</tr>
<tr>
<td>Succinate thiokinase (α subunit)</td>
<td>[62]</td>
</tr>
<tr>
<td>Succinate thiokinase (β subunit)</td>
<td>[62]</td>
</tr>
<tr>
<td>Malate dehydrogenase</td>
<td>[62]</td>
</tr>
<tr>
<td>Malic enzyme (62 kD subunit)</td>
<td>[62]</td>
</tr>
<tr>
<td>Malic enzyme (59 kD subunit)</td>
<td>[62]</td>
</tr>
<tr>
<td>Formate dehydrogenase</td>
<td>[63]</td>
</tr>
<tr>
<td>Respiratory chain complexes</td>
<td></td>
</tr>
<tr>
<td>Complex II (flavoprotein α subunit)</td>
<td>[62]</td>
</tr>
<tr>
<td>Complex III (β-MPP subunit)</td>
<td>[62]</td>
</tr>
<tr>
<td>ATP synthase (F₀ b subunit)</td>
<td>[64]</td>
</tr>
<tr>
<td>ATP synthase (F₁ δ' subunit)</td>
<td>[64]</td>
</tr>
<tr>
<td>ATP synthase (F₁ α subunit)</td>
<td>[62]</td>
</tr>
<tr>
<td>ATP synthase (F₁ β subunit)</td>
<td>[62]</td>
</tr>
<tr>
<td>Stress-related proteins</td>
<td></td>
</tr>
<tr>
<td>HSP22</td>
<td>[66]</td>
</tr>
<tr>
<td>HSP60</td>
<td>[62]</td>
</tr>
<tr>
<td>HSP70</td>
<td>[67]</td>
</tr>
<tr>
<td>HSP90</td>
<td>[62]</td>
</tr>
<tr>
<td>Superoxide dismutase</td>
<td>[62]</td>
</tr>
<tr>
<td>Nucleoside diphosphate kinase</td>
<td>[65]</td>
</tr>
</tbody>
</table>
of PDH by phosphorylation (see above) represents the only case in which the regulatory significance of phosphorylation has been clearly elucidated. For the other proteins in Table 11.1, the potential regulatory significance is yet to be established [62–67]. Interestingly, while phosphorylation of the branched chain keto-acid dehydrogenase complex represents a prominent, well-characterized example of regulatory phosphorylation in animal mitochondria, to date the plant counterpart has not been identified as phosphorylated. As discussed in detail by Moorhead et al. (Chapter 5), the prerequisite for reversible regulatory phosphorylation is the existence of specific kinases and protein phosphatases capable of phosphorylating and dephosphorylating specific target proteins. Several studies have characterized such activities in different mitochondrial compartments but the molecular identity of these activities and their target proteins are yet to be elucidated [68–70]. The exception is PDH, in which specific kinase and phosphatase activities are tightly associated with the PDH complex (see above). Of the phosphoproteins listed in Table 11.1 there is at least one example (HSP70, [67]) in which the protein is capable of autophosphorylation. Alternatively, HSP22 was shown not to be capable of autophosphorylation, indicating involvement of a kinase [66].

14-3-3 proteins are phosphoserine/phosphothreonine – binding proteins involved in the control of primary plant metabolism (Chapter 5). Such proteins are present in the matrix or inner face of the IMM and were found to interact with ATP synthase in a phosphorylation-dependent manner [71]. Interaction was with the catalytic F1 β-subunit and could only be seen if ATP synthase was isolated in the presence of a phosphatase inhibitor. The interaction was shown to reduce ATP synthase activity but neither the mechanism of this inhibition nor its physiological relevance is yet understood. It could represent a means to prevent ATP hydrolysis under conditions when the electrochemical gradient across the IMM collapses (such as anoxia) and the catalytic activity of ATP synthase switches from ATP synthesis to ATP hydrolysis. Interestingly, a number of ATP synthase subunits appear to be subject to phosphorylation (Table 11.1).

11.3.2 Dithiol-disulfide interconversion

Thioredoxins (Trxs) are small proteins with a redox-active site consisting of two Cys residues in close proximity (see Chapter 6 for additional details). Two Trx systems exist. In one, oxidized Trx which is reduced by a ferredoxin-Trx reductase using ferredoxin as a source of electrons. In another, the disulfide is reduced by an NADPH-dependent Trx reductase. Reduced Trx can then act as a source of reductant in select enzymatic reactions or it can reduce specific disulfide bonds in target proteins, thereby altering the activity or functional properties of these target proteins.

While the Trx systems (and many of their target proteins) present in chloroplast and cytosol of plants have been well described for some time, a mitochondria-localized system is only recently being elucidated. Using the Arabidopsis genome, Laloi et al. [72] identified and described a novel plant mitochondrial Trx (Trx-0) as well as a mitochondrial NADPH-dependent Trx reductase. Recently, characterization of an additional Arabidopsis mitochondrial Trx (similar to the Trx-h of the cytosol),
as well as an additional Trx reductase, indicates that the system is complex [73, 74]. Such complexity is similar to that already known for the chloroplast and cytosol systems.

The complex nature of Trx systems is not surprising given the increasing range of processes for which these systems are being shown to take part. Recently, Balmer et al. [75] used mass spectrometry to identify mitochondrial Trx-binding proteins that eluted from a Trx-affinity column. This approach identified 50 soluble proteins (more than the number identified by similar approaches in the chloroplast), almost all of which could also be reduced by externally supplied Trx, as shown using a fluorescence gel electrophoresis technique. Further, most of these proteins were shown to contain conserved Cys residues, consistent with these residues being Trx targets. The proteins were divided into 12 functional categories and included many enzymes in energy metabolism (TCA cycle enzymes; proteins in ETC complexes I, III and IV; subunits of ATP synthase; adenylate kinase; nucleoside diphosphate kinase), amino acid metabolism, sulfur metabolism and stress-related reactions, among many others. Interestingly, the two matrix enzymes involved in photorespiration (GDC and SHMT) were identified, indicating that Trx might provide a regulatory link between chloroplast and mitochondrial metabolism [75]. The large number of stress-related proteins is in keeping with growing evidence that Trxs play an important role during stress. This may include the restoration of activities following reactive oxygen species (ROS)-induced inactivation, the provision of electrons for ROS scavenging systems and the control of ROS-scavenging enzymes [76, 77]. Interestingly, AOX (a protein implicated as important in dampening ROS generation by the ETC, see below) can be reduced and activated by externally supplied Trx [47, 73]. It is yet to be established whether this is a mode of AOX reduction in vivo. Clearly, a wealth of mitochondrial processes and target proteins whose activity or function may be linked to the mitochondrial redox state via NADPH and Trx are being uncovered. This may provide a rationale for the numerous modes of NADPH generation possible in plant mitochondria [78].

11.3.3 Other oxidative modifications

With the exception of Cys dithiol-disulfide interconversion (see above), little is known about the potential to regulate the activity or function of plant proteins by specific oxidative modifications. Proteins can display a wide range of oxidative modifications, both reversible and nonreversible [79]. While the regulatory value of nonreversible modifications seems questionable, it does not preclude the importance of such modifications to cellular metabolism, if they indeed impact the activity or functional properties of such proteins. Most oxidative modifications are viewed as being primarily induced by ROS and their by-products.

The potential impact of protein oxidation on mitochondrial metabolism is of particular interest since the ETC is a major source of ROS (see below). In fact, since ROS are being generated at ETC complexes; these complexes may themselves be important first targets of ROS-induced protein oxidation. The first steps toward understanding the significance of protein oxidation to mitochondrial function will
be: (a) to identify those proteins most susceptible to oxidation and determine the oxidative modifications involved and (b) to determine the impact of such oxidations on the functional properties of the proteins.

Recent studies using proteomic analyses have begun to investigate the above questions. Sweetlove et al. [80] examined the impact of oxidative stress (induced by supplying Arabidopsis suspension culture cells with H₂O₂, menadione or antimycin A) on the mitochondrial proteome. A set of respiratory proteins were identified that consistently appeared as degradation products following any of the oxidative stress treatments. It was hypothesized that these represent proteins particularly susceptible to oxidative modification, which was then targeting these proteins for degradation. Another study examined the effect of oxidative stress on the mitochondrial proteome of rice [81]. Importantly, this study sought to identify proteins containing carbonyl groups, a specific form of oxidative modification. Identified proteins that were common to each of the above studies included the TCA cycle enzymes ACO and succinate thiokinase, F₁ subunits of ATP synthase, cyt c and the voltage-dependent anion channel [80, 81]. These and some others represent good candidate proteins for oxidative modification in vivo. While the ability of ACO to be inactivated by oxidative stress has been previously established [7], the effect of oxidative stress on the activity or function of these other candidate proteins has not yet been tested.

11.3.4 Supramolecular complexes

The use of mild solubilization protocols and blue-native polyacrylamide gel electrophoresis has established that the ETC complexes of yeast and mammalian mitochondria are not simply singular units randomly distributed within the IMM, but rather that different complexes could assemble together into supramolecular structures [82]. Kinetic analyses are also consistent with the existence of such superstructures [83]. Studies in many different systems (fungi, animal, plant) have now found similar results and such supercomplexes have become known as ‘respirasomes’. These studies have begun to establish which complexes may enter into such associations with one another and what the stoichiometry of each complex is within these supercomplexes. In animals, complexes I, III and IV have all been shown to enter into such associations in various stoichiometries with one another. A potential advantage of ‘respirasomes’ is that they could facilitate the channeling of substrate between ETC components and possibly reduce the frequency of unwanted side reactions. Studies also suggest that association of complexes I and III in animals is necessary to maintain proper assembly or stability of complex I [84]. Evidence also indicates that the cardiolipin component of complexes may be essential for their ability to associate with one another [85]. Cardiolipin is a phospholipid specific to the IMM in both plants and animals. The first eukaryotic gene for cardiolipin synthase was recently identified in Arabidopsis and, as expected, encodes a mitochondrial-localized protein [86].

Initial studies with nongreen tissue of Arabidopsis, potato, bean and barley indicated associations between complexes I and III in stoichiometries of I₁III₂ and I₂III₄ [33]. The amount of complex I associated with complex III varied from 50% in bean and potato to 90% in barley. The use of gentler techniques demonstrated that complex
IV also associated into a supercomplex consisting of I_1III_2IV_4 in potato tuber mitochondria [87]. However, a supercomplex of I_1III_2 was still the most abundant form. Most recently, supercomplexes containing more abundant amounts of complex IV have been seen in mitochondria from green leaves [88]. These studies suggest that the presence of complexes I, III and IV in ‘respirasomes’ is a conserved feature amongst animals, fungi and plants. A notable feature of the plant ETC is the presence of the additional non-energy-conserving components, raising the question of whether these might also be present in supercomplexes. To date, there are conflicting reports as to whether plant AOX might be present in such supercomplexes [33, 89] and there is no evidence for the presence of an alternate NAD(P)H dehydrogenase. Much more work is necessary to determine if and how supercomplexes regulate in a dynamic way the rate or path of electron transport in plants. For example, it is unknown whether association of complexes I and III might limit the access of Q to AOX.

While there is as yet no evidence of associations with ATP synthase in plants, work in animals suggests that ATP synthase can exist in a complex with both a Pi transporter and the adenine nucleotide translocator (ANT) that exchanges ADP and ATP across the IMM. This ‘ATP synthasome’ could provide a mechanism whereby the substrates (ADP and P_i) for ATP synthesis are delivered directly to ATP synthase upon import across the IMM and the product of ATP synthase (ATP) is then delivered directly to ANT for export [90].

The concept of organizing a metabolic pathway into a supramolecular structure could also apply to the TCA cycle, although there is no direct evidence for this in plants. However, studies with animal mitochondria do support this concept of a TCA cycle ‘metabolon’. For example, Haggie and Verkman [91] tagged four TCA cycle enzymes at their C-termini with green fluorescent protein so that their mobility characteristics could be directly observed \textit{in vivo}. This study provided biophysical evidence that the four enzymes were indeed physically associated.

In animals, it is well established that some glycolytic enzymes can physically associate with the mitochondrion. Recently, proteomic analyses of highly purified Arabidopsis mitochondria have similarly demonstrated the presence of 7 of the 10 enzymes of glycolysis associated with the organelle [92]. Protease protection assays, enzyme activity analyses and metabolism of radiolabeled precursors supported association of the entire glycolytic pathway with the outer membrane. Yellow fluorescent protein fusion proteins of cytosolic aldolase and enolase also confirmed \textit{in vivo} their close association with mitochondria [92]. It remains to be established whether these associations primarily act to channel pyruvate to the mitochondrion or whether they have other unrelated functions.

11.4 Integration of mitochondrial metabolism with other metabolic pathways

In this section, a few examples are provided as to how components of the core respiratory machinery (TCA cycle and ETC) are integrated with other metabolic activities, both within and outside the mitochondrion.
11.4.1 Mitochondrial metabolism during photosynthesis

It is generally accepted that optimal photosynthetic metabolism is dependent upon interactions with respiratory pathways, and the interdependence of chloroplast and mitochondrial metabolism has been the subject of several reviews [e.g. 93–95].

A key function of the mitochondrion during photosynthesis is the metabolism of photorespiratory glycine in the matrix by GDC and SHMT. Since the NADH generated by this metabolism is produced in equal quantities to that required for hydroxypropyruvate reduction in the peroxisome, one possibility is the shuttling of this mitochondrial reductant to the peroxisome. However, different lines of evidence support the idea that a significant proportion of the NADH is instead oxidized by the mitochondrial ETC. In this case, chloroplast reductant would need to be shuttled to the peroxisome, a process that could help to buffer the chloroplast redox state and optimize photosynthesis. This idea is supported by analyses of tobacco mutants lacking complex I [96]. In these mutants, photosynthesis is compromised under photorespiratory conditions (and other transient conditions) due to the removal of complex I as an electron sink. Interestingly, while photosynthetic rate was reduced in these plants, respiration rate was not significantly impaired due to induction and presumably increased operation of the alternate NAD(P)H dehydrogenases. The inability of these to compensate for complex I during photosynthesis is likely due to their lower affinity for NAD(P)H, resulting in a more highly reduced cellular pool of pyridine nucleotides. However, other studies have shown that expression of NAD(P)Hin is strongly light-dependent suggesting that, while it may not be able to compensate for complex I in the light, it nonetheless takes part in light-induced metabolism [97].

Recent genomic and biochemical analyses suggest that the mitochondrion may contain more enzymes involved in photorespiration than previously thought. For example, glutamine synthetase is dual-targeted to both leaf mitochondria and chloroplasts [98] and Arabidopsis mitochondria contain a putative glycolate dehydrogenase that, similarly to algae, could oxidize photorespiratory glycolate to glyoxylate within this organelle [99].

Recent analyses of mutant or transgenic plants with altered levels of specific TCA cycle enzymes have provided new insights into the role of mitochondrial metabolism in the light. Carrari et al. [100] characterized a tomato mutant with lowered levels of both mitochondrial and cytosolic ACO. Feeding experiments with 14CO$_2$ indicated a reduction in TCA cycle carbon flow. Surprisingly, these plants exhibited higher rates of photosynthesis and carbon assimilation, maintained a higher pool of sucrose and produced a higher fruit yield than wild-type (wt) plants. The results were consistent with the idea that the TCA cycle normally competes with the sucrose biosynthetic pathway for carbon. Importantly, the results also suggest that TCA cycle carbon flow coupled with oxidative phosphorylation is not a critical source of ATP for sucrose synthesis.

In another study, transgenic tomato plants with reduced levels of mitochondrial MDH were also found to have increased rates of photosynthesis and yield in comparison to wt plants [101]. Metabolite profiling indicated that the most striking change in the transgenics was a large increase in the pool of ascorbate (Asc).
Further, the increased photosynthetic rate of the mutant could be phenocopied by incubation of wt leaf discs with Asc. These results are interesting given that Asc biosynthesis may be linked to electron transport through complex I (see below). Taken together, the results suggest a novel link between TCA cycle carbon flow and photosynthesis and involving the important antioxidant Asc.

11.4.2 Ascorbate biosynthesis

While Asc is a critical component of the antioxidant system in plants (see below), its pathway(s) of biosynthesis is not yet entirely established. Nonetheless, one important biosynthetic pathway is known to terminate with the conversion of L-galactono-1,4-lactone to Asc by L-galactono-1,4-lactone dehydrogenase (GLDH). This enzyme resides in the IMM and has been shown to use oxidized cyt c (cyt c$_{\text{ox}}$) as its electron acceptor [102]. Hence, Asc synthesis can stimulate electron transport to oxygen, can be inhibited by CN (which acts to deplete the pool of cyt c$_{\text{ox}}$) and can be stimulated by antimycin A (which acts to increase the pool of cyt c$_{\text{ox}}$) [103]. Interestingly, it has recently been established that GLDH physically associates with complex I and that Asc synthesis can be partially inhibited by the complex I inhibitor rotenone, despite the fact that rotenone is expected to increase the pool of cyt c$_{\text{ox}}$ [104]. This suggests that complex I function is a necessary prerequisite for optimal Asc synthesis by the associated GLDH. While details of the relationship between complex I and the synthesis of Asc remain unknown, the above findings have uncovered an intriguing relationship between electron transport and the biosynthesis of an important ROS-scavenger. This new model for Asc biosynthesis is summarized in Figure 11.3.

11.4.3 Mitochondrial fatty acid synthesis

Fatty acids are synthesized by the combined enzymatic activities of acetyl-CoA carboxylase (ACCase) and fatty acid synthase (FAS). While fatty acid synthesis is predominantly a plastid-localized process, the possibility of some mitochondrial-

Figure 11.3 A working model for the biosynthesis of Asc in plant mitochondria (see text for details).
localized synthesis was supported by the discovery of acyl carrier protein (ACP) in mitochondria [105], the incorporation by mitochondria of 2^{-14}C malonate into fatty acids [106] and by the capacity of mitochondria to produce malonyl- and acetyl-ACP [26]. More recent results indicate that plant mitochondria do indeed possess FAS activity and that the pathway generates primarily C$_8$ and C$_{14}$–C$_{16}$ fatty acyl chains [107, 108]. While the C$_8$ chains are precursors for lipoic acid (a cofactor in several matrix enzymes), the function of the longer acyl chains is unknown but likely relates to remodeling or repair of membrane phospholipids.

Previous studies with dicotyledonous species have failed to identify ACCase in mitochondria, suggesting that mitochondrial fatty acid synthesis will require the import of malonate. However, using blue-native/SDS-PAGE combined with mass spectrometry, abundant ACCase has been found in mitochondria of wheat and barley [109]. Further work is necessary to determine whether this represents a dual-targeted ACCase (to both plastid and mitochondria) and to determine whether its presence in mitochondria of monocotyledonous species and absence in mitochondria of dicotyledonous species is a general feature in plants.

11.4.4 The glyoxylate cycle and lipid respiration

Upon germination, oil-storing seeds convert stored triacylglycerols to sucrose, which then supports early growth of the seedling. This process involves the glyoxylate cycle which allows the acetyl-CoA generated by glyoxysomal β-oxidation of fatty acids to be converted into succinate. Succinate metabolism in the mitochondrion generates OAA, which then supports the synthesis of sucrose via cytosolic gluconeogenesis. During this germinated oilseed metabolism, the activities of decarboxylative steps in the TCA cycle are thought to be low, thus favoring gluconeogenesis over TCA cycle carbon flow [110].

The two unique and sequential glyoxysomal enzymes of the glyoxylate cycle are isocitrate lyase (ICL, generating glyoxylate and succinate from isocitrate) and malate synthase (MLS, generating malate from glyoxylate and acetyl-CoA). Recently, the analyses of Arabidopsis mutants lacking these enzymes have not only given an insight into the role of the glyoxylate cycle in lipid to sucrose conversion, but also have allowed an evaluation of the capacity of lipid breakdown to directly support mitochondrial respiration. In mutants lacking ICL, germinating seedlings lost the ability to convert stored lipid to sucrose and exhibited features characteristic of carbohydrate starvation, confirming the role of the glyoxylate cycle in this process [111, 112]. However, in the presence of exogenous sugar, these seedlings were nonetheless able to break down the lipid stores (in the absence of any gluconeogenic carbon flow), likely then using the carbon directly in respiration. This suggests a mechanism allowing carbon flow from lipid breakdown in the glyoxysome to the mitochondrion, other than a glyoxylate cycle. One possibility is that citrate and OAA shuttle between the glyoxysome and mitochondrion, generating a TCA cycle that effectively spans the two organelles [113]. Such a mechanism may be important in mature plant tissues that retain a functional fatty acid β-oxidation pathway but lack a glyoxylate cycle. In some cases, such fatty acid breakdown in mature tissues has been shown to support respiration [114].
In mutants lacking MLS, germination and the conversion of lipid to sucrose were largely unaffected [112]. In this case, succinate produced by the ICL could still feed into the TCA cycle and support OAA synthesis while glyoxylate (the substrate of MLS) was instead metabolized to sugars, likely by the photorespiratory enzymes known to coexist with glyoxylate cycle enzymes [112]. Both the ICL and MLS mutants emphasize the remarkable flexibility apparent in plant respiratory metabolism.

11.5 Mitochondrial metabolism of reactive oxygen species

11.5.1 Mitochondrial ROS generation

Aerobic metabolism is inevitably associated with the generation of ROS such as superoxide (O$_2^-$), hydrogen peroxide (H$_2$O$_2$) and hydroxyl radical. Since ROS can damage lipid, protein and DNA, their cellular levels are managed through both scavenging and avoidance mechanisms [115]. While the chloroplast ETC is thought to represent the major source of ROS from plant metabolism, there is a growing realization that the mitochondrial ETC is also an important source of ROS, perhaps the dominant source in nonphotosynthetic tissues, as well as photosynthetic tissue in the dark. Perhaps reflecting this, a recent study in wheat leaves suggests that mitochondria contain considerably more oxidatively modified proteins than do the chloroplast or peroxisome [116]. Many forms of stress promote ROS generation in plants, partly due to the ability of such stresses to disrupt metabolic homeostasis. The importance of mitochondrial ROS in this regard is suggested by studies showing that overexpression of a mitochondrial ROS-scavenging enzyme can improve stress tolerance [117, 118].

