Tansley Review No. 72
Secondary metabolites in plant defence mechanisms

By Richard N. Bennett and Roger M. Wallsgrove

Biochemistry & Physiology Department, AFRC Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, UK

(Received 4 April 1994)

CONTENTS

Summary 617
I. Introduction 617
II. Cyanogenic glucosides 618
1. Taxonomic distribution and location 618
2. Cyanogenesis and plant protection 618
3. Biosynthesis and metabolism 619
III. Glucosinolates 619
1. Chemistry and location 619
2. Glucosinolate interactions with pests and pathogens 620
3. Biosynthesis 620
4. Developmental and induced changes in glucosinolate content 621
IV. Non-protein amino acids 621
V. Alkaloids 622
VI. Plant phenolics 623
1. Introduction 623
2. Plant phenolics and resistance in insects 623
3. Plant phenolics and resistance to other herbivores 624
4. Plant phenolics and resistance to fungi 625
5. Plant phenolics and resistance to nematodes 625
VII. Plant terpenes, sesquiterpenoids and sterols 626
VIII. Phytoalexins 626
IX. Salicylic acid and methyl jasmonate 627
1. Secondary or primary metabolites? 627
2. Salicylic acid biosynthesis and its role in plant resistance 627
3. Methyl jasmonate biosynthesis and its role in plant resistance 627
X. Conclusions 628
References 629

SUMMARY

Many secondary metabolites found in plants have a role in defence against herbivores, pests and pathogens. In this review, a few examples are described and discussed, and some of the problems in determining the precise role(s) of such metabolites highlighted. The role of secondary metabolites in defence may involve deterrent/anti-feedant activity, toxicity or acting as precursors to physical defence systems. Many specialist herbivores and pathogens do not merely circumvent the deterrent or toxic effects of secondary metabolites but actually utilize these compounds as either host recognition cues or nutrients (or both). This is true of both cyanogenic glucosides and glucosinolates, which are discussed in detail as examples of defensive compounds. Their biochemistry is compared and contrasted. An enormous variety of secondary metabolites are derived from shikimic acid or aromatic amino acids, many of which have important roles in defence mechanisms. Several classes of secondary products are ‘induced’ by infection, wounding or herbivory, and examples of these are given. Genetic variation in the speed and extent of such induction may account, at least in part, for the difference between resistant and susceptible varieties. Both salicylates and jasmonates have been implicated as signals in such responses and in many other physiological processes, though their precise roles and interactions in signalling and development are not fully understood.

Key words: Cyanogenic glucosides; glucosinolates, alkaloids, phenolics, phytoalexins, salicylic acid, methyl jasmonate.

I. INTRODUCTION

Vascular plants contain an enormous variety of chemical compounds, distinct from the intermediates and products of primary metabolism, which vary according to family and species. The restricted distribution of many such compounds enables them to be used as taxonomic markers, and
the so-called 'secondary metabolites' make a major contribution to the specific odours, tastes and colours of plants. The term 'secondary metabolite' is rather unsatisfactory, as it covers somewhat indiscriminately a very wide variety of unrelated compounds and implies a secondary, unimportant role for them. In the past such secondary metabolites have been viewed as waste products resulting from 'mistakes' of primary metabolism, and therefore of little importance to plant metabolism and growth. It has become clear that such views are largely inaccurate and misguided, and that many secondary products are key components of active and potent defence mechanisms - part of the age-long 'chemical warfare' fought between plants and their pests and pathogens. In this review, we intend to discuss some examples of such defence mechanisms and cover some aspects of the biology and biochemistry of the secondary metabolites used in this way.

The literature on plant secondary metabolites is extensive, and the chemistry and biology of most major classes have been reviewed many times. This review will therefore be deliberately selective and limited, taking a few classes of secondary metabolites as examples of defensive mechanisms. For comprehensive reviews of many aspects of plant-herbivore interactions, consult the two volumes edited by Rosenthal & Berenbaum (1991) and, for details of the chemistry and biochemistry of plant secondary metabolites in general, consult Stumpf & Conn (1981) and Lea (1993).

II. CYANOGENIC GLUCOSIDES

1. Taxonomic distribution and location

Perhaps the most apparently obvious defence-related secondary metabolites are the cyanogenic glucosides, whose general structure is shown in Figure 1. The R-CH-CN core of the molecule derives from an amino acid, cyanogenic glucosides derived from aromatic or branched-chain amino acids being commonly found. These compounds are widely distributed in nature, being found in more than 2000 species covering all vascular plant groups including angiosperms, both monocots (e.g. sorghum and barley) and dicots (e.g. cassava and clover) (see Seigler, 1991 for a recent general review). Tissue breakdown exposes the vacuole-located glucosides to subsequent hydrolysis leading to the release of cyanide.
cost, more than could be accounted for simply by the initial biosynthesis. Presumably this extra cost is balanced by enhanced survival of cyanogenic individuals, either through better protection from herbivores or some other (unidentified) mechanism.

3. Biosynthesis and metabolism

The biochemistry of cyanogenic glucoside synthesis and metabolism has been extensively studied (enzymology reviewed by Moller & Poulton, 1993). The biosynthetic pathway as currently understood is shown in Figure 2. A precursor amino acid (aromatic and branched-chain amino acids are precursors of many common cyanogenic glucosides) is N-hydroxylated via a cytochrome P450 enzyme (Halkier & Moller, 1991), with subsequent decarboxylation to produce an aldoxime. Another cytochrome P450 enzyme is involved in the C-hydroxylation of the acetonitrile intermediate (Halkier & Moller, 1991) prior to glycosylation to the final cyanogenic glucoside. The entire pathway, bar the final step, appears to be a closely linked and channelled membrane-bound complex, as microsomal preparations will catalyse the whole process (Saunders et al., 1977; Conn, 1988; Halkier & Moller, 1989).

