Plant hormone and growth and development

Plant hormones are small organic compounds that influence physiological responses to environmental stimuli at very low concentrations (generally less than 10⁻⁷ M). Hormones are not directly involved in metabolic or developmental processes but they act at low concentrations to modify those processes.

What can they do?

Hormones regulate or influence a range of cellular and physiological processes, including

Cell Division Cell Enlargement Cell Differentiation Flowering Fruit Ripening Movement (tropisms) Not all researchers agree that the term "hormone" should be applied to plants.

Plants do not have a circulatory system and therefore hormone action in plants is fundamentally different from hormone action in animals. Many plant biologists use the term "plant growth regulator" instead of "hormone" to indicate this fact. The table below summarizes some of the differences between plant and animal hormones.

Plant Hormones	Animal Hormones	
1.Small molecules only	1.Peptides/proteins and/or small molecules	
2. Produced throughout the plant	2. Produced in specialized "glands"	
3. Mainly local targets (nearby cells and tissues)	3. Distant targets ("action at a distance")	
4. Effects vary depending on interaction with other hormones	4. Specific effects	
5."Decentralized" regulation	5. Regulation by central nervous system	

Indole-3-acetic acid (IAA)

Discovery of auxin

Intact seedlings Curvature Tip of coleoptile excised no curvature

Opaque cap on tip no curvature

From experiments on coleoptile phototropism, Darwin concluded in 1880 that some sort of signal is produced in the tip, travels to the growth zone and causes the shaded side to grow faster than the illuminated side.

In 1926, Went showed that the active growth substance can diffuse into gelatin block and can cause the bending of coleoptile in absence of a unilateral light source

Because the substance promoted the elongation of the coleoptile sections it was eventually named **auxin** from the Greek *auxein*, meaning <u>"to increase"</u> or "to grow"

In mid 1930's Kogl and Haagen-Smit isolated several active substances from human urine and the most potent one Indole-3-acetic acid turned out to be the one synthesized and used by the plants

Indole-3-acetic acid (IAA) 4-Chloroindole-3-acetic acid (4-CI-IAA)

Indole-3-butyric acid (IBA)

Synthetic auxin

2,4-Dichlorophenoxyacetic acid (2,4-D)

2-Methoxy-3, 6-dichlorobenzoic acid (dicamba)

1- naphthaleneacetic acid (NAA)

Auxin Biosynthesis

PLANT PHYSIOLOGY, Fourth Edition, Figure 15

Indole-3-acetic acid (IAA)

- Mol wt 175
- A weak acid ($pK_a = 4.8$)
- IAAH is "membrane permeable", IAA[–] impermeable.
- Transported through shoots and roots towards root tips through parenchyma (also phloem?).

"Acid trapping"

If the IAAH concentration is in equilibrium, the cytoplasmic auxin concentration is 70x higher than the cell wall.

Chemiosmotic theory

Auxin influx carrier protein

Auxin efflux carrier proteins

PLANT PHYSIOLOGY, Fourth Edition, Figu

Our current understanding of the transport system originated from the analyses of several mutants

aux1 (1996): The roots are agravitropic and resistant to IAA and 2,4-D but sensitive to NAA. AUX1 encodes a permease-like regulator of root gravitropism. The uptake assay confirmed that this mutant has a reduced uptake capacity compared with wild-type. AUX1 is expressed in the LRC and epidermal cells in the root meristem and in the phloem of root vascular tissue. In the phloem AUX1 is polarly localized whereas in LRC and epidermal cell files it is axially localized.

AUX1 cellular localization in Arabidopsis root

Auxin efflux carrier proteins PIN family proteins

Some ABC transporters also Play a role in auxin influx and efflux

PLANT PHYSIOLOGY, Fourth Edition, Figure 19.15 (Part 2)

(A)

PIN1 mutant and cellular localization

eir1/agr1/pin2 (1998): roots are agravitropic but has a normal sensitivity to exogenous auxins. EIR1 gene of Arabidopsis is a member of family of plant genes with similarities to bacterial membrane transporters. The basipetal transport of auxin in this mutant was found to be less compared to wild-type. PIN2 is localized in the epidermal and cortical cell file of roots with a reverse polarity

Cellular localization of PIN2

Vertical orientation

(B) Horizontal orientation

PLANT PHYSIOLOGY, Fourth Edition, Figure

Genes involved in downstream auxin signaling pathway

ARF: auxin-response factors 23 member family in Arabidopsis has DNA binding domains can be either activators or repressors

AUX/IAA: 29 member in Arabidopsis Has protein binding domain heterodimerize with ARFs rapid auxin-dependent turn-over of AUX/IAA is dependent on ubiquitin-proteasome-pathway

ARF

Functionally characterized genes.				
Gene name	Gene identifier			
Auxin-response factors				
ARF3/ETT ^a	AT2G33860			
ARF5/MP	AT1G19850			
ARF7/NPH4/TIR5/MSG1	AT5G20730			
Aux/IAA genes				
IAA3/SHY2	AT1G04240			
IAA6/SHY1	AT1G52830			
IAA7/AXR2	AT3G23050			
IAA12/BDL	AT1G04550			
IAA14/SLR	AT4G14550			
IAA17/AXR3	AT1G04250			
IAA18	AT1G51950			
IAA19/MSG2	AT3G15540			
IAA28	AT5G25890			