11.5.2 Mechanisms to scavenge mitochondrial ROS

Mittler et al. [119] did a comprehensive analysis of the Arabidopsis genome to identify and at least putatively localize the large network of proteins involved in managing cellular levels of ROS. Table 11.2 summarizes the findings of this study in terms of the potential ROS-scavenging complement of the mitochondrion. (The table also defines many of the abbreviations to follow.) The list includes enzymes that directly scavenge O$_2^-$ (i.e., SOD), as well as those that scavenge H$_2$O$_2$ using either Asc (i.e., APX), GSH (i.e., GPX) or reduced sulfhydryls (i.e., PrxR) as a source of electrons. Also included are the enzymes capable of regenerating Asc (i.e., MDAR, DHAR, GLR), GSH (i.e., GR) or reduced sulfhydryls (i.e., Trx). Only a fraction of these putative mitochondrial localized proteins have been confirmed to reside in the mitochondrion. However, the basic scavenging systems of the mitochondrion are being elucidated, as outlined below.

The four enzymes APX, MDAR, DHAR and GR, along with the low molecular weight antioxidants Asc and GSH, constitute the Asc-glutathione cycle. Jiménez et al. [120] established the presence of all these components in pea leaf mitochondria.
More recently, the Arabidopsis Asc-glutathione cycle has been characterized at the molecular level [121]. Interestingly, this study showed dual-targeting of some gene products to both the chloroplast and mitochondrion. This indicates that the antioxidant defense capacity of these two organelles may be coordinately controlled. GPX is another potentially important ROS scavenging system in the mitochondrion and also represents a potentially important means to repair lipid damage, since these enzymes are also known to reduce lipid peroxides. Of the eight GPX genes in Arabidopsis, two appear to represent mitochondrial isoforms and, interestingly, one of these (GPx6) was the family member that showed the strongest increase in expression when induced by several different stress conditions [122]. Analyses of Arabidopsis mutants lacking a mitochondrial PrxR have indicated that this protein does contribute to the ROS-scavenging capacity of the matrix. Such plants appeared to compensate for this deficiency by increasing the levels of mitochondrial APX and GPX [123].

In addition to the principal components of the mitochondrial ROS-scavenging network described above, several other components also deserve mention. Metal ions present in the cell in oxidized forms (Fe$^{3+}$, Cu$^{2+}$) are reduced in the presence of O$_2^-$ and can subsequently catalyze the conversion of H$_2$O$_2$ to hydroxyl radical (the Fenton reaction). Hence, cells contain metal-binding proteins such as ferritins (Fe-binding) and blue copper proteins (Cu-binding). The Arabidopsis genome includes up to four genes encoding ferritin proteins and up to nine genes encoding blue copper proteins. Of these, the mitochondrion may contain up to two ferritin and four blue copper proteins. Recently, the presence of ferritin in plant mitochondria

Table 11.2 The major ROS-scavenging components proposed to be localized in mitochondria of Arabidopsis (see text for details)

<table>
<thead>
<tr>
<th>Enzyme/reaction</th>
<th>Number of genes in Arabidopsis</th>
<th>Number with mitochondrial localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superoxide dismutase (SOD)</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>$\text{O}_2^- + \text{O}_2^- + 2\text{H}^+ \rightarrow \text{H}_2\text{O}_2 + \text{O}_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascorbate peroxidase (APX)</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>$2 \text{Asc} + \text{H}_2\text{O}_2 \rightarrow \text{2MDA} + 2\text{H}_2\text{O}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monodehydroascorbate reductase (MDAR)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>$\text{MDA} + \text{NADPH} + \text{H}^+ \rightarrow \text{Asc} + \text{NADP}^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dehydroascorbate reductase (DHAR)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>$\text{DHA} + 2\text{GSH} \rightarrow \text{Asc} + \text{GSSG}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutathione reductase (GR)</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>$\text{GSSG} + \text{NADPH} \rightarrow 2\text{GSH} + \text{NADP}^+$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutathione peroxidase (GPX)</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}_2 + 2\text{GSH} \rightarrow \text{2H}_2\text{O} + \text{GSSG}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroxiredoxin (PrxR)</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>$2\text{P-SH} + \text{H}_2\text{O}_2 \rightarrow \text{P-S-S-P} + 2\text{H}_2\text{O}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thioredoxin (Trx)</td>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td>$\text{P-S-S-P} + 2\text{H}^+ \rightarrow 2\text{P-SH}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glutaredoxin (GLR)</td>
<td>27</td>
<td>15</td>
</tr>
<tr>
<td>$\text{DHA} + 2\text{GSH} \rightarrow \text{Asc} + \text{GSSG}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More recently, the Arabidopsis Asc-glutathione cycle has been characterized at the molecular level [121]. Interestingly, this study showed dual-targeting of some gene products to both the chloroplast and mitochondrion. This indicates that the antioxidant defense capacity of these two organelles may be coordinately controlled. GPX is another potentially important ROS scavenging system in the mitochondrion and also represents a potentially important means to repair lipid damage, since these enzymes are also known to reduce lipid peroxides. Of the eight GPX genes in Arabidopsis, two appear to represent mitochondrial isoforms and, interestingly, one of these (GPx6) was the family member that showed the strongest increase in expression when induced by several different stress conditions [122]. Analyses of Arabidopsis mutants lacking a mitochondrial PrxR have indicated that this protein does contribute to the ROS-scavenging capacity of the matrix. Such plants appeared to compensate for this deficiency by increasing the levels of mitochondrial APX and GPX [123].

In addition to the principal components of the mitochondrial ROS-scavenging network described above, several other components also deserve mention. Metal ions present in the cell in oxidized forms (Fe$^{3+}$, Cu$^{2+}$) are reduced in the presence of O$_2^-$ and can subsequently catalyze the conversion of H$_2$O$_2$ to hydroxyl radical (the Fenton reaction). Hence, cells contain metal-binding proteins such as ferritins (Fe-binding) and blue copper proteins (Cu-binding). The Arabidopsis genome includes up to four genes encoding ferritin proteins and up to nine genes encoding blue copper proteins. Of these, the mitochondrion may contain up to two ferritin and four blue copper proteins. Recently, the presence of ferritin in plant mitochondria
has been confirmed [124]. Since both MDAR and GR utilize NADPH, a mitochon-
drial source of this electron donor is critical for operation of the Asc-glutathione
cycle. In animals, the mitochondrial NADP^+-dependent ICDH represents a critical
source of NADPH for the antioxidant defenses of the mitochondrion [125]. Such an
enzyme is also present in plant mitochondria but whether it is critical for ROS-
scavenging is not yet known.

11.5.3 Mechanisms to avoid mitochondrial ROS generation

Complexes I and III likely represent the primary sites of ROS generation by the
mitochondrial ETC in both animals and plants [115, 126]. However, the relative
importance of these two sites of generation, particularly in plants, is unknown. The
factors that influence the rate of ROS generation are also largely unknown,
although an important generalization can be made: ROS generation increases as
ETC components become more highly reduced. ROS generation by isolated mito-
chondria is therefore increased under state 4 (ADP-limiting) conditions that
increase membrane potential while being decreased by uncouplers that dissipate
membrane potential [127]. ROS generation can also be increased by inhibition of
specific sites in the ETC such as inhibition of complex III by antimycin A or inhi-
bition of complex I by rotenone. Again, these inhibitors promote ROS generation
by promoting overreduction of specific ETC components [115, 126].

As outlined earlier, the ETC of plants includes several unique components that
impact the energetics of respiration. Another consequence of these components is
that they may act to dampen ROS generation. By accepting electrons from Q, AOX
could act to prevent overreduction of complexes I and III. Since AOX respiration is
less tightly coupled to ATP production, this mechanism might be important under
conditions in which cyt pathway activity is restricted by the rate of ATP turnover.
Alternatively, it may be important if cyt pathway components are damaged by
stress. The UCPs may also represent an important means to dampen mitochondrial
ROS, owing to their ability to uncouple ETC activity. A role of AOX in dampening
the generation of ROS is strongly supported by the finding that transgenic cells
lacking AOX exhibit an increased rate of ROS release specifically from the mito-
chondrion [128]. Studies with isolated mitochondria also support the importance of
AOX in dampening ROS generation [129]. Interestingly, AOX expression is
induced by H_2O_2 [11] while activity of the UCPs is controlled by O_2^- (see below).
These observations suggest positive feedback loops so that increases in cellular
ROS enhance the activity of these ROS-dampening components of the ETC.

How the alternate NAD(P)H dehydrogenases may impact ROS generation is
unknown. On the one hand, they may themselves represent sites of ROS generation,
although no data are available regarding this. Alternatively, they may represent another
means to dampen ROS generation since (1) their activity will bypass complex I, a
known ROS producer and (2) unlike complex I, their activity does not contribute to the
generation of membrane potential. It is also possible that one or more of these dehy-
drogenases could act in concert with AOX to provide a completely nonenergy con-
serving route of electron transport to O_2, but this hypothesis still needs to be tested.
Recent studies of particular interest examined the ability of a product of ROS-induced membrane damage (the lipid peroxidation product 4-hydroxy-2-nonenal (HNE)) to inhibit mitochondrial enzyme activities [130, 131]. It was established that specifically the lipoic acid containing enzymes (PDH, OGDH, GDC) were inhibited by low levels of HNE due to the formation of lipoic acid-HNE Michael adducts. Of these enzymes, GDC was the most susceptible to inactivation, suggesting that photorespiratory glycine oxidation may be particularly prone to oxidative stress [131]. These studies suggest that photorespiration will not tolerate high levels of ROS formation and lipid peroxidation in the mitochondrion, and that mechanisms may therefore be engaged to limit such formation. In this regard, it is interesting that the expression of ETC components that might help limit ROS generation (the alternate NAD(P)H dehydrogenases) are induced by light [97].

Significantly, both UCPs and AOX appear to also be targets of HNE, although with contrasting effects on their activity. For some years, it has been known that UCP activity is stimulated by fatty acids and inhibited by nucleotides. Recently, it has been established that fatty acids do not directly activate UCPs but rather that matrix O$_2^-$ (in the presence of fatty acids) activates UCPs [132]. Further, it appears that the effect of O$_2^-$ is to generate HNE, which then acts as a potent activator of the UCPs [133]. Figure 11.4 describes a model for how HNE could act to control the mitochondrial generation of ROS. In this model, reductant generated in the matrix by the activity of the TCA cycle and photorespiratory pathways is oxidized by the ETC, thus increasing membrane potential. Increased membrane potential will stimulate ROS generation by the ETC, leading to increased levels of lipid peroxidation products such as HNE. However, the increase in HNE will subsequently reduce membrane potential (hence reducing ROS generation) since it acts to both inhibit the generation of reducing equivalents (by inhibiting PDH, OGDH and GDC) and stimulate dissipation of membrane potential (by activating UCPs). Interestingly, while AOX represents another important mechanism to reduce ROS generation by the ETC, it is also inactivated by HNE [134]. This may provide an explanation as to why plants maintain both these energy dissipating pathways.

Figure 11.4 A working model for the control of mitochondrial energy metabolism and ROS production by the lipid peroxidation product HNE (see text for details). $\Delta \psi$ is membrane potential.
11.5.4 Signalling functions of mitochondrial ROS

The consequence of mitochondrial-generated ROS for oxidative damage to mitochondrial components is an area of active research (see above). However, a second potentially important consequence of mitochondrial ROS is that they may act as signalling molecules that can be perceived (by either the mitochondrion or other parts of the cell), leading to specific cellular responses. For example, several different ETC mutants are described that alter the rate of ROS generation and which display specific constitutive changes in gene expression or aberrant gene expression in response to stress [128, 135, 136]. Such experiments implicate mitochondrial ROS as signalling molecules, but this will need to be confirmed by a description of the molecules involved in ROS perception and signal transduction. Such work is in its infancy in plants.

11.6 Additional stress-induced metabolic pathways associated with plant mitochondria

Some other aspects of mitochondrial metabolism are also often associated with stress. In the section below, we highlight recent findings on a select group of such pathways.

11.6.1 GABA shunt

The three unique enzymes of the γ-aminobutyrate (GABA) shunt (Figure 11.5) include Glu decarboxylase (GAD, converting Glu to GABA), GABA transaminase (GABA-T), and succinate thiokinase (SSADH).

![Figure 11.5 Organization and control of the GABA shunt in plant mitochondria. Note that each of the GABA shunt enzymes resides in the mitochondrial matrix, with the exception of GAD, which is cytosolic (see text for details).](image-url)
(converting GABA to succinic semialdehyde) and succinic semialdehyde dehydrogenase (SSADH, converting succinic semialdehyde and NAD\(^+\) to succinate and NADH). GAD is a cytosolic enzyme while GABA transaminase and SSADH are present in the mitochondrial matrix. The GABA shunt effectively converts 2-oxoglutarate (via Glu) to succinate via a pathway that bypasses the two usual TCA cycle steps (OGDH, succinate thiokinase) required for this conversion. Shunt activity may be controlled at the level of GAD and/or SSADH. GAD is controlled by a Ca\(^{2+}\)-calmodulin complex and, as expected, this appears to increase the GABA shunt flux in response to stress conditions [137]. SSADH activity is inhibited by ATP and NADH, linking pathway flux to the energy and redox status of the mitochondrial matrix [138]. Hence, shunt activity may be expected to increase under stress conditions that compromise energy metabolism.

Recently, it was shown that Arabidopsis mutants lacking SSADH accumulate ROS, particularly under stress conditions [139]. The source of these ROS is unknown, but their accumulation correlates with the accumulation of \(\gamma\)-hydroxybutyrate (GHB) in the mutant plants [140]. GHB is synthesized from the shunt intermediate succinic semialdehyde, which might be expected to accumulate in the mutant due to the lesion at SSADH. An enzyme capable of such GHB synthesis (\(\gamma\)-hydroxybutyrate dehydrogenase) has recently been characterized in Arabidopsis [141]. GHB synthesis is also favored under hypoxic or anoxic conditions when both its substrates (succinic semialdehyde and NAD(P)H) are expected to increase [141].

An untested possibility is that the GABA shunt provides a means to bypass a stress-induced lesion in the TCA cycle at either OGDH or succinate thiokinase. This could act to maintain normal energy metabolism and ROS levels.

11.6.2 Mitochondrial amino acid catabolism

Genomic, proteomic and biochemical analyses have now shown that most of the enzymes involved in the catabolism of the branched chain amino acids (Leu, Ile and Val) are present in plant mitochondria [142–145]. For example, the branched chain keto-acid dehydrogenase complex, which represents an early step common in the catabolism of each of these amino acids, is localized to the mitochondrion, as is a \(\beta\)-methylcrotonyl-CoA carboxylase required specifically for Leu catabolism [145]. These catabolic pathways appear to be induced by their substrates and particularly under conditions of sugar starvation [146, 147]. The oxidative metabolism of these amino acids may provide a source of respiratory substrates under stress or other conditions that compromise sugar availability.

11.6.3 Formate dehydrogenase

Formate dehydrogenase (FDH) catalyzes: formate + NAD\(^+\) → CO\(_2\) + NADH. This matrix enzyme can be one of the most abundant proteins in mitochondria of nonphotosynthetic tissues but is much less abundant in photosynthetic tissues. However, leaf levels of FDH are greatly enhanced under stress conditions such as drought and cold, such that these mitochondria can now readily utilize formate as
a respiratory substrate supporting oxidative phosphorylation [148]. Elucidation of the physiological role of FDH is complicated by an incomplete understanding of both the origins and metabolism of formate in different plant tissues [149]. Nonetheless, it has been shown that formate accumulates in both photosynthetic and nonphotosynthetic tissues of transgenic plants lacking FDH [150]. One untested possibility is that formate oxidation by FDH provides an important source of reducing power to the ETC under stress conditions in which other pathways such as the TCA cycle may have been compromised and in which the availability of formate may be increased. This could act to both support oxidative phosphorylation under stress and prevent the build-up of potentially toxic levels of formate.

Using sprouting potato tubers, Bykova et al. [63] recently showed an inverse relationship between the maximum catalytic activities of FDH and cyt oxidase in sprouting potato tubers. While cyt oxidase activity declined as a function of the steady-state oxygen concentration within the tuber, the FDH activity increased. These data suggest a role for FDH under hypoxic conditions, conditions that are known to induce FDH expression. One possibility is that some plant tissues maintain a formate-producing fermentation pathway, the formate from which is subsequently oxidized by FDH. In unicellular algae, the anaerobic enzyme pyruvate formate-lyase catalyzes the formation of acetyl-CoA and formate from pyruvate and CoA. While such an enzyme has not been identified in plants, the Arabidopsis genome does contain a conserved local sequence motif of pyruvate formate-lyase [63]. The combined action of pyruvate formate-lyase and FDH gives the same net result as the reaction catalyzed by PDH.

11.6.4 Mitochondrial aldehyde dehydrogenases

Aldehyde dehydrogenases (ALDHs) represent a large protein family capable of oxidizing a wide range of aldehydes to their corresponding acids, coupled with the reduction of NAD(P)H. The plant species studied (including tobacco, maize, Arabidopsis and rice) each have two confirmed or predicted mitochondrial ALDHs that have distinct (but overlapping) substrate specificities and distinct expression patterns [151–154].

Besides having an important housekeeping function in preventing accumulation of various aldehydes to toxic levels, it is likely that the mitochondrial ALDHs also play more specific roles in metabolism and stress tolerance. One potentially harmful aldehyde is acetaldehyde, an intermediate in the conversion of pyruvate to ethanol during fermentation. During reaeration, accumulated ethanol can be converted back to acetaldehyde, causing injury. Recently, expression and activity analyses of ALDH during and following hypoxia suggested that one of the mitochondrial ALDHs may play a key role in preventing posthypoxic acetaldehyde-induced damage [154]. ALDH converts acetaldehyde to acetate, which can then be converted to acetyl-CoA by acetyl-CoA synthetase. Besides preventing toxic accumulation of acetaldehyde, this pathway could provide a ready supply of acetyl-CoA and NAD(P)H as aerobic respiration recovers. Other important sources of reactive
aldehydes result from lipid peroxidation and defectively functioning TCA cycle enzymes, processes that may increase in the mitochondrion under various stress conditions [155]. Accordingly, several studies of mitochondrial proteomes have shown induction of ALDHs in response to stress [56]. Mitochondrial ALDH activity appears to be critical for normal pollen development [151] and was in fact identified as a ‘nuclear restorer gene’ against cytoplasmic male fertility [156]. In pollen, ALDH may be part of a necessary metabolic bypass of PDH for the conversion of pyruvate to acetyl-CoA [157].

11.6.5 Mitochondrial glycerol-3-phosphate dehydrogenase

Long ago, it was observed that isolated plant mitochondria oxidized glycerol-3-phosphate (G-3-P) coupled with ETC activity. It appears that this is due to the presence of an FAD-dependent G-3-P dehydrogenase (FAD-GPDH) recently shown to be associated with the membrane fraction of Arabidopsis mitochondria [158]. In animals, a G-3-P shuttle transfers reducing equivalents from the cytosol to the mitochondrial ETC. This shuttle consists of a cytosolic NAD-dependent GPDH (reducing dihydroxyacetone phosphate to G-3-P using NADH) and an FAD-GPDH on the outer face of the IMM that oxidizes G-3-P back to dihydroxyacetone phosphate coupled with electron flow from FADH2 to the ETC. Since these shuttle components appear to also be present in plants, it represents another potential means (besides the alternate external NAD(P)H dehydrogenases) to deliver extra-mitochondrial reducing power to the ETC, although this still requires confirmation. Interestingly, activity of the plant FAD-GPDH is likely independent of Ca2+ since it lacks the EF-hand Ca2+-binding domain seen in the animal enzyme. One possibility is that a G-3-P shuttle moves reducing equivalents under nonstressed conditions while the Ca2+-activated alternate external NAD(P)H dehydrogenases supplement this activity under stress conditions.

11.6.6 Nucleoside diphosphate kinase

Nucleoside diphosphate kinases (NDPKs) catalyze the transfer of a phosphate group from nucleoside triphosphates to nucleoside diphosphates: N1TP + N2DP → N1DP + N2TP. This activity is important, for example, in maintaining the balance between ATP and GTP. In plants, NDPKs are known to exist in the cytosol, plastid and mitochondrion [159]. The mitochondrial isoform has been localized to the intermembrane space as well as being tightly bound to the inner membrane, possibly via interaction with other proteins such as the ANT [159, 160]. Interaction with the ANT suggests that NDPK activity may in some way facilitate or regulate the exchange of ATP and ADP across the IMM [160]. Besides their primary metabolic role, some NDPKs have been suggested to play regulatory roles, due to their ability to interact with other proteins, possibly modifying their function. It is therefore interesting that the plant mitochondrial NDPK was recently shown to interact with an unidentified 86 kD protein synthesized in response to heat shock [161].
11.6.7 Root organic anion exudation

Organic acids such as citrate and malate are often excreted by plant roots in response to nutrient deficiency (particularly Pi) or in response to toxic soil levels of cations (particularly Al). These organic acids are almost certainly present in the cytosol in their dissociated (anion) form and can hence be transported passively from cell to soil down their electrochemical gradient. Plant growth is often limited by the soluble Pi content of the soil. The organic anions increase the concentration of soluble Pi in the rhizosphere by competing with Pi for binding sites in the soil and by forming stronger complexes with soil Al$^{3+}$, Fe$^{3+}$ and Ca$^{2+}$ than does Pi. By these mechanisms, organic anion exudation has been shown to both improve Pi nutrition and dampen Al toxicity [162].