Cyanogenic glucosides may be transported through the plant from the site of synthesis. In the emerging cassava seedling, biosynthetic activity is confined to the cotyledon, yet cyanogenic glucosides are distributed throughout the seedling (Koch et al., 1992). In *Hevea brasiliensis* (rubber), cyanogenic glucoside transport is as the diglucoside, which is not hydrolysed by the same enzyme as the simple glucoside (Selmar, Lieberei & Biehl, 1988). Halkier & Moller (1989) suggest that in sorghum the cyanogenic glucosides are stored at the site of synthesis. There is also evidence to suggest that cyanogenic glucosides stored in the seed are metabolized during germination to release N for seedling growth (Selmar et al., 1988), demonstrating that like many other secondary metabolites the cyanogenic glucosides have multiple roles in plant metabolism.

The tissue content of cyanogenic glucosides varies with age and development, though a detailed study of developmental changes in glucoside content does not appear to have been reported for any species (see Seigler, 1991). Likewise, there is as yet no indication of the 'induction' of cyanogenic glucoside synthesis and accumulation in response to herbivory or infection, in contrast to several other secondary metabolites (see below).

III. GLUCOSINOLATES

1. Chemistry and location

The glucosinolates are sulphur- and nitrogen-containing compounds found in plants of the order Capparales and a few other unrelated taxa. Their general structure is shown in Figure 3. The R-side chain is derived from an amino acid, and at least 100 different structures have been identified (see for example Daxenbichler et al., 1991, and review of taxonomic distribution by Rodman, 1981). In the intact plant, glucosinolates are located in a separate compartment (probably the vacuole - Grob & Matile, 1979) away from a specific thioglucosidase, 'myrosinase' (EC 3.2.3.1), which may be sequestered in specialized 'myrosin' cells. When plant tissues are disrupted (by physical damage, herbivory, pathogen attack), the enzyme hydrolyses the glucosinolates to produce a variety of products (Fig. 3). The biological effects of glucosinolates and their breakdown products have been reviewed by Chew (1988).

These breakdown products, collectively described as 'mustard oils', are responsible for the flavours of many food plants such as mustards, radishes and cabbages. For this reason the glucosinolate/
myrosinase system has been extensively studied, though, as will become clear, we are only now beginning to understand the biochemistry of glucosinolate synthesis and the interaction of glucosinolate-containing plants with their pests and pathogens.

2. Glucosinolate interactions with pests and pathogens

Much of the work on glucosinolates and pest/pathogen attack has focused on oilseed rape (Brassica napus L.), a major oil crop in Europe and North America. Breeders have sought to reduce the glucosinolate content of harvested seed, because of the problems associated with using the protein-rich seed meal obtained after oil extraction as a feed stuff for farm animals. Early efforts along these lines produced cultivars low in both seed and vegetative tissue glucosinolates, but these were unable to survive in the field because of heavy fungal infection (Anon., 1985). Modern 'double low' (00) lines, low in both erucic acid and seed glucosinolates, are almost as resistant as their high glucosinolate predecessors (Mithen, 1992). In these 00 lines the glucosinolate content of vegetative tissues is very little different from the 'high glucosinolate' 0 lines (Porter et al., 1991; Mithen, 1992; Fieldsend & Milford, 1994), and no significant differences could be found in the activity of some biosynthetic enzymes compared to 0 varieties (Wallsgrove et al., 1993).

Some clear correlations have been reported between the glucosinolate content of plants and insect feeding or herbivore damage. Malik, Anand & Srinivasahar (1983) reported a significant negative correlation between the glucosinolate content of 27 species and the fecundity of aphids (Lipaphis erysimi) feeding on them. Glen, Jones & Fieldsend (1990) demonstrated that a slug species (Deroceras reticulatum) was deterred from feeding on the emerging cotyledons of oilseed rape in direct proportion to the glucosinolate content of the seedlings. Other studies have failed to find any such correlation—feeding by rabbits and woodpigeons on rape was not apparently influenced by glucosinolate content (Inglis et al., 1992).

Several insect species feed preferentially on Brassicaceae, and studies on host plant selection have demonstrated that it is the presence of glucosinolates which induces feeding by such species (Feeny et al., 1970; Nielsen, 1989). Indeed studies of feeding preference of cabbage stem flea beetles (Psylliodes chrysocephala) found that they would only feed on glucosinolate-containing plants, both Brassicas and glucosinolate-containing non-Brassicas such as nasturtium (Tropaeolum majus) (Bartlet & Williams, 1991), and that addition of glucosinolates to agar significantly enhanced feeding by the beetles (Williams & Bartlet, 1993). Electrophysiological studies on both the flea beetle and the cabbage seed weevil (Ceutorhynchus assimilis) found antennal receptors for certain isothiocyanates derived from glucosinolate breakdown (Blight et al., 1989), and these same isothiocyanates positively attracted both insects in behavioural tests (Bartlet et al., 1992). These specialist feeders have clearly turned the glucosinolate defence mechanism against the plant, using the presence of the defence compounds to identify and locate the host. They are not the only insects to exploit the system, however, as there is some evidence to suggest that parasitoids of such specialist feeders may also be attracted by the volatile isothiocyanates (see Pickett et al., 1991). The ecology of the system is obviously complex, so perhaps we should not be looking for simplistic correlations between secondary metabolite content and resistance, particularly in field situations.

3. Biosynthesis

In purely chemical terms, there are strong similarities between the biosynthetic pathways for glucosinolates (Fig. 4) and cyanogenic glucosides. Based on this, some workers have assumed that the biochemistry is also common between these two secondary metabolite classes (see Halkier, Lykkefeldt & Moller, 1991; Poulton & Moller,
1993, for example). However, recent work in our laboratory has established that the biochemical pathway for the common initial steps (amino acid-hydroxyamino acid–aldoxime) is quite different for glucosinolates from that described for cyanogenic glucoside biosynthesis. In particular, the initial hydroxylation is catalysed by enzymes which closely resemble the flavin monooxygenases found in animal tissues, not by cytochrome P450-type enzymes (Bennett et al., 1993). A coordinated and channelled enzyme complex as found in sorghum (see earlier section) does not appear to operate in glucosinolate biosynthesis, even though the initial steps are catalysed by microsomal enzymes (Bennett et al., 1993; Dawson et al., 1993). On this basis it would appear that glucosinolates and cyanogenic glycosides have evolved independently, and great care should be taken in interpreting taxonomic links between families which contain either of these secondary products. (Despite one report to the contrary, the two classes of compound are apparently never found in the same plant – Larsen, 1981.) What is known of the later steps in glucosinolate biosynthesis is reviewed by Poulton & Moller (1993), though much of the pathway is still poorly understood in biochemical terms.