Auxin signaling pathway

Auxin Inhibitors

Auxin influx inhibitors

Chromosaponin I 1-Napthoxyacetic acid (1-NOA)

Auxin efflux inhibitors

Flavonoids Triiodobenzoic acid (TIBA) Naphthylpthalamic acid (NPA)

Auxin action inhibitor

p-chlorophenoxyisobutyric acid (PCIB)

Ethylene

Ethylene is a gaseous molecule produced in all parts of the plant

made by most plants including angiosperms, gymnosperms, ferns, mosses and also synthesized by fungi and bacteria

- meristematic regions (shoot apex) and senescing tissues are rich sources
- ethylene production is stimulated by physiological stresses including wounding, anaerobic conditions, flooding, chilling, disease and drought

in 1901, D. Neljubow realized that his dark-grown pea seedlings
were short, fat and negatively gravitropic (the triple response)
because of a component in "laboratory air" which he subsequently identified as ethylene

Developmental processes regulated by ethylene

Promotion of seed germination Inhibition or promotion of root growth Inhibition of shoot growth Promoting the elongation growth of submerged aquatic species Inhibition/promotion of cell division and cell elongation Induction of lateral cell expansion Bud dormancy release Initiation of adventitious roots and root hairs Altering gravitropism in roots and stems Promoting leaf epinasty Inhibition/promotion of flowering Abscission of leaves, flowers, fruits Promoting senescence of leaves, flowers Involved in defense response pathway Induction of phytoalexins and other disease resistance factors Fruit ripening

(C) Flower senescense

Triple response phenotypes

Reduced elongation of hypocotyl and root

Thickening of hypocotyl

-Ethylene

+Ethylene

AMERICAN Association for the Advancement of Science

Science

28 AUGUST 1988 Vol. 241 - PAGES 1017-1122 \$3.00

In 1988, on the basis of triple response screening, the first ethylene mutant was isolated and reported

Ethylene Biosynthesis

PLANT PHYSIOLOGY, Fourth Edition, Figure 22.1 © 2006 Sinauer Associates, Inc.

Locus	Name	Phenotype and comments	References
Arabido	psis thaliana		
etrI	Ethylene resistant	Ethylene insensitive; delay in bolting time; increase in ro- sette size; <i>ETR1</i> is homologous to two-component regula- tors	Bleecker et al. 1988, Chang et al. 1993
$\epsilon'TS$	Ethylene response sensor	Ethylene insensitive: <i>ERS</i> is homologous to <i>ETR1</i> ; muta- tion was induced with reverse genetics	Hua et al. 1995
ein2	Ethylene insensitive	Ethylene insensitive: delay in bolting time; increase in ro- sette size	Guzmán and Ecker 1990
ein3	Ethylene insensitive	Ethylene insensitive	Kieber et al. 1993
ein4	Ethylene insensitive	Ethylene insensitive	Roman et al. 1995
ein6	Ethylene insensitive	Ethylene insensitive	Roman et al. 1995
ein7	Ethylene insensitive	Ethylene insensitive	Roman et al. 1995
ain1	ACC insensitive	Ethylene insensitive; increase in rosette size	Van Der Straeten et al. 1993
eti	Ethylene insensitive	Ethylene insensitive	Harpham et al. 1991
eto l	Ethylene overproducer	Constitutive ethylene response in etiolated seedlings, due to higher ethylene biosynthesis level	Guzmán and Ecker 1990
eto2	Ethylene overproducer	Constitutive ethylene response in etiolated seedlings, due to higher ethylene biosynthesis level	Kieber et al. 1993
eto3	Ethylene overproducer	Constitutive ethylene response in etiolated seedlings, due to higher ethylene biosynthesis level	Kieber et al. 1993
ctrl	Constitutive triple	Constitutive ethylene responses at all developmental stages	Kieber et al. 1993
	response	tested, not due to higher ethylene biosynthesis; phenocop- ied by ethylene treatment; <i>CTR1</i> is homologous to Raf ki- nases	
hls1	Hookless	No differential growth in apical hook of etiolated seedlings: phenocopied by treatments with auxins or auxin transport inhibitors; <i>HLS1</i> is homologous to <i>N</i> -acetyltransferases	Guzmán and Ecker 1990, Lehman et al. 1996
eirI	Ethylene-insensitive root	Root is ethylene insensitive and agravitropic	Roman et al. 1995
auxI	Auxin insensitive	Root is agravitropic and insensitive to ethylene and auxin; apical hook slightly ethylene insensitive; AUX1 is homolo- gous to amino acid permeases	Maher and Martindale 1980, Pickett et al. 1990, Roman et al. 1995, Bennett et al. 1996
axr1	Auxin resistant	Root is agravitropic and insensitive to ethylene, auxin and cytokinin, the shoot is short and bushy; etiolated seedlings have a short hypocotyl and are defective in apical hook formation; <i>AXR1</i> is homologous to ubiquitin-activating enzyme E1	Estelle and Somerville 1987. Lincoln et al. 1990. Leyser et al. 1993

Tab. 1. Ethylene-related mutants.

Epístasís pathway established by double mutant analysis