Over a plant’s lifetime, organic anion exudation can represent a significant loss of carbon [162]. Hence, exudation must be tightly controlled at the level of organic acid synthesis and/or passive transport to the rhizosphere. Increased exudation has often been associated with changes in the activity of cytosolic and mitochondrial enzymes involved in organic acid metabolism. This has included upregulation of phosphoenolpyruvate carboxylase, MDH and citrate synthase (to increase malate/citrate synthesis), sometimes combined with decreases in ACO and ICDH (to decrease malate/citrate catabolism). Nonetheless, a clear picture of how these changes might regulate organic acid synthesis and increase exudation has not emerged [162].

Another approach has been to generate transgenic plants with manipulated levels of the enzymes involved in organic acid metabolism. In some cases, this has resulted in increased organic acid efflux, combined with improved P acquisition or Al$^{3+}$ tolerance [163, 164]. Such results suggest that genetic engineering of organic acid metabolism might provide a means to increase the tolerance of crop plants toward nutrient deficiencies and inorganic ion toxicities. Importantly, the anion channels responsible for organic acid efflux are also being described, although their molecular nature is not yet known [165, 166].

11.7 Concluding remarks

Mitochondria are a central organelle for carbon and energy metabolism in plants. Nonetheless, there remain important gaps in our understanding of the components of carbon and energy metabolism in this organelle and how these components are controlled. There is also increasing evidence that plant mitochondria may be subject to stress-induced damage and that the functional state of mitochondria is an important factor in maintaining critical aspects of cellular function such as redox homeostasis. However, in comparison to our advanced understanding of how photosynthesis and chloroplast function are adjusted and maintained as environmental and metabolic conditions fluctuate, we have a relatively poor understanding of how respiration and mitochondrial function are similarly maintained. This remains an important challenge for the future.
Acknowledgements

Research grant support from the Natural Sciences and Engineering Research Council of Canada (to G.C.V.) and from an Ontario Graduate Scholarship (to A.E.M.) is gratefully acknowledged.

References

12 Photosynthetic carbon–nitrogen interactions: modelling inter-pathway control and signalling
Christine H. Foyer, Graham Noctor and Paul Verrier

12.1 Introduction

Plants have four basic requirements for growth and biomass production. These are: light, carbon dioxide, water and mineral elements. Among the last, the requirement for nitrogen (N) is the most important, as amino acids are the building blocks of protein, chlorophyll, nucleotides and numerous other metabolites and cell components. The fact that N is required by plants in greater quantities than any other mineral element largely reflects the abundant N invested in the photosynthetic apparatus, which uses carbon dioxide, water and inorganic N to produce sugars, organic acids and amino acids, the basic building blocks of biomass accumulation. The availability of N is thus a significant determinant of both photosynthetic capacity and crop yield. Plants can absorb and assimilate various forms of N, though in many forms of agriculture the high amounts of added nitrate and the presence of nitrifying bacteria mean that nitrate is the principal form available to the roots of crop plants.

Nitrogen is acquired from the soil through uptake of nitrate and ammonium catalysed by a range of low and high affinity transport systems. Mycorrhizal fungi associated with roots can aid in the uptake process, particularly in N-poor soils. Presumably the fungi benefit from reduced carbon present in the root exudates. A more extensive elaboration of the mutually beneficial exchange of carbon for N between organisms is the symbiotic association between the roots of leguminous plants and soil rhizobia that results in the development of specific organs, called nodules, whose primary function is N fixation. The products of symbiotic N fixation (amides in temperate legumes and ureides in tropical legumes) are exported from the nodules to the rest of the plant where they are incorporated into essential macromolecules such as proteins. The elaborate inter-organism exchange of C and N metabolites that facilitates this symbiosis is not covered in this short chapter, but it follows the basic principles of supply and demand that underpin inter-pathway flux controls and metabolite cross-talk in the orchestration of gene expression. This ensures an appropriate plant C/N balance relative to developmental and metabolic controls. Substrates, metabolites and products are important in the control of the expression and activity of key enzymes that allows coordination of C and N assimilation, as they act as ‘signals’ of C/N status. Moreover, these signalling metabolites have a crucial role in the control of whole plant growth and development. For example, nitrate is not only a powerful signal regulating root and shoot growth [1]
but its addition to nodulated legumes causes rapid nodule senescence and prevents the formation of new nodules [2]. Therefore, N assimilation is integrated with photosynthetic and respiratory C metabolism between tissues and organs as well as at the intracellular and intercellular levels. A complex network of controls, involving signals emanating from nitrate, carbohydrates, and key metabolites such as Gln, Glu and Asp all integrated with hormone signalling, permits the plant to tailor the capacity for N assimilation and C metabolism to nutrient availability and requirements.

12.2 Integration of C and N metabolism in leaves

Nitrate and ammonium are assimilated in both roots and shoots, with the relative contribution of each tissue being highly species dependent. In roots, imported sucrose provides energy and C skeletons for N assimilation. Alternatively, nitrate and ammonium are transported to the leaves via the xylem and incorporated into amino acids largely through photosynthetic N assimilation. A key point concerning N assimilation is the requirement for reductant, in the same way as CO₂ fixation or the quantitatively less important assimilation of sulfate. This distinguishes N use from that of other potentially limiting elements that are either not covalently incorporated into organic forms (e.g., potassium) or incorporated in an oxidised form (e.g., phosphorus). Reductant is particularly important when N is available in the highly oxidised form, that is nitrate. Accordingly, leaf nitrate assimilation is highly dependent on light, flux rates in the dark being much lower than those in the light [3, 4]. Although leaf nitrate reduction rate is usually only a fraction of the rate of C fixation, the assimilation of nitrate into amino acids has a high requirement for reductant (10 mol electrons per mole: Figure 12.1a). Nitrate assimilation rates are variable and depend on many developmental and environmental factors, particularly leaf age, with young leaves typically displaying the highest N-assimilation rates. In these conditions, N assimilation can represent a significant sink for photosynthetic energy [5]. Indeed, increases in photosynthetic CO₂ fixation with increasing irradiance are accompanied by enhanced N uptake [6], while N assimilation is decreased at low CO₂ [7] or during depletion of carbohydrates in extended darkness [8]. Since the leaf is the predominant site of N assimilation in many crop species, the following discussion concerns the factors that coordinate N assimilation with C metabolism in leaves, with a view to modelling this interaction.

The high leaf capacity of N assimilation is associated with high activities of primary N-assimilation pathway enzymes such as nitrate reductase (NR [1]). Most of the reductant required to drive N assimilation comes directly from the photosynthetic electron transport chain via reduced ferredoxin (Figure 12.1a). NADH required for NR activity is supplied either by the photosynthetic electron transport chain, through the operation of redox shuttles, or via the respiratory oxidation of fixed C (Figure 12.1a). As in all other tissues, reductive N assimilation in leaves is integrated with respiratory carbon oxidation (Figure 12.1b). Organic acids produced from carbohydrates or sugar-phosphates are not only required as amino group acceptors in amino acid synthesis but their production also serves to balance
cellular pH changes during the nitrate reduction process. Evidence highlighting the close functional relationship between respiratory C flow and primary N assimilation comes from studies where a N source is re-supplied to N-starved plant cells, causing a rapid marked stimulation of respiratory C flow [9–11]. The impact of N supply on overall cellular C metabolism is most marked in algae, where C skeletons are recruited from other sources to enable rapid uptake of this crucial resource that often limits growth in aquatic habitats. In unicellular algae, switching from limiting to abundant N causes a marked inhibition of photosynthesis and concomitant stimulation of respiration [12]. In multi-cellular plants, changes are less marked, no doubt reflecting subtler, more complex control [13]. Nevertheless, the pathways of C metabolism are highly sensitive to N availability, acting to ensure sufficient supply of organic acids for amino acid synthesis. The partitioning of assimilated C between synthesis of organic acids, starch and sucrose is markedly affected by N availability. The extensive regulation that occurs in response to N involves both transcriptional and post-translational controls [14, 15]. Starch synthesis, for example, may be severely restricted by down-regulation of ADP-glucose pyrophosphorylase transcripts in the presence of nitrate.
In addition to integration with respiratory C flow, N assimilation in the leaves of C₃ species is also intimately associated with photorespiratory C flow, an interaction that further complicates the photosynthetic C and N interaction (Figure 12.2). Under most conditions, the photorespiratory cycle is much more rapid than primary nitrate reduction and can influence N assimilation in at least two ways. First, ammonia liberated during the conversion of Gly to Ser in leaves is recycled through Gln and Glu [16], and this ammonia recycling probably occurs through the same isoforms of glutamine synthetase (GS) and glutamine:2-oxoglutarate aminotransferase (GOGAT) as in primary ammonia assimilation [17]. Second, photorespiration involves reductant cycling: NADH is produced by Gly oxidation in the mitochondria and required (in equal amounts) in peroxisomal glycerate synthesis. The extent to which NADH produced in Gly oxidation is reoxidised by the mitochondrial electron transport chain and/or in glycerate formation may be key in determining the cytosolic NADH concentration and thus influencing the rate of nitrate reduction (Figure 12.2). A further possible complication that remains largely uncharacterised is the role of γ-carbonic anhydrase in plant mitochondria. Mitochondrial γ-carbonic anhydrase is localised on the NADH dehydrogenase, complex I [18]. It is tempting to suggest that this enzyme might function to recover at least some of the CO₂ liberated as a result of the

Figure 12.2 Intracellular reductant cycling during photorespiration and nitrate reduction. Key enzymes are shown in ellipses. Arrows depict transport and/or one or more enzymatic steps. Redox shuttles from the chloroplast and mitochondrion occur by metabolite exchange, notably triose phosphate for 3-phosphoglycerate or malate for oxaloacetate. For reasons of simplicity, intercompartmental transfer of ammonia, 2-OG and Glu in the photorespiratory nitrogen cycle is not shown. TCA, tricarboxylic acid; RETC, respiratory electron transport chain. Other abbreviations are as in Figure 12.1.
photorespiratory Gly to Ser conversion in the mitochondria. The interactions between N assimilation, photosynthesis and respiration discussed and modelled below are based on the following central concepts.

1. **Biomass production is fundamentally determined by the balance between photosynthesis and respiration.** A large portion of the carbon assimilated during photosynthesis is used in maintenance respiration for the upkeep of existing cellular components and in growth respiration to produce new components. A considerable proportion of growth respiration involves oxidation of assimilated reduced carbon in order to produce the organic acids that form the carbon skeletons required for N assimilation (Figure 12.1b).

2. **Nitrogen assimilation is activated and stimulated by light and is exquisitely sensitive to the availability of reductant.** Photosynthetic C and N assimilation are coordinately activated in the light and deactivated in the dark. Light causes post-translational modulation of the activity of NR and also provides the reducing power necessary for the reductive incorporation of nitrate into amino groups. The overall effect of light on organic acid synthesis is uncertain, since respiration may be partially inhibited in the light. Whether there is preferential inhibition of reductant-generating dissimilatory respiration over assimilatory (primarily precursor-generating) pathways remains unclear, though light activation of the C3 isoform of phosphoenolpyruvate (PEP) carboxylase (PEPc) [14] and down-regulation of pyruvate dehydrogenase [19] strongly suggest that illumination affects the balance between these two processes. Allosteric control by key metabolites is also important in regulating the relative activities of PEPc and cytosolic pyruvate kinase (PK), as anaplerosis demands that these two enzymes use PEP in a coordinated fashion [20–22].

3. **Amino acids are the central hub around which other processes such as nitrogen assimilation, associated carbon metabolism, photorespiration and export of organic nitrogen are modulated.** Specific major amino acids are modulated differentially by photorespiration and nitrogen assimilation [23]. As discussed further below, minor amino acids can show marked diurnal rhythms and their contents fluctuate in a coordinated manner.

12.3 Control of nitrate assimilation rates and the C/N interaction

Much attention has focused on signalled changes in the capacity of key enzymes in the coordination of C/N metabolism, and this must be a key factor in achieving appropriate C/N balance during development or as a function of nutritional status. Considerable attention has also been paid to the importance of post-translational modification of key enzymes, as well as allosteric control of their activities by metabolite activators and inhibitors. Less attention has focused on energetic factors. Here, we consider all three aspects.
Leaf amino acid contents increase as the N supply is increased [1, 13, 24]. Short-term effects probably mainly reflect increased substrate supply and/or enzyme activation while longer term changes are also due to modified expression of enzymes such as NR [1]. Short term changes notably include (1) post-translational modification of the activities of enzymes such as PEPc and NR through protein phosphorylation [14, 25] and (2) allosteric modulation by metabolite effectors [11, 21, 22]. Longer term changes in gene expression result from the monitoring of C and N metabolites that modulate the transcriptome according to nutritional and metabolic status [26, 27].

A key question to consider is the importance of NR capacity and/or NR phosphorylation state in setting the rate of nitrate reduction. Unlike PEPc and sucrose phosphate synthase (SPS), the phosphorylation state of the NR protein (and hence activation state) does not respond directly to nitrate availability [28, 29]. N-availability-dependent increases in amino acid contents are highly specific in the short term [23], the immediate enhancement of leaf amino acids upon feeding N being almost entirely due to Gln accumulation [30]. Similar effects on Gln have been found in tobacco mutants and transformants with varying NR activities, in which Gln showed an almost linear increase with increasing NR capacity [1]. Leaf Gln contents, or the Gln:Glu ratio, is therefore a good indicator of the balance between the capacity for C and N assimilation, which is low when C:N is high and vice versa [23]. Other metabolite ratios, such as Asp:Glu, may also be markers for C/N partitioning [22], though in leaves from C₃ species, Asp contents appear to be strongly influenced by photorespiratory flux [31]. Despite extensive study the factors that ultimately limit nitrate reduction in leaves are far from resolved [30, 32, 33].

The C/N interaction takes place within a context of energy use and production involving cooperation between different cellular compartments [13, 23, 34–36]. The notion that NADH availability may be important in limiting N assimilation is an old one and receives support from the likely very low cytosolic NADH concentration, which may be several-fold lower than the \(K_m \) for NADH of NR. The ability of chloroplasts or mitochondria to deliver NAD(P)H to the cytosol could be crucial in determining the rate of N assimilation [37, 38]. Low photosynthesis rates limit NR activity through decreased reductant availability, as well as through post-translational inactivation [33, 39]. Nitrate reduction is significantly stimulated by anoxia and is favoured in conditions in which the complex redox cycling of photorespiration is active [40]. Moreover, because amino acid synthesis requires simultaneous C oxidation and nitrate reduction, any perturbation of redox cycling could radically alter C/N partitioning through concerted and opposing effects on the two processes. Organic acid synthesis may also be subject to redox modulation in the C/N interaction because the production of compounds such as 2-oxoglutarate (2-OG) requires oxidation through respiratory pathways involving the cytosol and mitochondria (Figure 12.1b; [41, 23]). Analysis of the C/N interaction in the Nicotiana sylvestris CMS mutant, which lacks mitochondrial complex I and respires through alternative respiratory chain dehydrogenases [42, 43], has shown that the modulation of respiratory electron transport chain impacts strongly on the C/N network and that the observed effects on metabolite profiles are largely independent of changes in
enzyme capacities [44, 45]. Nitrate assimilation rates were enhanced in the mutant, especially in the dark, and N-rich amino acids accumulated in CMS leaves, suggesting that modulation of mitochondrial metabolism can drive the leaf towards a N-rich state through enhanced availability of NADH [45].

The GS-GOGAT cycle functions both in primary ammonia assimilation and in the reincorporation of NH₃ released by Gly decarboxylation during photorespiration [16, 46]. Amino groups are subsequently transferred beyond the GS/GOGAT cycle, predominantly via Glu, to other amino acids such as Asp and Ala. Leaf amino acid contents are determined by a complex interplay of factors. In addition to photorespiration, nitrate and/or ammonia availability, NR capacity and NADH availability, the flux of C into amino acid pools, either from photorespiration (via glycolate) or through glycolysis and the tricarboxylic acid cycle is also important. The effects of primary N assimilation and photorespiration on leaf amino acids are tightly linked [47, 48]. Gln, Gly and Ser all accumulated throughout the photoperiod in tobacco plants growing at constant irradiance [49]. Exchange between amino acid pools via transamination reactions and utilisation of both C and N metabolites for synthesis of end-products is also important in control. Other impacts could include amino acid catabolism, protein degradation and non-photorespiratory ammonia cycling via enzymes such as phenylalanine ammonia lyase. Finally, as end-products, amino acids are exported and imported from leaves at different stages in development.

12.4 Pathway coordination and the C/N signal transduction network

The above discussion has emphasised the crucial importance of N assimilation in plant metabolism. This macronutrient interacts in an integrated manner with other resources, particularly C and other nutrients in respect to light, circadian rhythms, etc. The coordination of C and N metabolism is controlled by a repertoire of signals, including nitrate, ammonia, sugars, amino acids, particularly Gln, Glu and Asp, and organic acids such as 2-OG and malate [50–52]. As with the orchestration of other complex physiological processes, the transduction of these signals from perception to response involves cross-talk within a complex network incorporating both intra- and extra-cellular communication [53, 54]. Moreover, signalling includes effects occurring both locally (e.g., leaf nitrate contents control C partitioning [15]) and systemically (e.g., leaf nitrate contents modulate shoot–root allocation [1, 52]). Long distance signalling of information concerning light and CO₂ occurs between mature and developing leaves [55] and it is therefore logical to assume that similar information on nitrate and N status passes between leaves of different stages to modulate their physiology and development. Sucrose, starch, nitrate and amino acids are highest in the youngest leaves and decline with leaf age, while glucose, fructose and ammonium increase with leaf age and are predominant in senescing leaves, suggesting that gradients in these metabolites might provide metabolic information that modulates gene expression relative to local and systemic leaf and organ development.
In recent years, the potential role of nitrate reduction, particularly with regard to the different forms of NR, in the production of another systemic signal, nitric oxide (NO), has received much attention because of the potential roles of NO as a signalling molecule [56]. Nitrate reduction in conditions of low oxygen has been considered to form an alternative respiratory pathway aiding cell survival under anoxia [57]. It is interesting that in this regard nitrate is viewed as an intermediate electron acceptor, assisting in the maintenance of cellular redox and energy status [57].

Sugars elicit transcriptional and post-translational controls that limit the rate of nitrate assimilation, amino acid metabolism and photosynthesis. Because coordinated rates of nitrate reduction, CO₂ fixation and carbon partitioning are essential to the appropriate partitioning of assimilate for starch, sucrose and amino acid production, such control has a crucial function in adjustment of leaf activities of enzymes such as NR, SPS, ADP-glucose pyrophosphorylase, cytosolic PK and PEPc [25, 58]. Hexose and sucrose-specific mechanisms control gene expression [59]. Moreover, complex signalling networks link sugar (particularly glucose) signalling networks to plant stress perception hormones, particularly ethylene and abscisic acid (ABA; [60, 61]. While there remains some resistance to the concept of direct molecular overlap and connection between sugar and ABA-signalling pathways [59], there is strong genetic evidence in support of an integration of sugar and ethylene-signalling pathways [60]. Considerable evidence now shows extensive cross-talk not only between the sugar and N-signalling pathways but also those of ethylene and ABA [61, 62]. Indeed, genes involved in ABA synthesis and signalling [63, 64] and also in ethylene perception [65] are critical for sugar and nitrate signalling. In recent years, micro-array technologies have revealed that the expression levels of a large number of genes are changed in response to alterations in nitrate and sugar availability [26, 66, 67]. Genes associated with N assimilation are generally up-regulated when C is abundant and down-regulated when C skeletons are limiting or organic N is abundant [51].

The nitrate assimilation pathway has been intensively investigated and the expression of most of the genes have been shown to be coordinately controlled with respect to N source and intracellular amounts of amino acids, light, hormones and carbon status [48, 53]. However, there is still relatively little information available on regulatory genes and only the Nit2 gene from the unicellular green alga Chlamydomonas reinhardttii, which is repressed by ammonium, has thus far been shown to have a major positive regulatory effect on nitrate assimilation, allowing functional genomics studies to be undertaken [68].

In addition to tight control over the capacity for primary N assimilation at the gene and protein regulation levels, there may also be coordination of the different pathways of minor amino acid synthesis particularly with regard to C status [69, 70]. Unequivocal evidence for coordinated control of genes encoding enzymes of amino acid biosynthesis in plants is scarce [71, 72]. However, a protein kinase, AtGCN2, that is structurally and functionally related to GCN2, a component of the regulatory system responsible for general amino acid control in budding yeast, has been identified in Arabidopsis thaliana [73]. Such mechanisms could act to coordinate minor amino acid synthesis in response to C/N supply and demand. Metabolite
data provide evidence for some form of general control of minor amino acid synthesis in plants. Leaf carbohydrate accumulation tends to correlate with increases in minor amino acids, and feeding sucrose also leads to a general increase in these compounds [58]. Despite considerable variability, minor amino acid contents vary in a concerted fashion in wheat, potato and barley leaves, again suggesting that the different synthetic pathways are under some form of common control [69]. Leaf contents of several minor amino acids were increased in transformed poplar leaves that accumulated glutathione as a result of enhanced glutathione synthesis capacity in the chloroplast, where most minor amino acids are synthesised [74]. Recently, enzymes involved in the synthesis of several amino acid synthesis pathways in *C. reinhardtii* have been identified as thioredoxin targets \textit{in vitro} [75]. It is therefore possible that post-translational control through enzyme thiol status contributes to general control of minor amino acid synthesis pathways, perhaps in response to light and/or carbohydrate status.

Bacteria coordinate the C/N metabolic interface through a protein designated PII, which is one of the most widespread and conserved regulatory proteins known. It sits at the interface of signal sensing and control of primary N assimilation through the GS/GOGAT cycle. PII-like proteins are present in plants [76, 77] but their precise roles remain unclear, particularly in relation to the roles of other regulatory components such as 14-3-3-proteins [78] (also see Chapter 5), DoF transcription factors, ‘two-component regulatory systems’ and ‘multi-step His-Asp phosphorelay’ systems, which all have putative roles in the sensing of N status (see [70]).