4. Developmental and induced changes in glucosinolate content

The glucosinolate system in oilseed rape is dynamic – both the amounts and types of glucosinolates present vary with plant tissue, age and developmental status (see for example Sang et al., 1984; Milford et al., 1989a; Fieldsend & Milford, 1994a). In leaves the glucosinolate content is high in young developing tissues, reaching a maximum at full leaf expansion and then declining (Porter et al., 1991). This turnover and metabolism of glucosinolates (via pathways yet to be established), points to a potential storage role for the compounds, though in rape the vegetative tissue glucosinolates do not seem to provide a significant proportion of the glucosinolate sulphur later found in seeds (Fieldsend & Milford, 1994a).

In addition, a great many studies have found that glucosinolate accumulation can be ‘induced’ by a variety of factors, such as insect attack (Lammerink, MacGibbon & Wallace, 1984; Koritsas, Lewis & Fenwick, 1989; Birch, Griffiths & Smith, 1990), mechanical damage (Bodnaryk, 1992) and fungal infection (Doughty et al., 1991). Such induction does not lead to similar increases in the content of all glucosinolates in a tissue, but rather to more discreet increases in certain compounds, most studies reporting particular increases in indolyl glucosinolates. A detailed time-course of glucosinolate induction in leaves of rape infected with a fungus indicated that all classes of glucosinolate responded in young tissues, but at different times after infection, and that there was no increase in aliphatic glucosinolates in older leaves (Doughty et al., 1991). Recent work has shown that treatment with salicylic acid (Kiddle, Doughty & Wallsgrove, 1994) or methyl jasmonate (Bodnaryk, 1994; Doughty et al., 1994) strongly induces glucosinolate accumulation in rape leaves, but that the effects of the two elicitors are different and each induces a very limited range of glucosinolates (Fig. 5). Neither elicitor fully mimics the effects of infection or insect feeding, so what role (if any) they have in natural defence response signalling is unclear. The physiology and biochemistry of the ‘induction’ of glucosinolates requires considerable further study – differences in the speed and extent of ‘induction’ (Doughty et al., 1991) may account for some of the observed differences in disease and pest resistance between varieties (Milford et al., 1989b; Rawlinson et al., 1989).

IV. NON-PROTEIN AMINO ACIDS

An enormous variety of non-protein amino acids is found in plants, with the legumes in particular having a diverse range of compounds and high concentrations. The toxicity of many of these compounds and their role in plant defence is well established (see Rosenthal, 1991; D’Mello, 1994 and references therein). Detailed studies with some
particular non-protein amino acids clearly demonstrate their deterrent effect on non-specialist herbivores, and the mechanisms whereby certain pest organisms can overcome the toxicity.

For example, canavanine is a widely distributed analogue of arginine, found in both tree and forage legumes. Both canavanine and its breakdown product, canaline (an analogue of ornithine), are effective substrates for enzymes which utilize arginine or ornithine, and therein lies their toxic effect. In particular, the arginyl-tRNA synthetase of most organisms cannot distinguish between arginine and canavanine and so canavanine is incorporated into proteins with markedly deleterious effects (reviewed in Rosenthal, 1991). Some insects (such as Caryedes brasilienis and Sternechus tuberculatus) which feed on canavanine-containing seeds have an arginyl-tRNA synthetase which does discriminate between the protein and non-protein amino acids, leading to a very much reduced incorporation of canavanine into protein compared with a sensitive insect (see Rosenthal, 1991).

Another example is provided by mimosine, an aromatic amino acid found in the tropical forage legume Leucaena leucocephala. Mimosine has a variety of deleterious and toxic effects, some caused by its breakdown by gut bacteria to hydroxypyridone (DHP). In areas where L. leucocephala is native or well established (e.g. Central America), local ruminants possess gut bacteria capable of fully metabolizing mimosine and DHP, and are able to graze safely on the plant. Transfer of the appropriate bacteria to non-adapted ruminants greatly improves their ability to graze safely on Leucaena (Quirk et al., 1988).

Other non-protein amino acids have been shown to be effective against pest and disease organisms. For example β-isoxazolonylalanine from pea roots was shown to be a potent growth inhibitor of phytopathogenic fungi (Schenk, Lambein & Werner, 1991). No effect could be found on bacteria; in particular the compatible symbiotic bacterium Rhi zobium meliloti could tolerate high concentrations of the amino acid. A survey of Vicia species and varieties found a strong correlation between non-protein amino acid content in the plant tissues and resistance to three species of aphid (Holt & Birch, 1984).

These are just a few examples of non-protein amino acids which apparently function as defence chemicals in plants. This field has also provided some clear and striking examples of biochemical and behavioural adaptations by pests and herbivores to overcome the deleterious and toxic effects of such amino acids. As with most of the chemical defence mechanisms we are discussing, no such strategy provides 'perfect' defence, but non-protein amino acids can nonetheless be potent and effective protective agents.

V. ALKALOIDS

The alkaloids have been divided into three major classes depending on the precursors and the final structure (for reviews on structure, biosynthesis and roles see Culvenor, 1973; Petterson, Harris & Allen, 1991; Waterman, 1993). The true alkaloids are derived from amino acids, are basic and contain nitrogen in a heterocyclic ring, e.g. nicotine and atropine. Common alkaloid ring structures include the pyridines, pyrroles, indoles, pyrrolidines, isoquinolines and piperidines. The pseudoalkaloids are basic but are not derived from amino acids, e.g. caffeine and solanidine. The protoalkaloids are derived from amino acids, are basic but the nitrogen is not in a heterocycle, e.g. the phenylethylamine-derived alkaloids such as mescaline. The alkaloids are often unevenly distributed in plant families. One exception to this are plants from the Papaveraceae; all genera studied contained at least one alkaloid. Common alkaloid containing plants can be found in the Leguminosae, the Liliaceae, the Solanaceae and the Amaryllidaceae. As well as the large number of useful pharmacological properties of the alkaloids utilized by man, alkaloids have been shown to be important resistance factors against herbivorous pests. The evidence for this role is increasing and there are several good examples. It has been shown that a group of quinolizidine alkaloids were effective feeding deterrents against a number of herbivores including insects, molluscs and mammals (Petterson et al., 1991). Furthermore these alkaloids were also toxic against some fungi and bacteria. However, it has yet to be demonstrated if the concentrations used in the bioassays occur in the plants. In cultivars of Locusta angustifolius grown in Western Australia a reduction in the concentration of alkaloids below 5 mmol kg⁻¹ led to a significant loss of the crop by increased aphid feeding (Petterson et al., 1991).

The role of the alkaloids in potato in relation to insect-resistance has been assessed by several groups; especially resistance against the Colorado beetle (Leptinotarsa decemlineata) and the potato leafhopper (Empoasca fabae). The common potato (Solanum tuberosum) contains the alkaloid solanine, which has no effect on Colorado beetle. Potato species (Solanum demissum) resistant to this pest were found in South America (Harborne, 1988). The resistance appeared to be dependent on the concentrations of the alkaloid demissine. This alkaloid is structurally related to solanine but the beetles were unable to detoxify it. The importance of Solanum alkaloids, particularly those related to solanidine, was demonstrated in resistance to the leafhopper (Sanford et al., 1990). Increasing concentrations of the alkaloids in various cultivars were positively correlated with a reduction in leaf hopper infestation.

In barley the concentration of the alkaloid gramine in the leaves was shown to be associated with
resistance to the aphid *Schizapis graminum* (Zuniga, Salgado & Corcuera, 1985). As barley plants mature the foliar concentration of gramine decreases and the rate of feeding and survival of the aphid increases. If the aphids are given diets supplemented with gramine, similar to concentrations found in the young plants, feeding and development are severely retarded.

When tall fescue (*Festuca arundinacea*) was colonized by the fungal endophyte *Acremonium coenophialum*, there was a significant reduction in feeding and survival of two aphid species; *Rhopalosiphum padi* and *Schizaphis graminum* (Johnson et al., 1985). Analysis of various extracts from control and endophyte-colonized plants demonstrated a role for the pyrrollizidine alkaloids. In the colonized plants, the concentrations of the alkaloids were greatly elevated. Various feeding experiments using extracts from control and endophyte-colonized plants showed that the alkaloids were very potent antifeedants and were also extremely toxic to *R. padi* and *Oncopeitus fasciatus* (a milkweed bug).

The number of examples of insect-resistance in plants related to alkaloid concentrations are increasing. There are a number of elegant examples of coevolution of the host plant and the insect pests, especially with regard to specialist and non-specialist feeders (Harborne, 1988).

VI. PLANT PHENOLICS

1. **Introduction**

The term, phenolics, has been used to describe a group of structurally diverse plant secondary metabolites (Wong, 1973). This group includes metabolites derived from the condensation of acetate units (e.g. terpenoids), those produced by the modification of aromatic amino acids (e.g. phenylpropanoids; cinnamic acids, lignin precursors, hydroxybenzoic acids, catechols and coumarins), flavonoids, isoflavonoids and tannins (dihydroxyphenols and flavanols polymerized by the action of peroxidases and polyphenoloxidases). The phenolics derived from aromatic amino acids and their precursors are merely some of the very wide range of compounds derived from shikimic acid (Fig. 6), including many other secondary metabolites discussed in this review.

There are several examples of constitutive phenolics acting as feeding deterrents for herbivores and inhibitors of enzymes (Cheeke, 1989). The evidence for their role in resistance against fungi, bacteria and nematodes is more circumstantial (Friend, 1981, 1985; Stoessl, 1983; Harborne, 1988; Kuc, 1990; Siqueira et al., 1991). In these interactions, it appears to be the speed and duration of *de novo* biosynthesis of phenolics that is more important for resistance than the constitutive concentrations. Two modes of action appear to operate, direct toxic effects (phytoalexins and free radicals formed from lignin precursors) and the active and rapid deposition of barriers such as lignin.

2. **Plant phenolics and resistance to insects**

Wheat cultivars with high constitutive concentrations of soluble and cell wall-bound phenolics are much less attractive to the cereal aphid (*Rhopalo-**

Figure 6. Some of the secondary products and other plant metabolites derived from shikimic acid and the aromatic amino acids, and their biosynthetic relationships.
siphum padi) than cultivars with low phenolic concentrations (Leszcynski, Warchol & Niraz, 1985). When presented with four wheat cultivars containing different concentrations of phenolics the aphids preferentially fed on the cultivar with the lowest concentration. Hydroponic uptake of various phenolics into an aphid-susceptible wheat cultivar demonstrated that pyrocatechol (a dihydroxyphenol) and ferulic acid (a lignin precursor) were the most effective feeding deterrents (Leszcynski et al., 1985).

Young willow plants (Salix dasyclados) that had been light- and nutrient-stressed (low carbon supply) contained concentrations of phenolics three times lower than either control or low nitrogen-fed plants (Larsson et al., 1986). These plants low in phenolics were significantly more attractive to the leaf beetle (Galerucella lineola F.) than the control or low-N plants. It was clear that nitrogen limitation was not a major factor in the defence against the leaf beetle. These results provide evidence that poor carbon supply and reduced photosynthetic ability, leading to low phenolic concentrations, may be important in increased susceptibility to insect pests. In the Silicaceae three major phenolic glycosides have been identified, and these have been implicated in resistance against herbivores including insect pests (Zucker, 1972; Rowell-Rahier, 1984a, b; Tahvaneinen et al., 1985). The glycosides have been identified as salicin, salicertin and fragalin; all derived from salicylic acid. When tissue is damaged they are hydrolysed and all three release salicyl alcohol (Tahvaneinen et al., 1985).