12.5 Modelling the C/N interaction

Given the complexity of the C/N interaction and the multi-layered nature of its regulation, modelling is a promising approach to understanding how the system is integrated and influenced by the environment. We have thus developed simple models with the aim of assessing and defining the limits of the importance of known mechanisms of C/N regulation in different conditions. First, we have used stoichiometric modelling to investigate energetic interactions between C and N assimilation. Reactions integral to C and N assimilation require and produce ATP and reductant at very different stoichiometries. Whereas C assimilation into sugar phosphate requires 4 electrons and 3 ATP, assimilation of nitrate into amino acids demands 10 electrons but only 1 ATP. N assimilation therefore requires 7.5 times more reductant per ATP than C assimilation. In addition, the respiratory flow associated with carbohydrate and sugar phosphate oxidation may produce reductant and ATP at widely different ratios. We therefore considered the ATP:NADPH requirement of C$_3$ photosynthesis with regard to contributions from nitrate assimilation and its associated respiratory activity [34]. Even though a relatively small part of overall redox exchange during active photosynthesis, NAD(P)H generated via carbon oxidation has the potential to generate abundant amounts of ATP outside the chloroplast, particularly in the mitochondria, enhancing cellular ATP:ADP ratios and favouring large oscillations in energy availability [79]. Potentially detrimental oscillations in cellular ATP:ADP
ratios will result from even slight imbalances in the rate of generation and utilisation of ATP. In the absence of compensatory changes, an imbalance of only 1% in the generation and utilisation of ATP is predicted to cause marked perturbations in cellular ATP:ADP ratios [79]. Hence, regulation involving metabolic valves and damping mechanisms is crucial to prevent large oscillations in energy availability that will cause the photosynthetic C and N pathways to stall. Important processes are the ability of the chloroplast to produce ATP and NADPH at different ratios, the capacity of the mitochondria to convert NADH to ATP with different yields and the presence of transporters that facilitate rapid efficient inter-compartmental transfer of pyridine nucleotides and adenylates.

In a second approach, we explored how the energetic interaction between C and N metabolism will vary in importance as a function of leaf development and the nutritional status of the plant. Such variability demands plasticity of assimilate partitioning in leaves to accommodate large changes in supply and demand [5]. When N is available a significant proportion of photosynthetic energy must be devoted to N assimilation. However, developmental changes in nutritional demand and changing N availability make this proportion extremely variable [5]. Amino acid synthesis is often considered to a minor sink for carbon. Nevertheless, assimilation of one molecule of ammonia requires one molecule of 2-OG to form the product of the GS-GOGAT pathway, Glu (C/N = 5). Other C skeletons are then required as oxo-acid scaffolds that are converted into amino acids, chiefly by Glu-dependent transaminations. The main physiological fates of assimilated N are protein synthesis (in young expanding leaves) and amino acid export (mature or senescing leaves). The average C/N of the 20 protein amino acids is 4.35. Other nitrogenous products synthesised primarily in young leaves typically have higher C/N ratios (e.g., chlorophyll, C/N = 13.75). The C demand linked to N assimilation will be particularly high, therefore, in young tissues, because the rates of N assimilation and the C/N of the ultimate product are relatively high. Even in older tissues the demand for C could be appreciable. Taking N assimilation as 5% of the rate of net CO₂ fixation, about 20% of fixed C needs to be allocated to amino acid synthesis. These values suggest that considerable respiratory fluxes must operate with N assimilation, though associated gas exchange may not be very high. For 2-OG production through the simplified route shown in Figure 12.1b, the rate of respiratory CO₂ release would only be one-sixth of that occurring during full TCA cycle activity. Synthesis of other oxo-acids could involve even less CO₂ evolution (e.g., pyruvate formation for Ala synthesis). If net production of all protein amino acids occurs at N assimilation equal to 5% of net CO₂ fixation, the minimum required respiratory CO₂ release would probably be around 4% of net C fixed, i.e. negligible. The respiratory fluxes that occur during anaplerosis may therefore be difficult to estimate by gas exchange, and this problem is greatly exacerbated when estimates are to be made during photosynthesis.

A third aspect of the C/N interaction that we have explored using modelling is the relationship between photorespiratory flux and leaf contents of major amino acids [31]. As metabolomic and metabolite profiling methods become ever more powerful, a major limitation will involve the interpretation of changes in metabolite
contents. Establishing how tissue contents of key C and N compounds change as a function of leaf status and environment is a key challenge to identifying reliable metabolite markers that provide meaningful information on physiological status. Amino acid profiling was combined with estimates of photorespiratory flux from measured CO₂ exchange by using established models of C₃ photosynthesis described in detail in Von Caemmerer [80]. The contents of certain amino acids (notably Gly, Ser, but also Ala and Asp) are highly influenced by photorespiration, whereas the initial products of ammonia incorporation (Glu and Gln) are much more weakly correlated with this process [31]. These data suggested that the key factor affecting metabolite ratios around the GS/GOGAT pathway is the relative supply of ammonia and 2-OG, and that minor imbalances in nitrate reduction (producing ammonia) and anaplerotic respiration (producing 2-OG) can markedly affect Gln/Glu ratios, even against the background of higher absolute flux of ammonia and 2-OG cycling in photorespiration. Our current modelling project, which we now discuss, has taken the GS/GOGAT pathway as its point of departure.

12.5.1 Construction of a tentative model to explore the sensitivities in the GS and GOGAT reactions

The GS-GOGAT pathway is at the crossroads of the C/N interaction and the response of this pathway to changes in incoming or outgoing fluxes will likely impact strongly on overall leaf metabolism and function. As part of a project aiming to simulate the complexity of the C/N during the C₃ photosynthetic process, we have produced a preliminary model of the key reactions of nitrate and ammonia assimilation. Various methodologies are available to construct such models and to explore the dynamics of the associated pathways. Hybrid Petri-Nets as used by the Cell Illustrator package provides a good visualisation of the system, but has a tendency to hide the details of the underlying processes. The biochemical systems theory (BST) approach ably described by Torres and Voit [81] utilises power-law representations of the reactions and basic mass action systems to formulate a set of differential equations representing the system of reactions under investigation. This is a powerful approach that enables, after some consideration, the parameters to be selected based on measured events and known kinetics of the reactions. In addition the BST approach is very amenable to being re-worked to add into the system further compounds, reactions and events, including inhibitors and feedback loops.

The system of reactions considered in our preliminary model of nitrate and ammonia assimilation is shown in Figure 12.3. In this simplistic model, the fate of products not directly utilised in the next step of the pathway is ignored as is the existence of substrates that, although essential to the operation of the pathway, are not of specific interest in the model. Although there are known activators and inhibitors of the enzymatic reactions (as discussed above), these are ignored in the present model and the system will be assumed to be in a near steady state. In addition the reactions can be assumed to be irreversible which is very close to reality. For purposes of simplicity, the present model assumes that the mitochondrial NAD-dependent isocitrate dehydrogenase is the sole producer of 2-OG from isocitrate (see discussion above).
Using the S-system approach to create a mathematical description of this pathway model, we are able to construct the following set of differential equations to describe the rate of change of any given compound over time:

\[
\begin{align*}
X_0 &= \text{constant} \\
X_1 &= \text{constant} \\
X_2 &= \alpha_2 X_0^{g_{2.3}} X_1^{g_{2.1}} - \beta_2 X_2^{h_{2.2}} \\
X_3 &= \alpha_3 X_2^{g_{3.2}} - \beta_3 X_3^{h_{3.3}} \\
X_4 &= \alpha_4 X_3^{g_{4.3}} - \beta_4 X_4^{h_{4.4}} \\
X_5 &= \alpha_5 X_4^{g_{5.4}} X_0^{g_{5.6}} - \beta_5 X_5^{h_{5.5}} \\
X_6 &= \alpha_6 X_7^{g_{6.7}} X_5^{g_{6.5}} - \beta_6 X_0^{h_{6.6}} \\
X_7 &= \alpha_7 X_8^{g_{7.8}} - \beta_7 X_7^{h_{7.7}} \\
X_8 &= \alpha_8 X_9^{g_{8.9}} X_{10}^{g_{8.8}} - \beta_8 X_8^{h_{8.8}}
\end{align*}
\]

Figure 12.3 Compartmentalised simple schematic of nitrate and ammonia assimilation pathway as used for modelling. Each distinct compound is given a variable name (e.g., X_1 for nitrite in the cytosol). Many substrates and products are omitted in the modelling for simplicity. Although their dynamics could have an effect on the operation of the system, their presence would only add confusion to this simplified model. Mostly, missing products would simply be consumed. Changing reaction rates and enzyme kinetics will alter the overall dynamics of the system, changes in concentrations of the substrate pools at start-up give indications of the way the system behaves under differing availabilities.
PHOTOSYNTHETIC CARBON–NITROGEN INTERACTIONS

\[X_9 = \text{constant} \]
\[X_{10} = \text{constant} \]

where \(\alpha_i \) and \(\beta_i \) for \(i = 0, \ldots, n \) are rate constants and \(g_i,j \) and \(h_i,j \) are kinetic constants which need to be determined in order to fully construct our simulation of the system.

The parameters \(h_{2,2} \) and \(g_{3,2} \) can be set to unity since the transport of nitrite is simply a percentage of the production in the cytosol. The transport efficiency is taken as 0.98 \((=\beta_2)\) which allows for some small degradation of nitrite. Several transporters may be involved in transferring 2-OG from the mitochondrion into the chloroplast: for the purposes of the present model, 2-OG transport has been simplified by taking an overall transfer efficiency of 30%. Thus, assuming that transport is not inhibited, we can take the kinetic rate as unity \((=h_{8,8})\) and also set \(\beta_8 = 0.3 \).

Each of the above equations can also be re-written as a flux balance of the form \(X^- = V^+ - V^- \) where \(V^+ \) is the flux producing \(X \) and \(V^- \) represents the loss of \(X \). In order that the overall mass is conserved in the system, we can see that \(V_7^+ = V_8^- \) which implies that \(g_{7,8} = h_{8,8} \) and \(\alpha_7 = \beta_8 \). Similarly, \(\alpha_3 = \beta_3 \) and \(g_{3,2} = h_{2,2} \). Assuming that we have a steady state system, we can assume that \(h_{3,3} = K_M/\left(\frac{K_M}{S}\right) \) where \(K_M \) is the Michaelis–Menton constant and \(S \) is the substrate concentration (mM). Flux balance enables us to evaluate similarly other \(h \) and \(g \) parameters in a crude manner from the steady state, but making allowance for the fact that the true evaluation of \(g \) requires a more detailed approach. However, for our purposes, the steady state approach will enable a simulation to start to iterate to a steady state. Table 12.1 shows the starting values used in the model. These are considered to be realistic approximations of likely steady state substrate concentrations \textit{in vivo}. For many of the enzymes \(K_M \) values can be obtained from literature results or from the BRENDA database of enzymatic reactions (http://www.brenda.uni-koeln.de/), and

<table>
<thead>
<tr>
<th>Compound</th>
<th>Compartment</th>
<th>Concentration (mM)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>Cytosol</td>
<td>2–5</td>
</tr>
<tr>
<td>Nitrite</td>
<td>Chloroplast, cytosol</td>
<td>0.05–1</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Chloroplast, mitochondria</td>
<td>1–2</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Chloroplast</td>
<td>10–30</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Chloroplast, peroxisome</td>
<td>10–30</td>
</tr>
<tr>
<td>2-OG</td>
<td>Mitochondria, chloroplast, peroxisome</td>
<td>0.1–0.2</td>
</tr>
<tr>
<td>Gly</td>
<td>Mitochondria, peroxisome</td>
<td>5–10</td>
</tr>
<tr>
<td>Ser</td>
<td>Mitochondria, peroxisome</td>
<td>5–10</td>
</tr>
<tr>
<td>Glyoxylate</td>
<td>Peroxisome</td>
<td>1</td>
</tr>
<tr>
<td>Isocitrate</td>
<td>Mitochondria</td>
<td>0.1–0.2</td>
</tr>
<tr>
<td>NAD(^+)</td>
<td>Cytosol</td>
<td>1</td>
</tr>
<tr>
<td>NADH</td>
<td>Cytosol</td>
<td>0.001</td>
</tr>
<tr>
<td>NAD(^+)</td>
<td>Mitochondria</td>
<td>0.6</td>
</tr>
<tr>
<td>NADH</td>
<td>Mitochondria</td>
<td>0.2</td>
</tr>
</tbody>
</table>

\(^a\)References: [82–84] or estimates based on whole tissue concentrations.
those used to calculate the h and g parameters are shown in Table 12.2. The remaining rate constants were calculated using the enzyme activities, but also taking some account of the effect of missing substrates and products in the determination of the rate. Noting that $V_j^+ = \alpha X_k^{g_j} X_{i_j}^{g_k}$ we can use the likely relative enzyme activities (Table 12.3) to determine α for the steady state concentrations. Using these values and adjusting (by an informed guess), for the ‘missing’ products and substrates, we can arrive at a first approximation to the remaining α constants. The values for the remaining β constants can be obtained through flux balance calculations.

By this approach, the metabolite pools shown in Figure 12.3 can be modelled by completing our system of ordinary differential equations as follows:

$$X_0 = 3$$
$$X_1 = 0.001$$
$$X_2' = 10.6X_0^{0.003}X_1^{0.75} - 0.98X_2$$
$$X_3' = 0.98X_2 - 0.68X_3^{0.8}$$
$$X_4' = 0.68X_3^{0.8} - 0.11X_4^{0.23}$$
$$X_5' = 0.15X_4^{0.23}X_6^{0.25} - 0.23X_5^{0.024}$$
$$X_6' = 0.45X_7^{0.73}X_5^{0.024} - 0.15X_6^{0.25}$$
$$X_7' = 0.3X_8 - 0.087X_7^{0.73}$$
$$X_8' = 0.22X_9^{0.57}X_9^{0.35} - 0.3X_8$$
$$X_9 = 0.6$$
$$X_{10} = 0.15$$

<table>
<thead>
<tr>
<th>K_M (mM)</th>
<th>Substrate</th>
<th>Enzymea</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.003</td>
<td>NADH</td>
<td>NR</td>
<td>-</td>
<td>[85]</td>
</tr>
<tr>
<td>0.01</td>
<td>Nitrate</td>
<td>NR</td>
<td>Arabidopsis</td>
<td>[86]</td>
</tr>
<tr>
<td>0.28</td>
<td>Nitrite</td>
<td>NiR</td>
<td>Spinach</td>
<td>[87]</td>
</tr>
<tr>
<td>0.22</td>
<td>Ammonia</td>
<td>GS2</td>
<td>Lupin</td>
<td>[88]</td>
</tr>
<tr>
<td>6.7</td>
<td>Glu</td>
<td>GS2</td>
<td>Spinach</td>
<td>[89]</td>
</tr>
<tr>
<td>0.5</td>
<td>Gln</td>
<td>GOGAT</td>
<td>Tomato</td>
<td>[90]</td>
</tr>
<tr>
<td>0.33</td>
<td>2-OG</td>
<td>GOGAT</td>
<td>Rice</td>
<td>[91]</td>
</tr>
<tr>
<td>0.33</td>
<td>NAD</td>
<td>ICDH</td>
<td>Pea</td>
<td>[92]</td>
</tr>
<tr>
<td>0.2</td>
<td>Isocitrate</td>
<td>ICDH</td>
<td>Pea</td>
<td>[84]</td>
</tr>
<tr>
<td>2</td>
<td>Ser</td>
<td>SGAT</td>
<td>Spinach</td>
<td>[93]</td>
</tr>
<tr>
<td>0.15</td>
<td>Glyoxylate</td>
<td>SGAT</td>
<td>Spinach</td>
<td>[93]</td>
</tr>
<tr>
<td>2</td>
<td>Glu</td>
<td>GGAT</td>
<td>Spinach</td>
<td>[93]</td>
</tr>
<tr>
<td>0.15</td>
<td>Glyoxylate</td>
<td>GGAT</td>
<td>Spinach</td>
<td>[93]</td>
</tr>
</tbody>
</table>

aGGAT, glutamate:glyoxylate aminotransferase; GOGAT, glutamate synthase; GS, glutamine synthetase; ICDH, isocitrate dehydrogenase; NiR, nitrite reductase; NR, nitrate reductase; SGAT, serine:glyoxylate aminotransferase.
This set of equations can be solved by any ODE solver system to produce data on how pool sizes are predicted to change over time as a function of flux from nitrate and NADH (in the cytosol) and isocitrate and NAD (in the mitochondria). For the steady state substrate levels used above, Figure 12.4 (curves A) shows the iterated solution over time for the 2-OG, ammonia, Glu and Gln concentrations. Other substrates and products remain close to their initial values. While Gln and 2-OG rise, ammonia decreases substantially despite ongoing formation from nitrate. This likely reflects the high capacity of the GS-GOGAT pathway compared to NR in leaves of C₃ plants. It is therefore necessary to consider a more physiological condition in which photorespiratory N cycling is producing ammonia via Gly decarboxylation and 2-OG is being regenerated from Glu by peroxisomal aminotransferases. If we include these additional pathways in our modelling system (Figure 12.5), and repeat the modelling process as described above, we can derive a further set of equations that model this more complex system. To parameterise this model, a number of crude estimates have been made to determine the rate and kinetic parameters. As for the scheme shown in Figure 12.3, transport processes have been simplified as far as possible. This second model can be described by the following equations:

\[
\begin{align*}
X_0 &= 3 \\
X_1 &= 0.001 \\
X_2' &= 10.6X_0^{0.003}X_1^{0.75} - 0.98X_2 \\
X_3' &= 0.98X_2 - 0.68X_3^{0.97} \\
X_4' &= 0.2X_3^{0.18}X_7^{1.1} - 0.11X_4^{0.23} \\
X_5' &= 0.15X_4^{0.23}X_6^{0.25} - 0.23X_5^{0.024} \\
X_6' &= 0.6X_7^{0.73}X_5^{0.024} - 0.02X_6^{0.25}X_{12}^{0.024} \\
\end{align*}
\]

Table 12.3 | Enzyme capacities used in the models

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Activity (µmol g⁻¹FW h⁻¹)ᵃ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICDH</td>
<td>10–50</td>
</tr>
<tr>
<td>NR</td>
<td>10–50</td>
</tr>
<tr>
<td>NiR</td>
<td>200</td>
</tr>
<tr>
<td>GS2</td>
<td>400</td>
</tr>
<tr>
<td>GOGAT</td>
<td>400</td>
</tr>
<tr>
<td>Serine:glyoxylate aminotransferase</td>
<td>400</td>
</tr>
<tr>
<td>Glutamate:glyoxylate aminotransferase</td>
<td>400</td>
</tr>
<tr>
<td>Glycine decarboxylase</td>
<td>400</td>
</tr>
<tr>
<td>Serine hydroxymethyl transferase</td>
<td>400</td>
</tr>
</tbody>
</table>

ᵃValues are approximate, based on likely relative maximum fluxes of photorespiration, respiration and nitrogen assimilation in C₃ leaves during rapid photosynthesis, the latter estimated at about 500–600 µmol g⁻¹FW h⁻¹.
Figure 12.4 Modelled changes in chloroplastic pools of GS-GOGAT pathway metabolites during nitrate reduction in the absence (A) or presence (B) of the photorespiratory nitrogen cycle. For curves labelled A, data are generated by modelling according to the simple scheme shown in Figure 12.3, where constant inputs are nitrate and NADH in the cytosol and isocitrate and NAD in the mitochondria. Curves labelled B were produced using the same parameters but by adding glyoxylate as a constant substrate input in the peroxisomes (Figure 12.5). Units of time are arbitrary.

\[
\begin{align*}
X_{7}' &= 0.4 X_8 X_{13} - 0.087 X_7^{0.73} \\
X_{8}' &= 0.22 X_10^{0.57} X_9^{0.35} - 0.3 X_8 \\
X_0 &= 0.6 \\
X_{10} &= 0.15 \\
X_{11}' &= 0.08 X_{16}^{0.45} - 0.2 X_{11} \\
X_{12}' &= 0.02 X_6 - 0.2 X_{12}^{0.16} \\
X_{13}' &= 0.04 X_{14}^{0.8} X_{12}^{0.4} - 0.2 X_{13} \\
X_{14} &= 1.0 \\
X_{15}' &= 0.8 X_{14}^{0.99} X_{12}^{0.35} X_{18}^{0.3} - 0.3 X_{15} \\
X_{16}' &= 0.6 X_{15} - 0.8 X_{16}^{0.5} \\
X_{17}' &= 0.2 X_{16}^{0.4} - 0.4 X_{17} \\
X_{18}' &= 0.4 X_{17} - 0.4 X_{18}^{0.3}
\end{align*}
\]
This system was solved numerically with the additional starting points of $X_2 = X_3 = 0.007$, $X_4 = 1.5$, $X_5 = X_6 = 20$, $X_7 = 0.2$, $X_8 = X_{17} = 0.15$, $X_{11} = 2$, $X_{12} = 15$, $X_{13} = 0.15$, $X_{15} = X_{16} = 7.5$ (all values in mM). Changes of GS-GOGAT metabolite pools are shown in Figure 12.4, curves B. In this case we find that, as for the simpler model, Gln accumulates and the Glu pool decreases. When photorespiration is active, however, the ammonia pool remains stable and changes in 2-OG are less dramatic (Figure 12.4, compare curves A and B). Clearly, the data are very preliminary, and more rigorous parameterisation is required. Nevertheless, these first results perhaps suggest a potential effect of photorespiratory N cycling in stabilising metabolite pools involved in ammonia assimilation. Some aspects of the results generated are qualitatively in agreement with measured literature data, e.g., the decrease in Glu that occurs in some systems on resumption of nitrate assimilation ([11] and references cited therein). Work towards a more realistic parameterisation of this model is in progress with a view to incorporating the major pathways of C and N metabolism in the leaves of C₃ species.
12.6 Conclusions and perspectives

Under field conditions parameters associated with C and N metabolism have a close relationship to yield and are thus potentially important current targets for analyses using quantitative trait loci and other genetic approaches. To date numerous studies using forward and reverse genetics in addition to classical biochemistry and physiology have revealed the enormous complexity of the C/N interaction and its intimate association and impact on plant hormone signalling. While many aspects of this control remain to be characterised, the emerging importance of systems biology in agriculture as in other fields necessitates that current information is used in strategies for prescriptive modelling that might be applied to crop plants. In the above analysis of the C/N interaction we have highlighted the importance of amino acids as the focal point around which primary N assimilation and associated carbon metabolism and photorespiration and export occur. We have modelled the C/N interaction around the GS-GOGAT pathway as this is the point at which C metabolites and ammonia converge and from which downstream biosyntheses fan out. The preliminary model concerns only the key reactions of nitrate and ammonia assimilation with visualisation using BST to formulate a set of differential equations representing the reaction systems. This initial model, while as yet modest and imprecise, is nevertheless functional. Data produced by such approaches could be useful, for example, in defining relationships between processes and pathways and in providing frameworks within which to interpret complex data sets such as those produced by metabolomic studies. A second type of application could concern examination of fluxes to minor amino acids of crucial importance to certain crops. For instance, the production of theanine, the major free amino acid in tea, is of major commercial importance to tea growers. The factors that control theanine synthesis from glutamic acid (or pyroglutamic acid) and ethylamine in a reaction catalysed by theanine synthetase (L-glutamic acid ethylamine ligase) are crucial to the tea producer as they are important to the flavour of the final tea product. To date, growers can only speculate on how various environmental and metabolic cues influence theanine content and hence the value of the tea crop. Providing that accurate values for required parameters can be added from experimental measurements, the model described here could be elaborated to address these and other key questions that are essential to agro-industries as well as have intrinsic scientific interest.