There is a strong correlation between the constitutive concentrations of catechol-based phenolics in strawberry leaves and resistance to the two-spotted spider mite (Tetranychus urticae) (Luczynski, Isman & Raworth, 1990). The development of the mite on cultivars containing high concentrations of phenolics was clearly suppressed; especially in cultivars with high catechol concentrations. The delayed development of the mites may be due to the phenolics covalently binding to mite digestive enzymes and inactivating them. It has also been shown that mite damage will induce the de novo synthesis of phenolics in plants (Kielkiewicz & Van de Vrie, 1982; Inoe et al., 1985). Other examples of resistance to the two-spotted spider mite involving phenolics include their interaction with peppermint (monoterpenes and phenolics: Larson & Berry, 1984) and with chrysanthemum (phenolics: Kielkiewicz & Van de Vrie, 1990).

Gossypol, the cotton phenolic pigment, has indirectly been shown to be an important deterrent against numerous insect pests (Abou-Donia, 1989). The highest concentrations of gossypol and greatest levels of biosynthesis are associated with specific glands on the cotton plants. When the glands were removed from the cotton plants they became susceptible to several insect pests not normally associated with cotton (Bottger, Sheehan & Lukefahr, 1964; Maxwell, Lafever & Jenkins, 1965). Inclusion of gossypol in artificial diets was toxic to the tobacco bollworm (Heliothis virescens), the bollworm (Heliothis zea) and several other insect pests (Maxwell et al., 1965). This is strong evidence for the role of gossypol in resistance against non-specialist insect pests; specialist feeders have developed strategies to overcome the gossypol toxicity.

A more complex interaction between insect pests, insect predators and phenolics in the host plant was reported in two species of Mimosoideae (Keptur, 1985). In Inga densiflora and Inga punctata growing at low altitudes the phenolic content was low in both species. The plants have extrafloral nectaries that attract nectar-drinking ants. Any insects that the ants encounter on the plants, especially caterpillars, are killed. At higher altitudes the prevalence of nectar-drinking ants is much lower and two strategies are thought to have evolved. The populations of the two Inga species at higher altitudes contain significantly higher phenolic concentrations in both young and old leaves, compared with the populations at lower altitudes. However, there is also a much higher incidence of insect parasitic wasps and insect-parasitoids attracted to the high altitude plants. This may be due to the lower numbers of ants feeding on the high altitude plants (more nectar available and less chance of attack by the ants). There did not appear to be a direct correlation between phenolic concentrations and the deterrence of the insect pests. However, in such a complex interaction the contribution of individual components was difficult to accurately assess. The high phenolic concentrations are also possibly acting against microorganisms or may be functioning as a block against increased u.v. light at the higher altitudes. This is a dynamic and complex ecosystem involving not only the host plant and its secondary metabolites but the pests and their predators.

The role of tannins and resistance to the larvae of the Oak moth (Opherothera brumata) was reported by Feeny (1970). The moth larvae feed on the young leaves of the trees in the spring but by mid-June they suddenly stop. No environmental factors or the levels of predators could account for this change in feeding. Feeny (1970) found that the levels of tannins in the leaves significantly increased prior to cessation of feeding by the larvae. The deterrence was thought to be because of the complexation of the tannins with the host proteins (making them indigestible) and the reaction of the tannins with digestive enzymes in the gut of the larvae.

3. Plant phenolics and resistance to other herbivores

Resistance to attack by birds has been recognized in high tannin-containing sorghum plants (Butler, 1989). It has been demonstrated in field trials that
the 'bird-resistant' cultivars were high in tannins compared with low tannin cultivars that were severely damaged. It is thought that the astringency and poor digestibility of these high tannin plants makes them less appealing to the birds.

Slugs are a major pest on a number of economically important crops, attacking both seedlings and mature plants. The major slug pest of potato, *Deroceras reticulatum*, causes extensive damage to the crop (Storey, 1985). It was found that certain potato cultivars were significantly less attractive to the slugs (Atkin, 1979; Storey, 1985). A factor of this resistance, particularly in the tubers, appears to be due to high levels of phenolics and polyphenoloxidase activities (Johnson, Kershaw & Pearce, 1989). Generally, plants expressing high levels of phenolics are much less palatable to herbivores and polyphenolics such as tannins are strongly implicated as general anti-feedants (reviewed in detail by Fahey & Hans-Joachim, 1989; Mole, 1989).

4. Plant phenolics and resistance to fungi

The role of plant phenolics in resistance against fungi is more dynamic than their role against insects. In most cases the interaction between fungi and plants is very intimate and the association occurs over a longer time period. Distinct structures and barriers develop in the host in response to infection. The definitions that have been used to describe the secondary metabolites involved in the interactions are often inaccurate (Ingham, 1973; Stoessl, 1983; Harborne, 1988, 1991). The terms pre-infectional (encountered on the leaf surface and considered to be constitutive, e.g. waxes and phenolics) and post-infectional (encountered in the host cells) chemicals are misleading. It has been shown that most of the preinfectional secondary metabolites are significantly induced, e.g., phenolics, and the divisions between constitutive and induced defence metabolites are not clear. The examples in this section show some of the roles of plant phenolic barriers, particularly lignin, and resistance to fungi. The role of phytoalexins in resistance will be covered in a later section.