Acknowledgement

Rothamsted Research is funded by the Biotechnology and Biological Sciences Research Council (UK).

References

13 Control of sulfur uptake, assimilation and metabolism

Malcolm J. Hawkesford, Jonathan R. Howarth and Peter Buchner

13.1 Introduction

Sulfur (S) is taken up by the roots as sulfate, and for the most part distributed within the plant as sulfate, before being incorporated into essential sulfur-containing compounds for a range of functions in plants. Uptake and assimilation of sulfate, as well as partitioning into the various sinks, are controlled processes and in this chapter the major mechanisms contributing to this control are outlined and discussed.

The main sink for sulfur is for synthesis of the amino acids cysteine and methionine, required for protein synthesis. This predominantly determines the insoluble content of sulfur in plant tissues which occurs with nitrogen in a ratio of approximately 20:1. In certain instances there is some plasticity of this ratio, for example in the synthesis of either S-rich or S-poor seed storage proteins in response to variable S availability [1]. In addition, other sinks for sulfur include sulfolipids, glucosinolates and alliins (for reviews see [2, 3] and references therein). Sulfur can remain as sulfate, which accumulates in the vacuoles when sulfur is available in excess (for example [4]). This sulfate represents an important storage pool, and control of its utilisation is an important aspect of whole plant sulfur metabolism.

From the most simplistic viewpoint, sulfate uptake and reductive sulfate assimilation may be considered as a linear pathway from sulfate to cysteine, controlled by supply and demand. There are, however, multiple branch points, metabolic sinks, regulatory influences and developmental interactions involved and the assimilatory pathway in fact forms part of a metabolic web, emphasised by recent transcriptomic and metabolomic profiling studies [5–8]. In addition to the up-regulation of genes directly involved in S-metabolism, these studies revealed further far reaching effects on the expression of flavonoid, auxin and jasmonate biosynthetic pathway genes, particularly under conditions of S-deficiency [6].

As sulfate is the major sulfur pool in plants, sulfate uptake, storage and remobilisation are major considerations. Central to these processes are the membrane-located sulfate transporters, encoded by a multi-gene family. Many members of this family (14 in Arabidopsis thaliana) are regulated by transcriptional and post-translational mechanisms [9–12]. Sulfate transport into the cell has been estimated to have the greatest impact on overall sulfur assimilation [13]; however, flux is also controlled through the assimilatory pathways by means of a complex sensing
mechanism and by feedback loops. In addition, specific branches in the pathway are feedback regulated to control fluxes into the various sinks.

The major regulatory mechanisms controlling S-metabolism are:

- At the level of sulfate uptake and distribution, including loading and remobilisation from vacuoles (see Figure 13.1)
- The flux of sulfate through the reductive assimilatory pathway (see Figure 13.2)
- By coordination with demand, ultimately determined by N availability and photosynthetic capacity, which is achieved at the point of cysteine synthesis
- Control of fluxes into the various branch points and sinks

Transcriptional control plays a major part in the control of these processes in response to supply of, and demand for, sulfur. In the root, when demand outstrips...
supply, expression of transporters is increased to maximise acquisition. Conversely, when S-supply is in excess, expression of these genes is reduced and, as the transporter proteins turnover rapidly [14, 19, 20], transport capacity is decreased. Further sulfate which is taken up mostly enters the vacuoles, from where it may be subsequently re-mobilised. Therefore, the balance of influx and efflux from the vacuole as well as uptake into the cell and into the chloroplast, the site of reductive assimilation, will be the major determinants in controlling availability for the assimilatory pathway. In the chloroplast, control switches to the entry and flux through the initial stages of the assimilatory pathway, at the level of sulfate activation by ATP sulfurylase (E.C. 2.7.7.4) or reduction by APS reductase (APR) (E.C. 1.8.4.9). Control of these steps may be transcriptional and/or via enzyme regulation from downstream products of the pathway. The chief candidates in all mechanisms proposed to date are related to cysteine and glutathione synthesis, namely sulfide, O-acetyl L-serine (O-acetylserine; OAS), cysteine or glutathione (GSH). Substantial interest has focussed on cysteine synthesis, particularly as it is at the point of coordination with nitrogen assimilation, and the activity of enzymes directly responsible for cysteine synthesis.

Additional control points exist at the various branches of the pathway, controlling flux to alternative sinks, including glutathione, phytochelatins, methionine or sulfolipids. These are often combinations of transcriptional and post-translational mechanisms. Metabolic control, therefore, is achieved by the coordination of these control mechanisms to adapt to supply of and demand for sulfur.

Figure 13.2 Compartmentation of major plant sulfur assimilation pathways.
13.2 Sulfate uptake and distribution

The initial transport step into the plant is against a concentration gradient from a usually dilute soil solution and is therefore an active process thought to be coupled to and dependent upon the proton gradient [21]. After this uptake sulfate must be transported across several membrane systems as it is distributed within the cell and throughout the plant. Mechanisms for the energisation of these transport steps remain speculative [21]. Apart from the primary plasma membrane influx via the root epidermis and cortex cells, distinct transport steps are required due to the subcellular compartmentation of sulfate reduction in the plastids, for storage and release from the vacuoles and for long distance transport (Figure 13.1). Since the first reported identification of a plant sulfate transporter in *Stylosanthes hamata* [22] many genes encoding sulfate transporters have been isolated and characterised [22–37]. Sequence phylogeny of the known putative sulfate transporter genes subdivides the plant sulfate transporter family into four closely related groups and a fifth more diverse, but clearly related group [38]. The emerging picture of a large gene family emphasises the critical roles the sulfate transporters have in controlling whole plant sulfur metabolism [38, 39]. Not all members of the family have been demonstrated to transport sulfate; however, as yet no other transport function has been shown. The sulfate transporter group belongs to the larger SLC26 group of anion transporters [40], although similarities with other groups of plant transporters is minimal.

Group 1, 2 and 3 sulfate transporters are located in the plasma membrane [9, 22, 29, 33, 36, 37]. Affinities for sulfate as well as spatial expression patterns and differential expression in response to nutritional status indicate different functions of the individual groups and also of individual transporters. Group 1 and 2 transporters differ in their transport kinetics. The group 1 transporters have a high affinity for sulfate with K_m in the range of 1.5–10 μM, whereas the group 2 transporters have low affinity with K_m between 99.2 μM and 1.2 mM [22, 27, 28, 33, 36, 37]. Within group 3, functional data are only available for Sultr3;5 of Arabidopsis. Expression of the Arabidopsis Sultr3;5 alone was not able to complement the yeast mutant strain CP154-7B, but when expressed in combination with the Arabidopsis Sultr2;1 as a double transformant, an increase in the V_{max} was detected, indicating an influence of Sultr3;5 on the Sultr2;1 transport activity as part of the low affinity sulfate transport system [9]. The nature of this interaction remains to be elucidated.

Spatial expression patterns and knock-out mutant analysis indicate different functions of the individual groups and isoforms. The expression of the high affinity transporters Sultr1;1 and Sultr1;2 in the root tip and root epidermis, root hairs and cortical cells of the mature Arabidopsis root [33, 36] suggest a role for these transporters in primary uptake of sulfate from the soil. Antisense and mutant analysis of Sultr1;1 and Sultr1;2 in Arabidopsis and localisation studies of homologues in tomato and barley support this function [26, 28, 30, 36, 41]. A specialised role is suggested for the third group 1 high affinity sulfate transporter Sultr1;3 of Arabidopsis which is localised solely in the phloem companion cells and which may mediate the redistribution of sulfate between sink and source organs [37].
low affinity sulfate transporters of group 2 are also exclusively expressed in the vascular tissue [33], indicating an involvement of both transporters in the vascular movement of sulfate.

Group 4 sulfate transporters are localised in the tonoplast [42] and the analysis of double knock mutants of the two Arabidopsis group 4 sulfate transporter genes (Sultr4;1 and Sultr4;2) strongly suggests a role in the efflux of sulfate from the vacuoles, releasing stored inorganic sulfate to the cytosol [42]. Genes encoding vacuole sulfate influx transporters have not been identified; however, a tonoplast localisation of one of the group 5 sulfate transporters is suggested (Buchner and Hawkesford; unpublished) and is speculated to have a role in influx. This vacuolar stored sulfate will have an important role in cellular sulfate homeostasis and sulfate availability for the assimilatory pathway.

13.2.1 Transcriptional of transport

When demand exceeds availability, a decreased intracellular content of sulfate, cysteine and glutathione is observed which is concomitant with increasing transporter activity [27]. Gene and protein expression studies have confirmed that increases in transporter activity occur predominantly at the transcriptional level [14, 18, 22, 27, 33, 36, 42]. A breakdown of the expression patterns of the genes of the group 1, 2 and 4 sulfate transporters reflects a dual pattern of regulation: (i) cell specific expression of two group 1 (Sultr1;2 and Sultr1;3), one group 2 (Sultr2;2) and one group 4 (Sultr4;1) transporters increased in response to S-limiting conditions and (ii) expression of the other group 1, 2 and 4 transporters only under S-limiting conditions [43]. At least in roots the sulfate transporters of group 1, 2 and 4 are co-regulated under sulfate deprivation to provide maximum uptake of sulfate, release of stored sulfate from vacuoles and vascular transport capacity. The expression of the group 3 sulfate transporters is not modulated by the sulfur-nutritional status of the plant [9, 24, 33].

Given the importance of transcriptional control, analysis of sulfur responsive promoters and the identification of regulatory factors involved in transcriptional activation are required. Studies on NIT3 nitrilase [44] and the β-subunit of β-coglycinin [45] provided initial data, indicating the presence of regulatory regions in the 5’-promoter sequences of these sulfur-responsive genes. Localisation of the sulfur-deficiency response elements was narrowed to 317 bp and 235 bp regions upstream of the transcriptional start site, respectively. Within the −2777/−2761 promoter region of the Arabidopsis Sultr1;1, a sulfur responsive cis-acting SURE element (sulfur responsive element) was identified which was essential for the regulation of Sultr1;1 expression under sulfur-deficient conditions [46]. The SURE core sequence (GGAGACA) was also found in the promoter regions of the sulfate transporters Sultr2;1 and Sultr4;2, and APR3 of Arabidopsis. In contrast, SURE elements were not present in the promoter region of all sulfur-deficiency regulated genes, including genes involved in sulfate transport and assimilation, indicating additional regulatory mechanisms may be involved [46].

The SURE dependent expression was down-regulated by supply of cysteine and glutathione, suggesting that the internal sulfur status represented by the thiol
content controls expression of the corresponding genes in Arabidopsis [46]. Alternatively, addition of thiols may disturb turnover of sulfate, affecting conversion of downstream assimilatory pathways. In contrast to cysteine and glutathione, O-acetylserine, which has been reported as a positive effector for the regulation of sulfur responsive genes [5, 27, 47, 48], did not show any effect on modulating SURE dependent expression. From these results, it is suggested that more than one mechanism is involved in the sulphur related regulatory processes of gene expression.

In the green alga, *Chlamydomonas reinhardtii*, a Snf1-like Ser/Thr kinase, Sac3, is involved in the regulation of sulfate uptake and arylsulfatase activities [49]. Recently it has been shown that the sulfur-deficiency inducible gene expression of Sultr1;1 in Arabidopsis required a protein phosphatase and an upstream regulatory factor [10], indicating that phosphorylation and de-phosphorylation are important in the regulation of sulfur-deficiency responsive genes in plants and algae.

13.2.2 Post-translation controls

Sulfate transporters in plants and animals are structurally conserved and the C-terminal region shares a significant similarity with the *Bacillus* sp. anti-anti-sigma protein SpoIIAA, and is referred to as the STAS domain (sulfate transporter and anti-sigma antagonist). Although the exact function of the STAS has not been elucidated, mutations in the STAS domain of human sulfate transporters result in serious disease. Studies of STAS truncated Arabidopsis high affinity transporters and chimeric transporter constructs suggest that the function of the STAS domain is more concerned with plasma membrane localisation and stability than with regulation of transporter activity. The Arabidopsis sulfate transporter, Sultr1;2, with a deleted STAS domain was unable to complement the yeast sulfate transporter mutant strain CP154-7B. Fusing the STAS domain from other sulfate transporters to the STAS-deleted Sultr1;2 restored function and plasma membrane localisation; however, the kinetics of sulfate uptake in the transformants were dependent on the origin of the STAS domain probably due to significant differences among the STAS domains of the different Arabidopsis sulfate transporters. These results suggest that the STAS domain is essential, either directly or indirectly, for facilitating localisation of the transporters to the plasma membrane, but it also appears to influence the kinetic properties of the catalytic domain of transporters [50]. Substitutions made at the putative phosphorylation site, Thr-587, led to a complete loss of the sulfate transport function of Arabidopsis Sultr1;2. The reduction or suppression of sulfate transport of the Sultr1.2 mutants in yeast was not due to an incorrect targeting to the plasma membrane. Three-dimensional modelling and mutational analyses strengthen the hypothesis that the STAS domain is involved in protein–protein interactions that could control sulfate transport [51]. A similar protein–protein interaction was suggested for the Arabidopsis sulfate transporter isoforms Sultr2;1 and Sultr3;5 [9]. Further, evidence for post-translational regulation of sulfate transport is the observation that transcript abundance of the high affinity transporters increases far more drastically under sulfate deprivation when compared with the transport
activity measured [12, 24, 27]. In some cases, the observed increase in activity in response to sulfur starvation reaches a maximum, or only shows a modest transient rise, whilst mRNA continues to increase in abundance in response to the stress [12, 27].

13.3 The assimilatory pathway – activation and reduction

Sulfate is assimilated both in the oxidised and the reduced form, occurring principally in the cytosol and plastid respectively (Figure 13.2). To facilitate these two assimilatory pathways, some but not all sulfur assimilation enzymes exist as isozymes localised in multiple subcellular compartments. Chemically inert inorganic sulfate requires activation via formation of 5'-adenylylsulfate (APS), the sole entry point of sulfate into cellular metabolic pathways. The activation reaction is catalysed by the enzyme ATP sulfurylase.

13.3.1 Cytosolic pathways

When incorporated in the oxidised form, sulfate is used for esterification of a variety of compounds including polysaccharides [52], sulfated flavonoids [53], brassinosteroids [54], glucosinolates and many others [55]. All sulfotransferases (E.C. 2.8.2) that carry out sulfate esterification are cytosolic enzymes [53], indicating the need for activated sulfate in the cytosol. This is achieved in a two-step activation process comprising a cytosolic isoform of ATP sulfurylase, [56–59], and the phosphorylation of the APS produced by APS kinase (E.C. 2.7.1.25) to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the substrate for the sulfonation reactions catalysed by sulfotransferases. A total of 18 sulfotransferase genes have been identified in Arabidopsis, localising to different sub-cellular compartments [60] but the functions of these many isoforms are not known.

There are four APS kinase genes in Arabidopsis, two of which are predicted to be located in the plastid. Characterisation of one of these plastidic isoforms (Akn1) indicated a high affinity for its substrate, APS and substrate inhibition at low ATP concentrations [61]. The enzyme is also modulated by redox state in vitro. The function of the plastid APS kinases is unclear as most sulfated esters are synthesised in the cytosol, and sulfolipid (sulfoquinovosyldiacylglyceride) synthesis requires APS, not PAPS [61].

13.3.2 Reductive assimilation in the plastid

13.3.2.1 Sulfate activation by ATP sulfurylase

Most sulfate is reduced to sulfide and incorporated as the thiol group of cysteine. Eight electrons are required to reduce SO$_4^{2-}$ to S$_2^2$-. In vascular plants, APS is reduced by APS reductase to sulfite, which is subsequently reduced to sulfide by sulfite reductase (E.C. 1.8.7.1) for incorporation into O-acetylserine by OAS thiol-lyase (OASTL; E.C. 2.5.1.47) forming cysteine. The plastids contain all the enzymes
necessary for sulfate reduction and cysteine synthesis and are the exclusive location of the enzyme APS reductase [59, 62]. As a result, the plastids are the obligate site for reduction and sulfate must be transferred into the plastid. However, the mechanism and transporter responsible for sulfate influx into plastids remain to be identified.

In Arabidopsis, three plastid-localised ATP sulfurylase isoforms have been identified in addition to a fourth, putatively cytosolic isoform. Subcellular fractionation experiments indicated that the cytosolic and plastidic isoforms of ATP sulfurylase are differentially regulated during development. The activity of the plastidic isoform declines as plant age. In contrast, the cytosolic isoform increases during development [59]. Sulfate activation is considered to be the limiting step in the assimilation pathway [63], and overexpression of a plastidic ATP sulfurylase, encoded by the APS1 gene [64], in Indian mustard resulted in an approximately 2–2.5-fold increase in enzyme activity. As well as increased selenate reduction, the transgenic plants showed higher amounts of total sulfur as well as glutathione [65]. In contrast, an eight-fold greater ATP sulfurylase activity achieved by expression of the Arabidopsis plastidic APS2 gene [66] in Bright Yellow 2 tobacco suspension culture cells or tobacco plants did not effect sulfate flux and rate of sulfur metabolism. This suggests that the enzyme is under strict control by some products of its activity or downstream steps of the sulfate assimilation pathway [67].

13.3.2.2 Sulfate reduction by APS reductase

Biochemical studies in vitro revealed that the APS reductase enzyme APR1 of Arabidopsis is activated by oxidation, probably through the formation of a disulfide bond in its thioredoxin-like domain. The APR1 enzyme is 45-fold more active when expressed in a strain of Escherichia coli lacking thioredoxin reductase (trxB) than in a trxB(+) wild type. The enzyme is inactivated in vitro by treatment with disulfide reductants and is reactivated with thiol oxidants. Treatment of Arabidopsis seedlings with oxidised glutathione or paraquat induces APS reductase activity even when transcription or translation is blocked with inhibitors. The results suggest that a post-translational mechanism controls APS reductase. A model is proposed whereby redox control of APS reductase provides a rapidly responding, self-regulating mechanism to ultimately control glutathione synthesis [68]. Flux analysis through the pathway supports the idea that APS reductase has the greatest contribution to overall control of the intracellular pathway [13].

In general, ATP sulfurylase and APS reductase are expressed in all photosynthetic cells of C3 plants. However, in monocotyledonous C4 species, ATP sulfurylase and APS reductase are exclusively located in bundle sheath cells [69–71]. The bundle sheath specificity seems to be restricted to monocotyledonous C4 species, since in the dicotyledonous C4 species, Flaveria trinervia, APS reductase mRNA was detected in both mesophyll and bundle sheath cells [72]. In addition to photosynthetic tissues, ATP sulfurylase and APS reductase expression and activity is also found in roots [66, 73–75], but the cellular localisation in this tissue is unknown.

The sulfate reduction pathway established to operate in vascular plants is in contrast to that found in fungi and enteric bacteria such as E. coli and Salmonella typhimurium. In these bacterial species, APS is phosphorylated by APS kinase to
PAPS in order to be reduced in a thioredoxin-dependent reaction by PAPS reductase (EC 1.8.4.8) and then in a second reduction step, sulfite is reduced by NADPH-dependent sulfite reductase to sulfide [76, 77]. The existence of the PAPS-dependent pathway has been a long-standing controversy in plants. While the purification of PAPS reductase from spinach has been reported [78], the Arabidopsis and rice genomes do not contain any genes homologous to the bacterial PAPS reductase, other than those encoding APS reductase. The existence of a PAPS reduction pathway was identified in the moss *Physcomitrella patens*, as an APS reductase knockout mutant of the moss was still able to grow on sulfate as the sole sulfur source. Although PAPS reductase activity was not measured in the mutant, the gene coding for this enzyme has been isolated [79]. The moss enzyme differed from the bacterial PAPS reductase in that it lacked the thioredoxin-like domain and a plastid targeting peptide, which would suggest the coexistence of both APS- and PAPS-dependent sulfate assimilation in the chloroplasts of *Physcomitrella*.

13.3.3. Transcriptional regulation and coordination with C and N pathways

A sulfate-deprivation-related increase of gene expression has been shown for at least two plastidic ATP sulfurylase isoforms and three APS reductase isoforms in Arabidopsis [30, 65, 80, 81]. In addition, the putative cytosolic Arabidopsis ATP sulfurylase isoform 2 and the plastidic isoform 4 of Arabidopsis were not regulated by the sulfur status [30, 82]. Data from plants other than Arabidopsis suggest similar patterns of expression [23, 26, 75, 83].

The sulfate-deprivation response of sulfate transporters as well as ATP sulfurylase and APS reductase gene expression and activity was shown to be down-regulated by nitrogen starvation [11, 48, 80, 84] or stimulated by nitrate application [10, 34]. In addition to the coordination of sulfate assimilation with nitrate metabolism, there is also a link with carbon assimilation. Sulfate transporter and APS reductase genes are induced by light [85, 86], an induction that can be mimicked by the addition of *O*−acetylserine (*O*AS) as well as sucrose or glucose to the nutrition medium [74, 86, 87]. As sucrose/glucose addition also induced nitrate and ammonium transport as well as nitrate reduction [74, 86, 88], the assimilation of sulfate and nitrate are clearly interconnected. The induction by *O*AS, formed from acetate and L-serine by the enzyme serine acetyltransferase (SAT; E.C.2.3.1.30) and subsequently a substrate for cysteine synthesis, links assimilatory sulfate reduction with carbohydrate and nitrogen metabolism and *O*AS has been proposed as a signalling molecule coordinating these three pathways [89]. Feeding experiments indicated that the regulation of sulfate transporter and APS reductase expression by sugars is independent of *O*AS regulation [74, 86] which may indicate that signals from nitrogen and carbon metabolism act synergistically and that positive signalling from sugars can override negative signalling from nitrate assimilation [74]. In contrast to the positive regulatory effect of *O*AS, cysteine and glutathione act as negative regulators [11, 13]. Glutathione is thought to be a phloem-translocated signal molecule that represses genes of sulfur assimilation [73].
On the other hand, observations of the sulfate uptake capacity in Brassica species indicate that the shoot to root signalling involved in the control of the pathway is unlikely to be mediated by the size of the thiol pool. Instead, it is more likely that the concentration of sulfate itself has a determining influence as a direct or an indirect signal [24].

Sulfate transport and assimilation in plants may also be regulated by plant hormones. Arabidopsis transcriptome analysis suggests that auxin and methyl jasmonate are involved in the sulfur-deficiency stress response [5–7]. Cytokinin has been shown to down-regulate the high-affinity sulfate transporter expression in Arabidopsis roots [90], but cellular levels of cytokinin do not significantly change in response to the sulfur status [91].

13.4 Control of flux through the assimilatory pathway – cysteine synthesis

Whereas transcriptional regulation affects overall control of sulfur assimilation, a finer metabolic control operates at the level of cysteine biosynthesis [92–95]. This control mechanism is important in cellular regulation under most conditions other than severe depletion. The transcriptional and catalytic control systems are intrinsically linked via the same metabolite pools.

In the final step of the reductive sulfate assimilatory pathway, sulfur in the form of sulfide is incorporated into the amino acid L-cysteine. By combining OAS and sulfide, this step represents the point of entry of S into organic combination and also the point of convergence between the nitrate and sulfate assimilation pathways. From L-cysteine, various pathways then operate for the production of methionine, proteins, glutathione, phytochelatins, vitamins and a wide variety of organic S-containing compounds.

The biosynthesis of L-cysteine in plants is carried out by two enzymes, SAT and OASTL, which associate in a bi-enzyme complex and it is suggested that they have a key role in ‘sensing’ the sulfur-nutritional status in the cell. As shown in Figure 13.3, the first enzyme, SAT, acetylates the amino acid L-serine using acetyl coenzyme A to form OAS before the O-acetylserine is combined, by the action of OASTL, with sulfide from the reductive sulfate assimilation pathway to form cysteine.

The biosynthesis of cysteine was first characterised in E. coli and S. typhimurium where the whole process of S-uptake and reduction is controlled by a Cys regulon of at least 16 genes [96, 97]. A single SAT enzyme (CysE) and two OASTL enzymes (CysK/M) are responsible for cysteine synthesis. In plants, the situation is more complicated. SAT and OASTL activities (unlike the preceding enzymes in the reductive sulfate assimilation pathway) are in the cytoplasm, mitochondria and chloroplasts [98–102]. The Arabidopsis genome contains five SAT genes and six OASTL genes. Three of the OASTL genes are thought to be involved in cysteine synthesis and three related genes involved in cyanoalanine synthesis [103–105]. The products of these genes are directed to the cytosol or the chloroplast/mitochondrial matrix by N-terminal targeting peptides [103, 106–110].
13.4.1. The ‘cysteine synthase’ complex

Early attempts to purify SAT from plants revealed that activity was associated with a protein of 300–350 kDa, which could be dissociated into smaller sub-units in the presence of O-acetylserine [111, 112]. In fact, a homo-tetrameric SAT molecule was associating with two molecules of a homo-dimeric OASTL in a complex originally designated ‘cysteine synthase’ (CS) [96, 113, 114]. The structural relationship between SAT and OASTL in the CS complex was elucidated using the yeast two-hybrid system. These experiments showed that the C-terminal /H9252-sheet region of the SAT protein, which also possesses the active transferase domain, was responsible for the interaction of SAT with OASTL, and SAT/SAT interactions were associated with a central /H9251-helical region [92].

13.4.2 Metabolic control of the ‘cysteine synthase’ complex

The ratio of OASTL to SAT in plant tissues is approximately 300:1 and a similar ratio of activity was required for the optimal production of cysteine in vitro [112, 115]. In cell-free extracts and with recombinant proteins overexpressed in bacteria, SAT was only active when complexed with OASTL and was inactive in its uncomplexed form. Contrary to this, OASTL was found to be highly active in its uncomplexed form yet virtually inactive in complex [93, 112]. From this it was clear that the majority of OASTL is found as an active free-dimer and that only a small proportion would be in complex with SAT. These findings confirmed that O-acetylserine is released into solution from the CS complex (as previously found in bacteria [116]) rather than being channelled from SAT to OASTL. Thus OASTL appears to act as a regulatory factor for SAT activity in the bi-enzyme complex rather than having a catalytic role. The regulatory role the CS complex plays in controlling cysteine synthesis and S-assimilation in general was elucidated by combining knowledge of the activity of the free and bound sub-units with studies on the stability of the complex in the presence of its substrates. The complex was found to be stabilised in the presence of sulfide and disrupted into its component molecules in the

Figure 13.3 The reactions of L-cysteine synthesis from L-serine and sulfide in plants.
presence of O-acetylserine [93, 113]. In effect the complex acts as a sensor for the S-status of the cellular compartment with SAT activity being controlled by the balance between S and N metabolism.

13.4.3 Control of SAT activity by cysteine feedback

In addition to the control of activity by association/dissociation of the complex with OASTL, plant SATs have also been shown to be sensitive to feedback inhibition by physiological concentrations of cysteine. SAT activity was reduced by 65% in *Phaseolus vulgaris* by 1 mM cysteine [117] and almost completely inhibited at this concentration in SAT from spinach chloroplasts [99]. Inhibition was also demonstrated in a heterologous system by expressing the cytosolic SAT-A gene from watermelon in *E. coli*. Inhibition of SAT activity was observed at approximately 3 μM in this case [118]. A subsequent assessment of the inhibition of the SAT gene family from Arabidopsis however revealed differing sensitivities for the cytosolic, chloroplastic and mitochondrial isoforms [106]. As in watermelon, the cytosolic (Sat-c) isoform was inhibited by micromolar concentrations of cysteine, but the chloroplastic (Sat-p) and mitochondrial (Sat-m) forms were found to be insensitive. As the range of plant SATs tested for feedback inhibition increased, it became clear that rather than cysteine sensitivity being limited to cytosolic isoforms, a high degree of interspecies variation occurred. Chloroplastic SAT activity showed cysteine sensitivity in pea and spinach at physiological concentrations, but the cytosolic and mitochondrial isoforms were insensitive [95, 119]. A glycine residue at position 277 in the watermelon SAT was shown, using site-directed mutagenesis, to be responsible for the feedback inhibition by cysteine [107]. Alignment of all plant cysteine sensitive and insensitive SAT sequences (where known) confirms the role of this amino acid in the feedback response, being present only in sensitive isoforms [120]. Recent research has shown that cysteine inhibits SAT by causing the dissociation of the CS complex, in the same way as O-acetylserine does, leading to the formation of inactive high molecular mass aggregates of SAT [95].

As in bacteria, cysteine sensitive isoforms of SAT are clearly involved in the control of cysteine synthesis in plants. However, the possibility that SAT insensitive isoforms may have evolved in cell compartments with high cysteine sink demand in a species-dependent manner should be considered.

13.4.4. The role of O-acetylserine as an ‘inducer’ of gene expression

In addition to the ability of O-acetylserine to control the activity of SAT post-translationally by disrupting the CS complex, in plants, in common with bacteria, it may also be involved in the transcriptional regulation of gene expression. The position of the cysteine synthase complex at the junction between sulfur and nitrogen metabolism, as well as between inorganic and organic metabolites, makes it an important site for regulation of S metabolism. Such control was first demonstrated in prokaryotic systems, where a simple feedback mechanism ensures optimal cysteine production according to S availability and cysteine requirement. In bacteria, the SAT
gene is constitutively expressed producing O-acetylserine for conversion to cysteine by OASTL. O-acetylserine acts as an inducer molecule for the Cys regulon promoting sulfate uptake and reduction. However, SAT enzyme activity is feedback inhibited by low levels of accumulated cysteine causing the Cys regulon to be ‘switched off’ by reduced O-acetylserine production under conditions of low cysteine requirement. This metabolic control is mediated by the CysB protein [121], which interacts at the promoter site, facilitating or blocking binding of RNA polymerase, depending on binding the protein with OAS or sulfide, respectively.

Whilst no plant homologue of the CysB regulatory protein has yet been detected by nucleotide or amino acid sequence database searching, a number of studies have sought evidence to support a similar model of transcriptional control mediated by O-acetylserine in plants. O-acetylserine is well documented as an inducer of reductive sulfate assimilation, and as already noted above, feeding experiments lead to enhanced activity of uptake, transporter expression and expression of other components of the assimilatory pathway. However, sulfate reduction was stimulated in *Lemna minor* by application of O-acetylserine under dark conditions. This was the first evidence that the sulfate reduction pathway could be decoupled from the light-dependent thioredoxin system by the effect of O-acetylserine as a signalling molecule [87]. O-acetylserine applications also increase the transcription of genes involved in sulfate uptake [27, 122], activation by ATP sulfurylase [122], reduction by APS reductase [48] and have also been shown to control general mRNA profiles in sulfur-starved Arabidopsis [6]. Thus a clear correlation exists between genes induced under sulfur starvation and those induced by application of O-acetylserine, which is indicative of the central importance of this metabolite pool [5].

Induction of sulfate assimilation occurred in the presence of sulfate and with increasing internal cysteine and glutathione levels [27]. These data supported the idea that O-acetylserine is a dominant ‘signal’ molecule. Additionally, an EMS mutagenised Arabidopsis line (mapped to a thiol reductase) that overaccumulated O-acetylserine showed increased transporter and APS reductase expression [123]. However, transgenic expression of cysE (serine acetyltransferase) in potato resulted in increased sulfate transporter and APS reductase expression, with concomitant cysteine and glutathione accumulation, but not with O-acetylserine accumulation [12]. Time course analysis of plant material subjected to limiting sulfur supply shows a poor correlation between induction of sulfate transporter and APS reductase gene expression and the increase in internal OAS concentration [12, 24]. Taken together these data suggest that artificially increasing O-acetylserine supply acts to increase flux to cysteine and other downstream products. This occurs by relieving any limitation in O-acetylserine precursor supply rather than acting as a direct inducer of gene expression, as is observed in bacteria. Supporting the idea that O-acetylserine is commonly limiting, the metabolite was also the major limiting factor for cysteine biosynthesis in transgenic tobacco plants overexpressing OASTL [124]. During sulfur limitation, the rises in O-acetylserine are a consequence of limited sulfide, so this compound may not be a good candidate for the ‘signalling’ metabolite. This leaves the role of this molecule as a major open question, with other potential signalling candidates as any molecule from sulfate to cysteine.
In contrast, in yeast, transcriptional control of the SUL and MET genes (which encode most of the S-uptake and assimilation pathway) is controlled by S-adenosyl methionine (SAM; AdoMet) concentration mediated by a multi-protein complex which binds to the respective promoters [125]. Homologous mechanisms have not been investigated in plants.

13.4.5 A model for control of cysteine synthesis

Evidently the plant CS complex is at the centre of control for sulfate uptake and reduction as well as cysteine synthesis. These regulatory properties are interlinked to ensure sulfate reduction and O-acetylserine production is optimised according to the cysteine requirement of the cellular compartment in which they operate. The result is a unique and elegant metabolic control system where cysteine supply is optimised whilst preventing the toxic accumulation of sulfide or cysteine under the condition of fluctuating S availability, changes in N metabolism or requirements for S-containing organic compounds. As shown in Figure 13.4, O-acetylserine, sulfide and cysteine modulate the activity of SAT by a combination of CS complex association/dissociation accompanied by corresponding effects on gene expression. The CS complex is therefore controlled by the substrates sulfide and O-acetylserine to ensure optimal cysteine synthesis to meet sink demands.

Figure 13.4 Control of cysteine biosynthesis: regulation of the SAT/OASTL complex in response to accumulation of the metabolites OAS, sulfide and cysteine. OAS and/or cysteine or some related metabolite act on expression of the sulfate transporters and components of the assimilatory pathway, principally APR.
In summary the regulatory model works as follows:

1. **O-acetylserine accumulation.** When sulfide availability is low, OAS represses its own synthesis by causing the CS complex to dissociate. Sulfide production is then stimulated by the accumulated O-acetylserine which may induce the transcription of genes involved in sulfate uptake and reduction.

2. **Sulfide accumulation.** When sulfide availability is in excess, CS complex formation is promoted, activating SAT which in turn increases the production of O-acetylserine for optimal cysteine synthesis.

3. **Cysteine accumulation.** When sink demand for cysteine (e.g. methionine, proteins, glutathione vitamins) is low, cysteine accumulation causes the CS complex to dissociate, thus decreasing the production of O-acetylserine. Consequently, sulfate uptake and reduction are repressed and cysteine production is prevented until the cysteine pool is exhausted.

13.5 Control of flux to the various sinks after cysteine biosynthesis

In the previous sections, mechanisms resulting in optimisation of cysteine biosynthesis were described. At this point there are various alternative sinks for the reduced S and the flux through the cysteine pools itself will be dictated by the strength of these various sinks. Flux to the sinks is controlled by the activities of specific steps in the pathway, often influenced by feedback loops mediated by pathway products acting at the transcriptional or post-translation level (see Figure 13.5). An important pathway utilising cysteine is the biosynthesis of methionine. The major sink for both cysteine and methionine is protein and the strength of this sink is determined developmentally, as well as by photosynthesis and by nitrogen availability. Glutathione is another important sink for cysteine. The cellular content of glutathione is estimated to be in the region of 0.1–0.2 mM in the cytosol and 2–4 mM in the chloroplast [126], but is subject to the sulfur nutritional status of the plant, and ultimately limited by the availability of sulfur. As a major sink for cysteine, factors affecting glutathione requirements have a major impact on fluxes through the pathway. Demand for glutathione will depend on development and environmental stress. It is also the major form in which cysteine can be transported around the plant, and may act as a store of reduced sulfur. Glutathione itself has an important role in regulating the redox state of the cell and acts as an anti-oxidant. Synthesis is increased in response to a number of stresses, including pathogen attack or any oxidative stress. Finally, glutathione is the precursor for phytochelatins. In response to metal exposure, the activity of phytochelatin synthase increases, increasing the flux through the glutathione and cysteine pools [127].

Glutathione is synthesised in a two-step ATP-requiring pathway, catalysed by γ-glutamyl cysteine synthetase (E.C. 6.3.2.2) and glutathione synthetase (E.C. 6.3.2.3). Transgenic studies [128–131] have clearly indicated that the first step has
the greatest influence on limiting the flux through this pathway. Expression of genes for both steps is influenced by stress and demands for glutathione, although the mechanisms are not clear. There is also some evidence for post-transcriptional control of γ-glutamyl cysteine synthetase [132] occurring as part of these stress responses, acting to rapidly increase glutathione production.
13.5.1 Methionine biosynthesis

Methionine belongs to the aspartate family of amino acids which also includes lysine, threonine and isoleucine. The enzymology and molecular biology of this pathway has recently been thoroughly reviewed [133, 134]. The precursor for methionine is O-phosphohomoserine (OPH), which represents a branch in metabolism between the threonine and methionine biosynthetic pathways. For methionine biosynthesis (Figure 13.5), OPH combines with cysteine in a condensation reaction to form cystathionine, catalysed by cystathionine γ-synthase (E.C. 4.2.99.2). Cystathionine is then converted to homocysteine by cystathionine β-lyase (E.C. 4.4.1.8), before final methionine synthesis catalysed by methionine synthase (E.C. 2.1.1.14).

As well as being a component of proteins, methionine is a precursor for SAM, an important methyl group donor for transmethylation reactions, including DNA, and is also a precursor for ethylene and for polyamine production. The sink demands for most of these reactions are not great as methionine is not consumed, but re-cycled. However the SAM pool may be controlled by its rate of synthesis, as the polyphosphate (pyrophosphate?) product of the reaction is inhibitory to the enzyme. Importantly SAM is an activator of threonine synthase (E.C. 4.2.99.2) [135] inducing an 8-fold increase in the rate of catalysis and a 25-fold decrease in the K_m for OPH. SAM may also have a role, along with methionine, in regulating expression of the genes of both the methionine and threonine branches by both repressing expression of cystathionine γ-synthase (at least in Arabidopsis, if not in potato [134]), and by inducing expression of threonine synthase. This leads to threonine synthesis, the alternate branch for OPH consumption. The net effect of this allosteric regulation of threonine biosynthesis and antagonistic transcriptional regulation of the two branches is to favour threonine synthesis over methionine and SAM production in the metabolic branch when sufficient sulfur supply leads to excess methionine synthesis. Both branches of the pathway are limited by homoserine availability [136].

13.6 Summary

Repression or de-repression of expression of genes encoding components of the uptake and assimilation pathway, principally the sulfate transporters and APS reductase, are apparently controlled by the balance of sulfate supply and sink demand (Figure 13.6). One or more signals for sink demand, whose identity is unclear, act at the cellular level. In a situation where cysteine or some associated metabolite pool size is perturbed, either through insufficient sulfur supply or increased demand, the cell responds accordingly. The cysteine synthase complex appears to have a central role in sensing nutritional status and catalytic activity is modulated by the relative concentrations of substrates and products. These same metabolites are likely candidates in the signal transduction pathways regulating gene expression. The sink tissues will be actively growing tissue and includes developing seeds. Source tissues will be the green tissues in which active assimilation is taking place or the roots where acquisition occurs. Apparent sink-to-source
Figure 13.6 Control of sulfur metabolism is the results of a balance between supply of and demand for sulfur. Unknown metabolites are involved in the signalling of the feedback regulation.

communication is likely to be the result of a sequential perturbation of these essential metabolites, firstly in cells of sink tissues and ultimately in the root cells involved in acquisition. The actual identity of the signal metabolites still remains elusive. Some progress is being made on the missing elements of this model: the cis and trans acting factors linking metabolite pools to gene expression. The roles for post-transcriptional control are in fine tuning the network of sulfur distribution and utilisation in the context of specific metabolic pathways and the whole plant.

Acknowledgements

The authors are sponsored by grants from BBSRC and DEFRA (AR0911). Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the UK.