The formation of lignin as a defence mechanism against fungal pathogens has long been recognized (Vance, Kirk & Sherwood, 1980; Aist, 1983). There is a strong correlation between the rapid induction of phenylalanine ammonia-lyase and other phenylpropanoid biosynthetic enzymes in hypersensitive plants (including cinnamate alcohol dehydrogenase and peroxidases leading to a large increase in phenylpropanoids and lignin precursors) and resistance to fungi (Alston *et al.*, 1988; Chuah & Zhou Zhongming, 1989; Habereder *et al.*, 1989; Shiraishi, Yamaoka & Kunoh, 1989; Southerton & Deverall, 1990). There is also a strong correlation between resistance and the rapid deposition of other wound plugs derived from phenylpropanoids, such as papillae, that prevent fungal ingress (Aist, 1976, 1983; Sahashi & Shishiyama, 1986; Aist & Gold, 1987). Other examples of phenolic structural barriers include the cross-linking of cell wall polysaccharides by ferulic acid dimers catalyzed by peroxidases; the cross-linking may make the cell walls resistant to fungal cell wall degrading enzymes (Fry, 1986). Resistance in pea to powdery mildew (*Erysiphe polygoni*) is strongly correlated with the concentrations of total and ortho-dihydroxyphenols in the leaves (Kalia & Sharma, 1988). The resistant cultivars expressed much higher levels of both phenolics and oxidative enzymes (peroxidases and polyphenoloxidases) and this may create a very toxic environment in and around infected tissue, comprising of very reactive phenylpropanoid free-radicals and the actual process of lignification.

In American beech trees (*Fagus grandifolia*) resistant to infection by *Nectaria coccinea var. faginata*, the concentration of phenolics in the bark remained high 6 months after attack (Ostrofsky, Shortle & Blanchard, 1984). In the initial phases of infection there was no apparent difference between susceptible and resistant trees, but after 6 months the levels had significantly declined in the susceptible trees. In apple fruits there appeared to be a correlation between high levels of epicatechin and 4'-caffeylquinic acid and resistance to scab (Amiot, 1990; Machex, Fleuriet & Billot, 1990).

5. Plant phenolics and resistance to nematodes

The colonization of plants by nematodes is similar in some respects to fungal invasion. As with fungal infection, distinct structures form in the host in response to the various developmental stages of the nematode. The hypersensitive response (HR) and elevated phenolic levels, leading to barrier deposition (e.g. lignin), have been shown to be important in resistance to the root-knot nematode *Meloidogyne incognita* (Paulson & Webster, 1972; Melillo *et al.*, 1989). In susceptible tomato plants there is no HR induced after nematode infection. In the resistant tomato plants the nematode-induced HR, including induction of phenolics, was preceded by an elevation in the activity of carboxylesterases associated with the cell walls; these enzymes have been implicated in priming the plant before oxidation and deposition of phenolics (Keplan & Keen, 1980; Giebel, 1982; Melillo *et al.* 1989). In sweet potato cultivars resistant to root-knot nematode (*Meloidogyne incognita*) there was also a significant increase in the concentrations of soluble and wall-bound phenolics after infection (Gapasin, Valdez & Mendoza, 1987).

VII. PLANT TERNEPES, SESQUITERPENOIDS AND STEROLS

Terpenes and related plant secondary metabolites
(sesquiterpenoids and sterols) have been shown to be important factors in resistance to several insect pests and pathogens (Harborne, 1988). There are more examples of plant terpenes involved in resistance to insects than against microorganisms. The insecticidal activity of the terpenes is either due to their action as antifeedants (or deterrents), toxins, or as modifiers of insect development, e.g. sterols such as the phytocedysones (Harborne, 1988). A terpenoid (limonene) deters *Atta cephalotes* (a leaf-cutting ant) from citrus plants (Cherrett, 1972). Other important terpenoid deterrents and toxins include gossypol, polygodial, glucalocide-A and the cucurbitacins (Harborne, 1988). In desert plants a number of terpenoids and sesquiterpenoids have been found to be good insect deterrents (Rodriguez, 1983).

In cotton that was resistant to infection by *Verticillium dahliae* there was a strong induction of four sesquiterpenoid phytoalexins: desoxyhemigossypol, hemigossypol, desoxy-6-methoxygossypol and 6-methoxygossypol (Garas & Waiss, 1986). The concentrations of the two methoxy-phytoalexins, detected 3 d after inoculation, were high enough to inhibit the fungus completely and were positively correlated with resistance to the fungus. In the susceptible cultivars the phytoalexin induction was poor, whilst in tolerant cultivars it was between that of the resistant and susceptible cultivars. Infection of resistant cultivars of tobacco with *Phytophthora nicotianae* var. *nicotianae* caused a rapid induction of sesquiterpenoid phytoalexins (capsidiol, phyto-tuberin, phyto-tuberol and rishitin) and phenylalanine ammonia lyase (PAL) activity (Nemestothy & Guest, 1990). The induction of these responses in a susceptible cultivar was much slower, as was lignin deposition. In both of these examples there was a positive correlation between rapid induction of the sesquiterpenoid phytoalexins and resistance to the fungal pathogens.

VIII. PHYTOALEXINS

The term phytoalexins was first defined by Muller & Borger (1941) to describe the fungitoxic and fungistatic plant secondary metabolites produced after infection of potato by *Phytophthora infestans*. Since then the definition has been expanded to include the induction of secondary metabolites that inhibit or kill bacteria. The phytoalexins, as with phenolics, are structurally diverse and their role and biosynthesis have been extensively reviewed (Bailey & Mansfield, 1982; Stroessl, 1983; Darvill & Albersheim, 1984; Ersek & Kiraly, 1986; Collinge & Slusarenko, 1987; Harborne, 1988; Barz et al., 1990; Siqueira et al., 1991). An important aspect of determining the role of phytoalexins in resistance is their temporal and spatial distribution after pathogen attack. In most cases the phytoalexins are localized in the tissue beneath, or very close to, the site of fungal or bacterial infection. The difference between susceptible and resistant plants appears to be related to the rapidity of the host response including phytoalexin induction. The following examples show a strong correlation between rapid phytoalexin biosynthesis and resistance to the pathogen involved. There are several other plant–pathogen interactions where the role of phytoalexins in resistance is not so obvious.