References

CONTROL OF SULFUR UPTAKE, ASSIMILATION AND METABOLISM

Index

14-3-3 proteins, 131, 132, 133, 134, 135, 136, 137, 139, 142, 143, 239, 245, 246, 300, 333
2,4-dioenoyl CoA reductase, 39

α-amylase, 237, 243
β-amylase, 227, 237, 267, 268
β-conglycinin, 352
β-glucuronidase (GUS), 100, 104
β-methylcrotonyl-CoA carboxylase, 312
γ-carbonic anhydrase (see also METC complex I), 328
γ-glutamyl cysteine synthase, 362

ABRE (abscisic acid response element), 12
abscisic acid, 151, 332
acetyl–CoA carboxylase (ACCase), 163, 305, 306
acetyl-CoA synthetase, 313
aconitase, 26, 32, 36, 42, 291, 292, 299, 302, 304, 315
Fe regulatory protein, 292
acyl carrier protein (ACP), 306
adenosine 5′-phosphosulfate reductase (APSР), 174, 350, 354, 355, 356, 360, 364
AtAPR1, 355
adenosine 5′-phosphosulfate kinase (APSК), 350, 354, 355
Akn1 plastidic isoform, 354
adenylate kinase, 301
AdoHyc hydrolase, 94
ADP-glucose pyrophosphorylase (ADGP), 26, 33, 107, 263, 269, 271, 272, 273, 274, 280, 281
ADPG mutants, 263, 270, 271
bacterial, 260, 277
cytosolic, 261
plastidic, 88, 89, 90, 162, 163, 247, 258, 261, 262, 271, 327, 332
AGX-1 protein, 241
alcohol dehydrogenase (ADH), 13, 26, 169
aldehyde dehydrogenase (ALDH), 37, 142, 313, 314
‘nuclear restorer gene’, 314
aldolase, 33, 42, 169
aldolase-like protein, 238
cytosolic, 26, 88, 202, 235, 236, 238, 248, 250, 303
plastidic, 32, 39, 153, 168, 188, 189, 197, 202, 203, 205
algae, 190, 196, 197, 258, 304, 313, 327, 353
green, 197, 200, 202, 204, 219, 229, 272, 273, 278, 279, 353
red, 156, 191, 202, 278, 279
alkaline phosphatase, 26
alkyhydroperoxide reductase, 158
alliin, 348
allosteric regulation, 33, 45, 86, 88, 90, 140, 143, 199, 219, 229, 243, 244, 247, 260, 261, 269, 329, 330, 364
alternative oxidase (AOX), 167, 291, 296, 297, 298, 301, 303, 309, 310
alternative splicing (RNA), 223, 224
aminoacyl-tRNA synthetase, 159
AMP-activated protein kinase (AMPK), 138, 139, 141
amyloplast, 33, 38, 142
Anacystis nidulans, 204
anaplerotic reactions, 229, 329, 335
ANN (artificial neural networks), 10, 11
antiporter,
glutamine/glutamate, 93
calcium/H+ (CAX1), 172, 173
sucrose/H+, 102
apoplast, 103, 349
cell walls, 34, 40, 86
loading, 102
transport, 98
apple (Malus domesticus), 78

Cvi-1 ecotype, 76
T-DNA insertional mutants, 89, 101, 105, 276, 296
Ws-2 ecotype, 76
Sex1, 267, 268
Sex4, 267

archaebacterium, 191
ascorbate-glutathione cycle, 37, 308, 309
asparagine synthetase, 15, 93
ATPase, 98
AAA protein family, 192, 193
ATP-citrate lyase, 132
ATP sulfurylase, 354, 360
AtATPS1, 355
AtATPS2, 355
cytosolic, 350
plastidic, 350, 354, 356
ATP synthase complex
mitochondrial (ETC complex V), 32, 136, 291, 295, 299, 300, 301, 303
colorplastidic, 163, 164, 168
ATP synthase inhibitors (see also Plant UCPs),
oligomycin, 295
aubergine (Solanum melongena), 223
auxin, 39, 151, 357

Bacillus sp., 353
Lys5 mutant, 263
RisØ 16 mutant, 263

Bcr protein (14-3-3 target), 137
bean (Phaseolus vulgaris), 102, 302, 359
transgenic, 74
Benson-Calvin cycle (see Calvin cycle)
biotin, 30
blue-copper proteins, 308
Botrytis allii, 77
branched chain keto-acid dehydrogenase complex, 300, 312
Brassica, 170, 357
Brassica oleracea, 170
cauliflower (Brassica oleraceae (Botrytis group)), 94
Indian mustard (Brassica juncea), 355
oilseed rape (Brassica napus), 100
seeds, 107
brassinosteroids, 354
brassinolide, 129, 130
brassinolide signalling,
BES1, 130
BIN2, 130
BSU1 (nuclear protein phosphatase),
129, 130
BSU1-like protein, 129
BSL1, 129
BSL2, 129
BSL3, 129
BRCT (BRCA1 carboxy-terminal) domain, 131, 132, 133
bulbs, 97

C4 photosynthesis, 96, 143, 187, 219, 220, 222, 224, 228
CAB gene, 15, 226
Caenorhabditis elegans, 121, 134
calcium-dependent protein kinases (CDPKs), 122, 140, 224, 225, 244
CDPK3, 141, 239
CDPK-related kinase, 122, 123
calmodulin, 124, 227, 311, 312
Calvin cycle, 38, 39, 47, 86, 87, 90, 95, 96, 105, 107, 150, 156, 163, 164, 187, 188, 189, 190, 194, 195, 197, 198, 199, 201, 202, 203, 204, 205, 206, 328, 333
CaMV 35S promoter, 101, 105
carbohydrate active enzyme (CAZy) classification, 268
carboxyarabinitol-1-phosphate (CAIP), 192
carboxypeptidase A, 191
cardiolipin, 302
castor oil plant (Ricinus communis), 32, 106, 172, 229
catalase, 167
CcdA, 165
CDSP32 (drought-induced stress protein), 168, 169
cell wall, see apoplast
cellulose synthase complex, 140
Chlamydomonas reinhardtii, 142, 156, 161, 165, 166, 172, 190, 191, 193, 199, 200, 203, 204, 205, 228, 264, 265, 266, 272, 273, 274, 275, 276, 280, 332, 333, 353
Chloroplast envelope, 86, 87, 90, 92, 95, 96
thylakoid membrane, 203
transit peptide, 190
chromoplast, 38
CHS gene, 226
circadian rhythm, 200, 223, 225, 226, 227, 228, 273, 279, 331
diurnal cycle, 4, 16, 17, 44, 235, 239, 243, 244, 269, 273, 280
citrate synthase, 26, 40, 42, 291, 292, 293, 315
citric acid cycle, 14, 26, 33, 36, 37, 42, 43, 46, 75, 92, 143, 290, 292, 293, 294, 296, 299, 301, 302, 303, 304, 305, 306, 307, 310, 312, 313, 314, 328, 331, 334
Cladosporium fulvum, 170
Avr9, 170
Clusia minor, 221
Clusia spp., 226
control theory, 60, 61
Corynebacterium glutamicum, 74
cotton (Gossypium hirsutum), 203
CP12 protein, 195, 196, 197, 200, 204, 205, 206
CP12, 205
Crassulacean acid metabolism, 143, 187, 219, 220, 222, 224, 225, 226, 227, 228
cucumber (Cucumis sativus), 32
cyanobacteria, 159, 160, 161, 190, 191, 197, 198, 204, 245, 261, 272, 277
Cyanobacterium, 277
Cyanidioschyzon merolae, 279
cyclin-dependent kinases, 133
CDK2, 137
cyclohexamide, 220
cyclophilin (see also immunophilins), 164
AtCYP20-3, 164
Cys regulon, 360
CysB, 360
CysE, 357, 360
CysK, 357
CysM, 357
cystathionine β-lyase, 94, 363, 364
cystathionine γ-synthetase, 94, 363, 364
cysteine proteases, 98
cysteine synthase complex, 358, 359, 361, 362, 364
cytochrome P450, 13
cytokinin, 357
cytoplasmic male sterility/fertility, 32, 314, 330
D-enzyme, 266, 275
dehydroascorbate reductase, 307, 308
deoxy-arabino-heptulosonate 7-phosphate (DHA) synthase, 162
deoxy-xylulose 5-phosphate (DOXP) pathway, 96
Digiteria sanguinalis, 224, 225
dihydrolipoamide reductase, 158
DNA microarrays, 2, 3, 5, 6, 8, 11, 12, 15, 16, 17, 128, 194, 242, 243, 245, 249, 279
DRE element, 12
Drosophila melanogaster, 129, 131, 134, 138
Edman degradation sequencing, 32
EF-hand motifs for Ca2+-binding, 296
electron transport chain, chloroplastic (PETC), 47, 156, 194, 200, 326, 327, 328
cytochrome b6/f complex, 165, 166, 194
cysteine synthase complex, 358, 359, 361, 362, 364
DNA microarrays, 2, 3, 5, 6, 8, 11, 12, 15, 16, 17, 128, 194, 242, 243, 245, 249, 279
DRE element, 12
Drosophila melanogaster, 129, 131, 134, 138
Edman degradation sequencing, 32
EF-hand motifs for Ca2+-binding, 296
electron transport chain, chloroplastic (PETC), 47, 156, 194, 200, 326, 327, 328
cytochrome b6/f complex, 165, 166, 194
cysteine synthase complex, 358, 359, 361, 362, 364
DNA microarrays, 2, 3, 5, 6, 8, 11, 12, 15, 16, 17, 128, 194, 242, 243, 245, 249, 279
DRE element, 12
Drosophila melanogaster, 129, 131, 134, 138
Edman degradation sequencing, 32
EF-hand motifs for Ca2+-binding, 296
electron transport chain, chloroplastic (PETC), 47, 156, 194, 200, 326, 327, 328
cytochrome b6/f complex, 165, 166, 194
cysteine synthase complex, 358, 359, 361, 362, 364
DNA microarrays, 2, 3, 5, 6, 8, 11, 12, 15, 16, 17, 128, 194, 242, 243, 245, 249, 279
DRE element, 12
Drosophila melanogaster, 129, 131, 134, 138
Edman degradation sequencing, 32
EF-hand motifs for Ca2+-binding, 296
DNA microarrays, 2, 3, 5, 6, 8, 11, 12, 15, 16, 17, 128, 194, 242, 243, 245, 249, 279
DRE element, 12
Drosophila melanogaster, 129, 131, 134, 138
Edman degradation sequencing, 32
EF-hand motifs for Ca2+-binding, 296
electron transport chain, chloroplastic (PETC), 47, 156, 194, 200, 326, 327, 328
cytochrome b6/f complex, 165, 166, 194
DCMU, 200
LHCII kinases, 166
light-harvesting complex II (LHCII), 166
photosystem I, 165
photosystem II, 165, 166
psaA-psaB (PSI), 165
psbA (PSII), 165
psbD (PSII), 165
INDEX

fatty acid synthase (FAS), 305, 306
FC analysis, 8
FDR (false discovery rate), 9
ferredoxin-thioredoxin control, 188, 189, 198, 200
ferritin proteins, 308
FGC (functional gene categories), 12
FK506 (FKBP), 164
AtFKP13 (peptidyl-prolyl cis-trans isomerase), 164, 165
Flaveria trinervia, 221, 223, 224, 225, 228, 355
floral tissues, 78, 205, 222, 292
anthers, 32, 290
peduncle, 205
pistil, 170
pollen, 32, 170, 250, 272, 314
stigma, 170
tapetum, 290
floridean starch, 278, 279
fluorescent proteins,
 blue, 50
green, 34, 50, 100, 156, 303
yellow, 50, 303
formate dehydrogenase, 46, 299, 312, 313
forkhead associated (FHA) domain, 128, 132
FRET (fluorescence energy transfer), 49, 50, 78
fructan exohydrolase (FEH), 237
fructokinase, 17, 26, 235, 237
fructose-1,6-bisphosphatase, 169
cytosolic, 17, 88, 90, 141, 197, 235, 236, 237, 238, 239, 240, 247, 248
plastidic, 39, 156, 162, 163, 168, 187, 188, 189, 197, 198, 199, 200, 201, 203, 249
fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), 197, 198
fructose-2,6-bisphosphate, 141, 239, 240, 247, 248
fructosyltransferase, 235
fruit, 188, 237, 238, 250
fumarase, 26, 291, 293
fungi, 78, 197, 279, 355
mycorrhizal association, 326
Neurospora crassa, 197
Fusarium oxysporum, 77
fusicoecin, 136
GABA (γ-aminobutyric acid) shunt, 37, 311, 312
γ-hydroxybutyrate dehydrogenase (GHBD), 312
GABA transaminase (GABA-T), 311, 312
 glutamate decarboxylase (GAD), 311, 312
 succinic semialdehyde dehydrogenase (SSADH), 311, 312
galactinol synthase/β-galactosyltransferase, 235
L-galactono-1,4-lactone dehydrogenase (GLDH), 305
gas chromatography, 64, 67
GCN (general control non-derepressible) 2 protein, 137, 139, 332
GCRMA analysis, 7, 8
germin-like protein, 169
gibberellins, 243
giGA pathway visualisation tool, 13, 14
GFP (green fluorescent protein), see fluorescent proteins
gliadin, 38
glucan water dikinase (GWD), 162, 163, 237, 268
glucanotransferase (DPE2), 269
glucokinase, 235, 237
 gluconeogenesis, 33, 74, 197, 198, 238, 306
glucose-6-phosphate dehydrogenase, 26, 163, 188
glucosinolate, 348, 354
 glucosinolate-myrosinase system, 62
glucosyltransferase, 235, 279
 glutamate:glyoxylate aminotransferase (GGAT) (peroxisomal), 338, 339, 340
 glutamate dehydrogenase, 16
 glutamate synthase (glutamine:oxoglutarate aminotransferase, GOGAT), 91, 93, 327, 328, 336, 338, 339, 340
 glutamine synthetase (GS), 91, 169
 GS1 (cytosolic), 142
 GS2 (plastidic), 92, 93, 142, 164, 304, 327, 328, 336, 338, 339, 340
 mitochondrial, 304
 glutathione reductase (GR), 158, 307, 308, 309
 glutathione synthetase, 362, 363
 glutaredoxin (GRX) (see also PDORs), 155, 159, 170, 171, 172, 173, 307, 308
 glutelin, 174
 glutenin, 38
 glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 33, 152
cytosolic, 26, 40, 169, 194, 196
GapA (GAPDH), 196, 205
GapB (GAPDH), 196, 205
non-phosphorylating (GAPN), 142, 143, 194
 plastidic, 39, 86, 163, 164, 187, 188, 189, 194, 195, 196, 197, 198, 200, 201, 203, 204, 205
glycerol-3-phosphate dehydrogenase (GPDH), 314
FAD-dependent, 314
glycine decarboxylase complex (GDC), 48, 92, 93, 291, 293, 301, 304, 310, 339, 340
dihydrolipoamide dehydrogenase (see also OGDH), 293
glycogen branching enzyme, 259, 260, 277, 278
glcX, 260, 277
glycogen phosphorylase, 122, 124
 phosphorylase a, 122
 phosphorylase b, 122
glycogen synthase, 258, 259, 260, 277, 278, 279
glycogenin, 276, 279
glycolate dehydrogenase, 304
glycolysis, 14, 26, 32, 33, 40, 41, 42, 43, 90, 92, 95, 107, 164, 188, 201, 236, 290, 303, 331
glycoside hydrolase 14 (GH14) protein family, 268
glyoxylate cycle, 39, 75, 306, 307
glyoxysome, 39, 306
GO (gene ontology), 12
GOGAT, see glutamate synthase
golgi apparatus, 12, 35
grape (Vitis vinifera), 74
GRIM-19 protein, 294
GS/GOGAT reaction cycle, 91, 92, 331, 333, 334, 335, 336, 338, 340, 341, 342
HCF164 protein, 165
HEAT repeats, 123, 126
heat shock proteins (see also heat stress), 4, 314
HSP22, 299, 300
HSP60, 299
HSP70, 158, 299, 300
HSP90, 299
hexokinase, 17, 26, 106, 162, 235, 237, 250
hexose phosphate isomerase, 26
Hip (HS70-interacting protein), 158
histidine phosphatase, 132
histone deacetylase, 137
homocysteine S-methyltransferase, 363
HPLC (high performance liquid chromatography), 67
hypocotyl, 172
elongation, 226
ICAT (isotope-coded affinity tag), 30, 35
IMAC (immobilized metal-ion affinity chromatography), 46
immunophilins, 164
IMS (information management systems), 5
invertase, 26, 104, 235, 250
yeast, 74
ion channels
calcium-permeable cation channels, 151, 224
isocitrate dehydrogenase,
cytosolic, 91, 92, 315, 327
glyoxosomal (NADP-specific), 39, 40
plastidic, 92
isocitrate lyase, 39, 306, 307
jasmonic acid, 39, 77
methyl jasmonate, 68, 75, 357
Kalanchoë daigremontiana, 226
Kalanchoë fedtschenkoi, 220, 221, 227
KEGG pathway maps, 15
Kelch-repeat domain, 129
kinetoplastid, 197
Kir6 (potassium channel protein), 137
kiwifruit (Actinidia spp.), 242
Krebs’ cycle, see citric acid cycle
lactate dehydrogenase, 40
bundle sheath cells, 68, 95, 98, 219, 222, 225, 355
development, 326, 331
leaf-specific proteins, 33
mesophyll cells, 95, 98, 99, 102, 105, 219, 222, 224, 225, 355
movements, 226
petioles, 100
senescence, 62, 97, 98, 102, 331
source, 102, 331
leucoplasts, 38
Lemna minor, 360
light quality, blue, 196
red, 196
white, 196
lignification, 78
lipoxygenase, 68, 69
loblolly pine (Pinus taeda), 221
Lotus japonicus, 78, 221
lupin (Lupinus spp.), 338
Magnaporthe grisea, 197
amylose extender (ae1) mutant, 265, 270, 171
BEI (Sbe1), 270
BEIIa (Sbe3), 270
Brittle-1 (Bt1) mutant, 263, 270, 271
Brittle-2 (Bt2) mutant, 270, 271
Dull (Du1), 270, 271, 281
Shrunken-1 (sh1) mutant, 260, 270, 271
Shrunken-2 (sh2) mutant, 270, 271
Sugary-1 (Su1), 270, 271
Sugary-2 (Su2), 270, 271, 281
Waxy (Wx), 270, 271
malate dehydrogenase, cytosolic, 32, 169, 315
mitochondrial, 26, 291, 293, 299, 304, 315
plastidic, 156, 162, 163, 167, 249
sieve-element-localised, 32
malate synthase, 39, 74, 306, 307
malic enzyme, 26, 291, 293, 299
NAD-specific, 36, 219
NADP-specific, 219
MalQ protein, 269
MAPK phosphatase (see also tyrosine phosphatases), 130
cdc14, 130
myotubularins, 130
PRLs, 130
PTEN, 130
slingshots, 130
MAPMAN pathway visualisation tool, 14, 16
MAS (microarray suite), 6, 8, 9
mass spectrometry, 31, 32, 35, 42, 45, 46, 63, 64, 66, 67, 69, 76, 161, 204, 229, 294, 301, 306
chromatography-coupled MS, 64, 65, 67, 68, 73, 76, 77, 78, 79
Fourier-transform ion cyclotron MS, 68
MALDI-TOF, 28, 29
tandem MS/MS, 28, 29, 32, 33, 38, 47
mercuric reductase, 158
Mesembryanthemum crystallinum, 221, 227
methylerythritol 4-phosphate pathway, 96
methionine synthase, 94, 169, 363, 364
methionine S-methyltransferase, 363
methyl jasmonate, see jasmonic acid
MetNet pathway visualisation tool, 14
mevalonic acid pathway, 96
MH2 protein domain, 132
MIAME (minimum information about a microarray experiment), 3, 5, 11
Michaelis-Menten constant, 191, 330, 337, 338, 351
mistletoe (Viscum album L.), 244
monodehydroascorbate reductase (MDAR), 307, 308, 309
MuDPIT (multidimensional protein identification technology), 30, 32
Münch hypothesis (osmotic pressure-flow), 98

Mycobacterium leprae, 160
Mycosphaerella graminicola, 174
myrosinase, 62

nitrate reductase, 15, 16, 91, 139, 153, 326, 327, 328, 330, 332, 336, 338, 339, 340
Nit2, 332
nitrate reductase inhibitory protein, 139
nitric oxide, 153, 292, 298, 332
nitric oxidase synthase, 153
nitrilase (NIT3), 352
nitrite reductase, 91, 327, 328, 336, 338, 339, 340
N-terminal signal sequence, 33, 357
NMR (nuclear magnetic resonance), 63, 64, 66, 69, 74, 76, 77, 78, 79
1H-NMR, 74
13C-NMR, 75
two-dimensional, 68
nucleus, 33, 40
nuclear export signal, 137
nuclear localisation signal, 137
nucleoside diphosphate kinase, 299, 301, 314

O-acetylserine-serine-glycine pathway, 76
O-acetylserine(thiol) lyase (OASTL), 350, 354, 357, 358, 359, 360, 363
OASTL-SAT complex (see cysteine synthase complex)
Ostreococcus tauri, 275, 276
onion (Allium cepa), 77
oxidative pentose phosphate pathway, 26, 33, 41, 163, 164, 188, 189, 201, 236
oxoglutarate dehydrogenase complex (OGDH), 26, 291, 292, 310, 311, 312
dihydrolipoamide dehydrogenase (see also GDC complex), 292, 293
dihydrolipoamide succinyl-transferase, 292

PII (bacterial) protein, 333
PII-like (plant) proteins, 333
paraquat, 355
PathMAPA pathway visualisation tool, 13, 14
Pathway Processor pathway visualisation tool, 13, 14
PDNN analysis, 7
pea (Pisum sativum), 37, 42, 102, 103, 104, 162, 163, 188, 195, 197, 198, 203, 204, 205, 239, 243, 244, 248, 264, 274, 280, 307, 338
wrinkled, 265
peach, 174
peanut (Arachis hypogea), 166
peptidyl-prolyl cis-trans isomerase (PPIase), 164, 165
permease,
 amino acid, see transporters
peroxidase, 167, 169
 ascorbate peroxidase (APX), 169, 307, 308
 glutathione peroxidase (GPX), 167, 307, 308
p2oxiredoxins (PrxR), 167, 168, 169, 307, 308
peroxisome, 33, 39, 93, 304, 307, 328, 337
membrane, 40
phenylpropanoid biosynthesis, 75, 78, 95, 201
phenylalanine ammonia lyase (PAL),
 PAL1, 75
 PAL2, 75
phloem, 32, 98, 99
 loading, 100, 102, 235, 351
 transport, 97, 98, 158, 235, 356
 sieve element/companion cell complex (SE/CC), 99
 sieve element membrane, 100
phloem-xylem exchange, 97
phosphoadenosine 5'-phosphosulfate (PAPS) reductase, 356
phosphoenolpyruvate (PEP)
 carboxykinase, 40, 219
phosphoenolpyruvate (PEP) carboxylase, 26, 42, 74, 92, 107, 143, 219, 220, 222, 224, 225, 227, 228, 229, 230, 315, 327, 329, 330, 332
 bacterial-type PEPC, 228, 229, 230
 non-phosphorylatable PEPC, 228
Ppc1 (eukaryotic-type PEPC), 228
Ppc2 (bacterial-type PEPC), 228
phosphoenolpyruvate (PEP) carboxylase kinase, 122, 123, 143, 219, 220, 222, 224, 225, 226, 227, 228, 229, 230
PEPC kinase-related kinase, 122, 123
PPCK gene family, 219, 220, 222, 223, 224, 225, 226, 227, 228, 229
phosphofructokinase (PFK1), 26, 32, 141, 235
PPI-dependent (PFP), 90, 141, 235, 236, 240
phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK2), 141, 239, 240, 247, 248
phosphogluconate dehydrogenase, 26
phosphoglucoisomerase,
 cytosolic, 235, 236, 240
 plastidic, 105
phosphoglucomutase, 33, 161
 cytosolic, 26, 88, 235, 236, 240, 261, 262
pgm mutant, 15, 16
 plastidic, 15, 44, 105, 261, 262
phosphoglycerate kinase, 33, 42
 cytosolic, 26, 40, 92
 plastidic, 39, 86, 106, 164, 187, 188, 202, 203, 205
 sieve-element-localised, 32
phosphoglycerate mutase, 26, 32, 88, 92, 94
 sieve-element-localised, 32
phosphoinositide-3-kinase-like kinase (KIPP), 121, 123
 ATM (ataxia-telangiectasia mutated) protein, 123, 133
 ATR (ataxia-telangiectasia and RAD3 related), 123
 FAT domain, 123
 FATC domain, 123
 FRAP protein, 123
 TOR (target of rapamycin), 123, 137, 138, 139
 TRRAP protein, 123
phospholipase C,
 phosphoinositide-dependent, 224, 227
phosphopentose epimerase, see ribose isomerase
phosphopentose isomerase, see phosphoribose isomerase
phosphoribose isomerase (PRI), 39, 188, 203, 205
phosphoribulokinase (PRK), 39, 107, 163, 187, 188, 189, 195, 197, 199, 200, 201, 203, 204, 205, 206, 249