When roots of a resistant cultivar of soybean (*Glycine max*) were infected with the fungus *Phytophthora megasperma* f. sp. *glycinea* the phytoalexin glyceollin I was induced within 2 h (Hahn, Bonhoff & Grisebach, 1985). Eight hours after infection the concentration of glyceollin I had exceeded the EC$_{50}$ in *vitro* of the fungus. The phytoalexin in the resistant cultivar was associated with the epidermal cells but it was also detected in other parts of the root in inhibitory concentrations. The development of the fungus was stopped soon after penetration of the epidermal layer. In the susceptible cultivars, infected with the fungus, significant levels of glyceollin I were only found in the epidermal cells. In the susceptible cultivar these concentrations were reached 14 h after infection, by which time the fungus had grown through this cell layer and extensively colonized the root cortex. It was also demonstrated that daidzein, the precursor of glyceollin I, was important in resistance to *P. megasperma* f. sp. *glycinea* (Graham, Kim & Graham, 1990). Upon fungal attack the daidzein was enzymatically cleaved from stored glycosides. In the resistant cultivars the release was rapid and high concentrations of daidzein accumulated. In the susceptible cultivars the enzymatic cleavage was slow and final daidzein concentrations were low.

The relationship between phytoalexins and host versus non-host resistance to bacteria has also been assessed in soybean (Fett & Jones, 1984). Non-pathogens such as *Corynebacterium flaccumfaciens* pv. *flaccumfaciens*, *Bacillus cereus*, and *Erwinia carotovora* subsp. *atroseptica* did not induce an HR, or the soybean phytoalexins (including glyceollin I and its precursor daidzein) or isoflavone glycosides. Two non-host *Pseudomonas syringae* strains induced HR and the phytoalexins and glycosides, as did an incompatible (avirulent) *P. syringae* pv. *glycinea*. A compatible (virulent) strain of *P. syringae* pv. *glycinea* did not induce the phytoalexins or the glycosides. There appear to be two resistance mechanisms in operation: one against non-hosts and one against HR-inducing races of *P. syringae* involving the phytoalexins. In these interactions there was a strong correlation between phytoalexin induction and resistance to the bacteria.

Infection of sorghum (*Sorghum bicolor* L.) by *Colletotrichum graminicola* leads to the induction of 3-deoxyanthocyanin flavonoids (Snyder & Nicholson, 1990). These are highly pigmented...
Table 1. Phytoalexin induction and resistance to plant pathogens

<table>
<thead>
<tr>
<th>Plant</th>
<th>Pathogen</th>
<th>Phytoalexin</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grapevine</td>
<td>Plasmopara viticola</td>
<td>Viniferins</td>
<td>Derks & Creasy, 1989</td>
</tr>
<tr>
<td>Vitis spp.</td>
<td>Botrytis cinerea</td>
<td>Viniferins</td>
<td>Langcake & McCarthy, 1979</td>
</tr>
<tr>
<td>Carnation</td>
<td>Fusarium oxysporum</td>
<td>Dianthalexin</td>
<td>Baeyen et al., 1991</td>
</tr>
<tr>
<td>Dianthus spp.</td>
<td></td>
<td>Methoxydiantiamide S</td>
<td></td>
</tr>
<tr>
<td>Pea</td>
<td>Pseudomonas syringae</td>
<td>Pimatin</td>
<td>Hadwiger & Webster, 1984</td>
</tr>
<tr>
<td>Chickpea</td>
<td>Ascochyta rabiei</td>
<td>Medicarpin</td>
<td>Weigand et al., 1986</td>
</tr>
<tr>
<td>Citrus spp.</td>
<td>Phytophthora citrophthora</td>
<td>Maakiai</td>
<td></td>
</tr>
<tr>
<td>Oat</td>
<td>Puccinia coronata</td>
<td>Scoparone</td>
<td></td>
</tr>
<tr>
<td>Avena sativa</td>
<td></td>
<td>Avenalumins</td>
<td></td>
</tr>
</tbody>
</table>

Phytoalexins are clearly visible in the leaf tissue in distinct inclusions. The site of synthesis is restricted to epidermal cells beneath the invading fungus. The phytoalexins in this interaction most likely play a distinct role; if they were general stress metabolites they would have been induced throughout the whole plant. Other examples of correlations between phytoalexin induction and resistance are presented in Table 1.

The evidence for correlations between phytoalexins and resistance to plant pathogens is strong. There are several clear examples of resistant cultivars accumulating far greater concentrations of phytoalexins compared with susceptible cultivars. Although most of the examples involve pathogens attacking dicotyledons, the relationship between phytoalexin induction in monocotyledons and resistance is also being assessed, particularly in oats and wheat (Deverall, 1989).

IX. SALICYLIC ACID AND METHYL JASMONATE
1. Secondary or primary metabolites?

There has been considerable interest recently in the roles of the secondary metabolites salicylic acid and methyl jasmonate (and jasmonic acids) in plants, not only with respect to their potential roles as plant signals but also their production and biosynthetic regulation. Both salicylic acid and methyl jasmonate modulate and induce many plant genes; they have recently been found to regulate the biosynthesis of other secondary metabolites. There has consequently been some question as to whether they should still be considered as secondary metabolites because of the vital role they play in plants. In the following sections, a brief summary of the biosynthesis and roles of salicylic acid and methyl jasmonate in plant resistance to pathogens will be given; where possible, reviews will be referred to for further information.

2. Salicylic acid biosynthesis and its role in plant resistance

Salicylic acid (SA) can be synthesized in plants via two pathways, but in both cases the main precursor is phenylalanine. The first step is the conversion of phenylalanine to trans-cinnamic acid catalyzed by PAL. This is a key step in several biosynthetic pathways including those for phytoalexins, polyphenols and phenylpropanoid lignin precursors (see Fig. 6). It has been shown that the activity of some PAL isoenzymes may be allosterically controlled by phenolics including SA (Boudet, Ranjeva & Gadal, 1971). The biosynthesis of SA can proceed via the conversion of trans-cinnamic acid to benzoic acid (followed by hydroxylation) or via o-coumaric acid (followed by a β-elimination reaction) depending on the species of plant and the tissue involved (El-Basyounyi et al., 1964; Billek & Schmook, 1966, 1967; Raskin, 1992).

The role of SA as a systemic signal for the induction of pathogenesis-related proteins (PR-proteins) and resistance to pathogens has been demonstrated by numerous groups (Malamy et al., 1990; Metraux et al., 1990; Rasmussen, Hammeischmidt & Zook, 1991; Ward et al., 1991; Yalpani et al., 1991; Malamy & Klessig, 1992). It has also been found that SA will selectively induce glucosinolates in oilseed rape (*Brassica napus*) when applied as a spray or as a soil drench treatment (Kiddle et al., 1994); there was a selective induction of phenylethyl glucosinolate (*glucostaturtin*) 7 d after SA treatment (see Fig. 5). Recently the possible role of SA-glucosides in resistance has been demonstrated (Henning et al., 1993). There has also been a more detailed study on changes in the SA biosynthetic enzymes in healthy and virus-infected plants (Yalpani et al., 1993); induction of benzoic acid 2-hydroxylase has been measured after virus infection (Leon et al., 1993).

Salicylic acid has been shown to be an important signal in plant resistance to pathogens but there are still many unanswered questions regarding its transport and sites of action within the plant. For a recent review of salicylic acid in plants and its role(s), see Pierpoint (1994).

3. Methyl jasmonate biosynthesis and its role in plant resistance

Methyl jasmonate (MJ) and jasmonic acids have been found in a large number of plant species...
(Anderson, 1989). They are synthesized in plants from the fatty acid linolenic acid. The first step in the pathway is catalysed by a lipoxygenase to form a hydroperoxide (Anderson, 1989). The second enzyme in the pathway has been identified as a cytochrome P450 that converts the hydroperoxide into an allene oxide (Song & Brash, 1991). The allene oxide can then be cyclized to form a precursor common to both the prostaglandins and the jasmonates.

Methyl jasmonate and jasmonic acids are known to regulate a number of physiological processes in plants including the induction of senescence, vegetative storage proteins, proteinase inhibitors (herbivore antifeedants), meristematic growth and interplant signals (Farmer & Ryan, 1990; Koda, 1992). They also have a role in signal transduction especially in relation to defence gene induction, e.g., PAL (Gundlach et al., 1992). When oilseed rape plants were either sprayed or exposed to volatile MJ there was a selective induction of the indole glucosinolates in the leaves (Fig. 5) (Bodnaryk, 1994; Doughty et al., 1994). Lipoxygenases are induced in hypersensitively reacting plants (Croft, Voisey & Slusarenko, 1990) and furthermore a lipoxygenase in Arabidopsis has been found to be induced by MJ and bacterial attack (Mellan et al., 1993). Some woundsing responses in plants also appear to be partly regulated by MJ (Hildmann et al., 1992). All of these responses that are regulated or induced by MJ provide evidence that these compounds are not defence-related? No, because one must make a distinction between generalist and specialist attacking organisms - where a pest or pathogen has become adapted to feeding on or infecting a particular plant, it must by definition have developed a way to overcome the defence mechanisms present in that plant! In such an interaction, one would not expect to find a simple relationship between secondary metabolite content and degree of predation/infection. That same metabolite may nonetheless be acting very effectively to deter a wide range of other organisms. Other 'defence' aspects of secondary metabolites exist, not necessarily to the plant's advantage - many herbivorous insects make use of plant-derived compounds to protect themselves from predators and parasitoids (see review by Pickett et al., 1991; Rowell-Rahier & Pasteels, 1992).

In addition, a single metabolite or class of metabolites present in a plant will not comprise the only defence system. A wide variety of defence-related compounds may be present - in particular tannins, polyphenols, proteases and chitinases are very widely distributed even in species which contain other major secondary metabolites such as cyano- genic glucosides, glucosinolates, alkaloids, etc. There are also physical defence mechanisms, secondary thickening, thorns and barbs, cuticular waxes, leaf hairs, and other structural factors known to protect plants from predators and parasites (Kollatakudy & Roller, 1983). The interaction between a plant and its pests and non-pests is complex, and many factors are involved. Only in very few cases do we have a clear understanding of the ecological interactions, even in the relatively simple situation of a monocultured crop plant such as oilseed rape. Such interactions in natural ecosystems, with a wide variety of both plants and potential pests and pathogens, are likely to be much more complicated. Secondary metabolites very often have a role (or roles) in plant/environment interactions, sometimes a major or dominant role, but they are not the only factors involved.

The distribution of a secondary metabolite within a plant, both between tissues and during growth and development, is rarely uniform. Many compounds are synthesized by, and accumulate in, young developing tissues, particularly leaves, or in reproductive tissues such as flowers and seeds. There appear to be many examples of secondary metabolites providing protection for young tissues, becoming less abundant and important as the tissue ages (when other, non-chemical, protective mechanisms may develop). In recent years it has become clear that some secondary metabolite systems are
dynamic, responding to attack, infection or stress, and that enhanced synthesis/accumulation of secondary metabolites is part of an integrated defence mechanisms. Other components of the system include the PR proteins with their various functions (see Bol, Linthorst & Cornelissen, 1990; Bowles, 1990). The same signalling mechanisms trigger the whole range of responses, but we are a long way from understanding these signalling systems and their interconnections. Chemical, electrical, and hydraulic signals have been described in plants, but their relative significance in a given system and their inter-relationshps are far from clear. Whatever the signal, some secondary metabolites are under the same defence-related control systems. Few have been investigated in this respect - doubtless many more examples will come to light.

Many plant secondary metabolites play a role in plant defence (in its widest sense). We only partly understand their role(s), and in only a limited range of plants. Considerably more work is required, in all aspects of secondary metabolite biology – physiology, biochemistry, ecology – if we are to appreciate fully their significance in plants and function in ecological systems in general. The prospects for exploiting plant secondary metabolites for agricultural crop protection are enormous (see for example Wink, 1988; Hallahan et al., 1992), but we need to know much more before we can exploit them effectively and safely.

REFERENCES

Changes in glucosinolates

D'Mello JPF. 1994.

Phytoalexins and their...
the beech bark disease. European Journal of Forest Pathology 14: 52-59.

Rosling H. 1988. Cassava toxicity and food security: a review of the health effects of cyanide exposure from cassava and of ways to prevent these effects. New York: UNICEF.

Secondary metabolites in plant defence mechanisms

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.