PRK, 205

phospho-tyrosine binding domain Sre homolgy two (SH2), 123, 132

photorespiration, 39, 48, 76, 92, 93, 150, 291, 301, 304, 307, 310, 328, 329, 330, 331, 334, 335, 339, 341, 342

photosynthetic bacteria, 191

Physcomitrella patens, 106, 174, 356

phytochelatin, 350, 357, 362

phytochelatin synthase, 362, 363

PICOT, (protein kinase C-interacting cousin of trx), 172

Plantago major (plantain), 100

plant uncoupling proteins, 298, 309, 310
plasma membrane, 37, 97, 99, 103, 104
plasma membrane H+-ATPase, 134, 136
plasmodesmata, 98

PM values, 7

Poaceae, 242

polyamines, 363, 364

poplar (Populus spp.), 153, 158, 159, 167, 168

Populus trichocarpa, 242, 245

post-translational modifications (PTMs), 45, 46, 48, 51

acetylation, 121, 190
adenylylation, 121

 carbamylation, 192

 carbonylation, 48, 302

 farnesylation, 121

 formylation, 190

 glutathionylation, 152, 152, 238

 glycosylation, 237

 hydroxylation, 121, 152, 174

 methylation, 121, 152, 190

 nitrosylation, 153

 oxidation, 48, 152

 sumoylation, 121

 uridylylation, 121

 potato (Solanum tuberosum), 37, 66, 74, 75, 99, 163, 168, 221, 223, 224, 239, 241, 248, 265, 267, 268, 274, 275, 280, 281, 292, 302, 303 333, 360

tubers, 74, 79, 101, 107, 162, 266, 269, 274, 280, 292, 293, 313

PRI-PRK-Rubisco complex, 205

PRK-GAPDH complex, 204

PRK-GAPDH-CP12 complex, 195, 197, 204, 205, 206

PRI-PRK-Rubisco-PGK-GAPDH complex, 203

PRI-PRK-Rubisco-PGK-GAPDH-FBPase complex, 203

programmed cell death (PCD), 35, 151, 298

prolyl hydroxylase, 174

protease inhibitors, (α-amylase/subtilisin inhibitor family, 169

Bowman-Birk, 174

horse gram inhibitor, 174

protein disulfide oxido-reductases (PDORs), 154, 155, 158, 161, 172, 173, 175

protein disulfide isomerase (PDI) (see also PDORs), 155, 161, 166, 173, 174

protein kinase A (PKA), 133

protein kinase C (PKC), 133, 225
 PKC-like activity, 225

protein phosphatase 1 (PP1), 124, 125, 129
 PP1-MYPT1 complex, 125, 126

protein phosphatase 2A (PP2A), 124, 126, 127, 129, 138, 220, 244

PR65, 126

PR72 protein, 127

TONNEAU2 (TON2), 127

TON2-PP2A complex, 127

protein phosphatase 2B (PP2B), 124

protein phosphatase 2C (PP2C), 124, 127, 128

AB1 (abscisic acid insensitive 1), 128

AB2 (abscisic acid insensitive 2), 128
protein phosphatase (Continued)
MP2C (Medicago sativa phosphatase 2C), 128
POLTERGIEST (POL)-type phosphatase, 128
KAPP (kinase-associated protein phosphatase), 128
protein phosphatase 4 (PP4), 124, 128, 129
protein phosphatase 5 (PP5), 124, 125, 128, 129
protein phosphatase 6 (PP6), 124, 128, 129
protein phosphatase 7 (PP7), 124, 128, 129
protein phosphatase Y, 129
protein phosphatase Z, 129
protein phosphatase inhibitors, calculin A, 129
microcystin, 129
protein staining,
Deep Purple, 27
Sypro Ruby, 27
PTIP domain, 133
PtMYB76, 78
pumpkin (Cucurbita spp.), 32
pyrophosphatase, 240
pyruvate decarboxylase, 26
pyruvate dehydrogenase, 26, 32, 46, 92, 107, 290, 291, 292, 293, 294, 299, 310, 314, 329
dihydrolipoyl acetyl-transferase, 290
dihydrolipoyl dehydrogenase, 290
pyruvate dehydrogenase kinase (PDH kinase), 291
pyruvate dehydrogenase phosphatase, 291
pyruvate formate-lyase, 313
pyruvate kinase, cytosolic, 26, 36, 92, 293, 329, 332
mitochondrial-association, 327
plasticid, 96, 106
pyruvate:orthophosphate dikinase (PPDK), 95, 96
quantitative trait loci (QTL), 79, 249
quiescin-sulfhydryl oxidase, 174
R1 protein (see also GWD), 268
raf-1 protein kinase, 133, 137, 139
RB47 protein, 165
RB60 protein, 165, 166
reactive oxygen species (ROS), 150, 151, 153, 167, 301, 305, 308, 309, 310, 311, 312
real time RT-PCR, 3
reductive pentose phosphate pathway, see Calvin cycle
respirasome, 37, 302, 303
resurrection plant (Craterostigma plantagineum), 241
rhizomes, 97
Rhodobacter sphaeroides, 199
ribose epimerase, 38
ribosomal proteins, 164
ribosomal protein S6 kinase (S6K), 138
ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), 39, 42, 86, 98, 102, 107, 168, 187, 188, 189, 190, 191, 192, 193, 194, 199, 202, 203, 205, 206, 207, 219, 273
rbcL, 165
rubisco activase, 163, 164, 190, 192, 193, 194
rubisco large subunit, 164, 165
rubisco small subunit, 164
ribulose-5-phosphate epimerase, 38, 39, 188, 200
RMA (log-scale robust multi-array analysis), 7, 9
RNA binding proteins, 164
RNAi repression, 105, 106, 282
RNA polymerase, 360
RNA polymerase II phosphatases, 131
FCP1 (TFIIF associated CTD phosphatase), 131, 132, 133
FCP1-like proteins, 132, 133
SCP1, 132
SCP-like enzymes, 132
roots, 43, 77, 78, 172, 205, 222, 271, 272, 273, 293, 315, 326, 348, 349, 351, 352, 355, 357
hairs, 151, 351
nodules, 39, 78, 220, 326
rhizosphere, 315
root-specific proteins, 33
RP (simple rank product), 9

S-adenosylmethionine synthetase, 94, 363
SAGE (serial analysis of gene expression), 2
Salmonella typhimurium, 355, 357
salicylic acid, 77, 292
SAM (significance analysis of microarrays), 9, 10, 14
satsuma orange (Citrus unshiu), 241, 242
Scenedesmus obliquus, 204
sedoheptulose-1,7-bisphosphatase, 39, 163, 164, 188, 189, 197, 198, 199, 202, 206, 207
cytosolic, 197
seeds, 74, 97, 102, 103, 106, 158, 169, 244, 258
apoplast, 103, 104
aleurone layer, 33, 158, 172
cotyledons, 39, 103, 104, 172
development, 104, 172
embryo, 33, 102, 106, 158, 161
dosperm, 33, 102, 143, 158, 161, 169, 174, 229, 262, 263, 265, 269, 271, 272, 274, 280
germination, 39, 42, 158, 237, 238, 243, 250, 306
oilseeds, 39, 107, 229, 306
priming, 42
seed-specific proteins, 33
siliques, 205
storage proteins, 348
Selenastrum minutum, 228, 229
serine acetyltransferase (SAT), 356, 357, 358, 359, 360, 361, 363
SAT-A gene, 359
Sat-c, 359
Sat-m, 359
Sat-p, 359
SAT-OASTL complex (see cysteine synthase complex)
SAT-SAT complex, 358
serine:glyoxylate transferase (SGAT) (peroxisomal), 338, 339, 340
serinehydroxymethyl transferase (SHMT), 291, 301, 302, 339, 340
serine/threonine kinases, 121, 122, 123, 124
serine/threonine receptor kinases, 122
RLK5, 128
serine/threonine phosphatase, 127
serotonin-N-acetyltransferase, 136, 137
shikimic acid pathway, 94, 95
SILAC (stable isotope labelling with amino acids in cell culture), 30
Sinapis alba, 204
single nucleotide polymorphisms (SNPs), 249
sink organs, 102, 236, 331, 351
S-locus, 170
S-locus cysteine-rich (SCR) protein, 170
S-locus receptor kinase (SRK), 170
snf1 kinases, 139, 239, 244
snf1-like kinases, 139, 162, 244, 353
sorghum (Sorghum bicolor), 163, 221, 222, 225, 242
soybean (Glycine max), 102, 103, 220, 221, 222, 223, 227
SOPS (standard operating procedures – in metabolomics), 70, 71
spider mite (Tetranychus urticae), 77
spinach (Spinacia oleracea), 94, 99, 141, 163, 172, 188, 191, 193, 196, 197, 200, 201, 203, 204, 205, 239, 241, 243, 244, 245, 248, 338, 356, 359
SpPIAA sigma protein, 353
SPS–SPP metabolon, 246
starch branching enzyme (BE), 26, 141, 258, 278
BEI, 261, 262, 264, 265, 271, 280
BEIIa, 261, 262, 264, 265, 271, 280
BEIIb, 261, 264, 265, 280
BE mutants, 270
starch debranching enzymes (DBE) (isoamylase/pullulanase), 258, 265, 266, 267, 271, 272, 278, 279
DBE mutants, 270, 271, 274
isoamylase1, 261, 262, 266, 267, 271
isoamylase1-isoamylase2 complex, 282
isoamylase2, 261, 262, 266, 267, 271
isoamylase3, 267, 271
pullulanase, 267, 268, 271
starch phosphorylase, 227, 237, 261, 262, 266, 271, 272, 273, 275, 280
starch synthase, 26, 141, 258
starch synthase (soluble form) (SS), 261, 271, 272
SS mutants, 270, 271, 274
SSI, 261, 262, 264, 265, 271, 279
SSIIa, 261, 262, 264, 265, 271, 279, 280
SSIIb, 261, 262, 264, 265, 271
SSIII, 261, 262, 264, 265, 271, 274
SSIV, 261, 262, 271
UDPG-dependent, 278
starch synthase (granule-bound), 263, 264, 279
GBSSI, 261, 269, 271, 274, 275, 279
GBSSII, 262, 271
GBSS III, 142
GBSS mutants, 270, 274
UDPG-dependent, 278
STAS domain, 353
stem, 100, 172
stilbene synthase, 74
stress response, 298, 301, 308
aluminium toxicity, 315
anoxia, 43, 75, 140, 141
cold, 12, 40, 62, 241, 243, 312
drought/osmotic stress, 76, 77, 243, 312
heat stress (see also HSPs), 62, 76, 77
herbivore attack, 62
hypoxia, 313
metal exposure, 362
nitrosative stress, 153
nitrogen-deprivation, 274, 327, 356
nutrient deprivation, 139, 315
oxidative, 43, 48, 169, 302, 363
pathogen attack, 77, 78, 362
phosphate starvation, 141, 241, 315
salt-stress, 225, 227
sugar-starvation, 44
sulfur-deprivation, 76, 352, 356, 360
wounding, 62
stt7 (ser/thr kinase), 166
STN7 (ser/thr kinase), 166
Stylosanthes hamata, 351
succinate dehydrogenase (SDH) (see also ETC complex II), 26, 291, 293, 294, 295
succinyl CoA ligase (see succinate thiokinase)
TAP (tandem affinity purification) tagging, 49
TCA cycle, see citric acid cycle
tetratricopeptide repeats, 129
theanine synthetase (L-glutamic acid ethylamine ligase), 342
thiocalsin, 169
thioredoxin (Trx) (see also PDORs), 30, 47, 48, 88, 152, 155, 156, 159, 161, 161, 165, 167, 168, 169, 170, 172, 173, 174, 195, 198, 225, 300, 307, 360
AtTDX, 158
Trx-c (see Trx-h), Trx-f, 156, 157, 161, 163, 164, 166, 198
Trx-h, 153, 156, 157, 158, 159, 167, 169, 170, 239, 300
Trx-m, 156, 157, 161, 163, 164, 166, 168, 198
Trx-o, 156, 157
Trx-x, 156, 157, 161, 168
Trx-y, 156, 157, 161
thioredoxin-binding proteins, 301
thioredoxin-like domain, 355
thioredoxin-like proteins, 170
CITRX, 170
thioredoxin reductase, 47, 301
Fd-Thioredoxin reductase (FTR), 160, 166, 300
NADP-Thioredoxin reductase (NTR), 158, 159, 160, 161, 300
NTRA, 167
NTRC, 160
trxB (E. coli), 355
threonine synthase, 363, 364
TILLING, 270, 282
tobacco (Nicotiana spp.), 73, 78, 99, 106, 188, 191, 193, 194, 196, 204, 223, 245, 290, 313, 330, 331, 355
BY-2 cells, 355
mutants, 304, 330
transgenic, 89, 100, 194, 198, 200, 240, 360
tomato (Lycopersicon esculentum), 73, 74, 77, 78, 79, 170, 221, 223, 224, 242, 338, 351
cf-2, 170
cf-9, 170
Lycopersicon pennelli, 79
mutants, 304
transgenic, 304
TOR-interacting proteins, 138
GβL protein, 138
KOG1 protein, 138
LST8 protein
regulatory associated protein of TOR (RAPTOR), 138
Toxoplasma gondii, 278, 279
transaldolase, 26
transcription factors,
AP-1, 172
CCA1 (circadian clock associated 1 gene), 226, 227
Dof, 333
LHY (late elongated hypocotyl gene), 226, 227
NF-κB, 172
TFIIA, 131
TFIIB, 131
TFIID, 131
TFIIE, 131
TFIIF, 131
TFIIFH, 131
TOC1 (timing of CAB expression 1 gene), 226, 227
transfer cells, 103, 104
transketolase,
cytosolic, 26, 201
plastidic, 39, 95, 188, 200, 201, 202, 206, 207
translocators,
2-oxoglutarate/malate translocator (DiT1), 91, 92
adenine nucleotide (ANT), 106, 107, 291, 303, 314
cuel mutant, 94, 95, 96
glutamate/malate translocator (DiT2), 91, 92, 93
phosphoenoicpyruvate/phosphate (PPT) translocator, 94
PPT1, 94
PPT2, 94
triose-phosphate/phosphate translocator, 38, 87, 88, 89, 189, 235, 236, 238, 247
tpt-1, 89
xylulose 5-phosphate/phosphate translocator, 96
transporters (see also sulfate transporters), amino acid/amino acid permeases, 93, 100, 104
Brittle-1 ADPglucose (bt1), 270
Glucose-6-phosphate transporter (GPT), 105
GPT1, 105, 106
gpt1, 106
GPT2, 105
hexose-phosphate transporter, 90, 235, 262, 266
isopentenylidiphosphate (IPP) transporter, 96
maltose, 235, 237, 269
monosaccharide, 104, 235
phosphate (Pi)/proton transporter, 37
pyruvate transporters, 96
SUT/SUC transporters, 99, 100, 101, 103, 104, 250
SLC26 (anion) group (see also sulfur transporters), 351
trehalose phosphate synthase, 140, 141, 245
triose phosphate isomerase, 33, 42, 153
cytosolic, 26, 32, 235, 238, 248, 250
plastidic, 39, 86, 187, 188, 202, 235
tropic responses, 151
Trypanosoma brucei, 197
trypsin, 28, 29
tryptophan hydroxylase, 133
tubers (see also potato), 97, 237, 250, 258, 267
two-component regulatory system, 333
His-Asp phosphorelay, 333
tyrosine hydroxylase, 133
tyrosine kinases, 121, 123, 124
tyrosine phosphatases (see also MAPK phosphatases), 123, 124, 130, 131, 132
CDC25 phosphatases, 130, 131, 137
human eyes absent protein, 131
ubiquitin-mediated protein degradation, 228, 229
proteasomes, 140, 169, 228
MG132 proteasomal inhibitor, 228
UDP-galactose/glucose epimerase, 235
UDP-glucose pyrophosphorylase, 26, 88, 235, 236, 240, 241, 248, 250, 278
Ugp genes, 240, 241
UMP kinase,
sieve-element-localised, 32
vacuole, 33, 98, 226, 235, 236, 237, 352
tonoplast, 224, 226, 352
Vicia faba, 102, 104
watermelon (Citrullus lanatus), 359
WD40 protein domain, 132
wheat (Triticum spp.), 38, 142, 143, 158, 163, 169, 174, 197, 221, 222, 242, 243, 245, 248, 262, 264, 265, 270, 272, 280, 333
Triticum durum, 174
WW protein domain, 132
xanthine oxidase, 153
Xanthobacter flavus, 202
Xenopus, 108
xylem,
transport, 97, 326, 349
xylulose-5-phosphate epimerase, see ribulose-5-phosphate epimerase
CP154-7B mutant, 351, 353
MET gene, 361
two-hybrid screening, 49, 170
SUL gene, 361
Plate 1 Comparison of the average levels of transcripts encoding enzymes from central metabolism, calculated throughout a day and night cycle, in *A. thaliana* Col0 wild type and its starchless mutant *pgm*. The results were calculated as the log 2 of the ratio between *pgm* and wild type. Rosette leaves of 5 weeks old plants grown in a 12-h photoperiod and at 20°C were harvested every 4 h, starting from the end of the night period. Abbreviations: CHO, carbohydrate metabolism; TCA, tricarboxylic acid cycle; OPP, oxidative pentose phosphate cycle; NO$_3^-$, nitrate assimilation; NH$_3$, nitrogen degradation; SO$_4^{2-}$, sulfate assimilation. Arrows indicate synthesis or degradation processes pointing to or from associated pathways/processes.
Plate 2 Comparison of the amplitudes of the changes in the levels of transcripts encoding enzymes from central metabolism, throughout a day and night cycle in Arabidopsis Col0 wild type and the starchless mutant \textit{pgm}. The results were calculated as the log 2 of the ratio between \textit{pgm} and wild type. Rosette leaves of 5 weeks old plants grown in a 12-h photoperiod and at 20°C were harvested every 4 h, starting from the end of the night period. Abbreviations: CHO, carbohydrate metabolism; TCA, tricarboxylic acid cycle; OPP, oxidative pentose phosphate cycle; NO\textsubscript{3}, nitrate assimilation; NH\textsubscript{3}, nitrogen degradation; SO\textsubscript{4}, sulfate assimilation. Arrows indicate synthesis or degradation processes pointing to or from associated pathways/processes.
Plate 3 Comparison of the diurnal amplitudes of the changes in the levels of transcripts encoding enzymes from central metabolism and the corresponding activities in Arabidopsis Col0 wild type and the starchless mutant pgm. The results were calculated as the log 2 of the ratio between pgm and wild type. Rosette leaves of 5 weeks old plants grown in a 12-h photoperiod and at 20°C were harvested every 4 h, starting from the end of the night period.

Abbreviations: AcidInv, acidic invertase; SPS, sucrose phosphate synthase; PFP, pyrophosphate-fructose 6-phosphate 1-phosphotransferase; cFBPase, cytosolic fructose-1,6-bisphosphatase; FruK, fructokinase; HK, hexokinase; G6PDH, glucose-6-phosphate dehydrogenase; GK, glycerol kinase; NAD-GAPDH, NAD-dependent glyceraldehyde-3-phosphate dehydrogenase; PK, pyruvate kinase; ICDH, isocitrate dehydrogenase; Fum, fumarase; AGPase, ADPglucose pyrophosphorylase; NAD-P-GAPDH, NADP-glyceraldehyde 3-P dehydrogenase; TK, transketolase; ShikDH, shikimate dehydrogenase; PEPC, phosphoenolpyruvate carboxylase; AlaAT, alanine amino transferase; AspAT, aspartate amino-transferase; GLDH, glutamate dehydrogenase; Fd-GOGAT, ferredoxin-dependent glutamate synthase; GS, glutamine synthetase; NR, nitrate reductase.
Plate 4 Model of long-distance transport of sucrose and amino acids relative to plant growth and synthesis of storage compounds. Depending on the plant species and/or the physiological stage, N assimilation might occur in roots or source leaves followed by long-distance transport of amino acids via the xylem and phloem, respectively. Exchange of amino acids between the xylem and phloem is also possible. CO₂ fixation and carbon assimilation take place in photosynthetically active source leaves, and reduced carbon and nitrogen in the form of sucrose (sugars) and amino acids are subsequently trans-ported by the phloem pathway (bi-directional) to sink organs. The organic nitrogen and carbon can move symplasmically via plasmodesmata or apoplastically. The mechanism of release of sucrose and amino acids into the apoplast is unknown but might be by a passive (effluxer) or active (exporter) transport step, depending upon apoplastic concentrations. Apoplastic phloem loading or reloading of assimilates leaked into the apoplast back into the cell is by active transport mediated by proton symporters/importers located in the plasma membrane. Operation of plasma membrane H⁺-ATPases provide the proton motive force and are coordinated with these transport activities. Abbreviations: BC, bundle sheath cell; CC, companion cell; COT, cotyledon; PC, parenchyma cell; MC mesophyll cell; SA, seed apoplast; SC, seed coat; SE, sieve element.