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It has always been clear that different plant hor-
mones affect overlapping processes, such that the
output of plant hormone action depends on specific
hormone combinations rather than on the indepen-
dent activities of each. In the last two decades, numer-
ous components of the signal transduction pathways
of various plant hormones have been identified, lead-
ing to the elucidation of partial or entire signaling
cascades. These findings have provided the tools to
begin addressing the mechanisms underlying the
cross talk among different hormone signal transduc-
tion pathways. Such cross talk involves diverse mech-
anisms, which act at both the hormone response and
biosynthesis levels, creating a delicate response net-
work. In this review, we describe how gibberellin (GA)
interacts with other plant hormones, concentrating on
its interactions with abscisic acid (ABA), auxin, ethyl-
ene, and cytokinin. Although evidence for interactions
of GA with brassinosteroids (Bouquin et al., 2001) and
jasmonate (Traw and Bergelson, 2003) also exists, we
focus on studies addressing the mechanisms govern-
ing the cross talk.

GA BIOSYNTHETIC AND RESPONSE PATHWAYS

GAs regulate various developmental processes
throughout the life cycle of the plant, from seed
germination through leaf expansion, stem elongation,
flower induction, and development to seed develop-
ment (Sun and Gubler, 2004). As the interactions
between GA and other hormones involve components
from the GA biosynthetic and response pathways, we
first briefly introduce a few relevant players in these
pathways. For a more comprehensive description of
these pathways, see recent reviews (Hedden and Phillips,
2000; Sun and Gubler, 2004; Hartweck and Olszewski,

2006; Lange and Lange, 2006; Razem et al., 2006). The
GA biosynthetic pathway has been elucidated by
a combination of biochemical and genetic approaches.
The first few steps of the pathway, from trans-
geranylgeranyl diphosphate to GA12-aldehyde, are
common to all species. The final steps to produce
active GAs are species specific but in most cases
require activity of the GA 20-oxidase (GA20ox) and
GA3ox enzymes. In contrast, the enzyme GA2ox an-
tagonizes GA activity by deactivating GAs. The level
of endogenous active GA is governed by feedback
regulation, where active GAs suppress the expression
of the GA20ox and GA3ox genes and promote the
expression of the GA2ox gene.

Studies of GA signal transduction, using genetic
approaches, have led to the identification of positive
and negative signaling components (Sun and Gubler,
2004). The most extensively characterized among these
are the DELLA proteins, a class of nuclear proteins
that belong to the GRAS family of transcriptional
regulators and act as suppressors of GA signaling.
The molecular mechanism by which DELLA proteins
suppress GA responses is not yet clear. The Arabi-
dopsis (Arabidopsis thaliana) genome contains five
DELLA genes (REPRESSOR OF ga1-3 [RGA], GA IN-
SENSITIVE [GAI], RGA LIKE1 [RGL1], RGL2, and RGL3),
whereas in the rice (Oryza sativa) genome, only one
family member has been identified (SLENDER1 [SLR1];
Itoh et al., 2002).

A major breakthrough in our understanding of the
GA-signaling cascade has been the recent discovery of
the soluble GA receptor GA INSENSITIVE DWARF1
(GID1) in rice and Arabidopsis (Ueguchi-Tanaka et al.,
2005; Nakajima et al., 2006; Griffiths et al., 2007). GA
binding to GID1 triggers its interaction with the DELLA
domain of the DELLA proteins (Griffiths et al., 2007).
This interaction stimulates binding of the DELLA
proteins to an SCF E3 ubiquitin ligase via specific
F-box proteins (GID2/SLY), leading to polyubiquiti-
nation and degradation of the DELLA protein by the
26S proteosome (Sasaki et al., 2003; Dill et al., 2004;
Griffiths et al., 2007).

While this relatively simple GA-signaling cascade
involves three major players, a receptor, a DELLA
protein, and an F-box protein, other studies have iden-
tified additional factors that affect GA responses
(Hartweck and Olszewski, 2006). One of these is the
GA response inhibitor SPINDLY (SPY; Jacobsen and
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Olszewski, 1993; Filardo and Swain, 2003). The SPY
protein resembles mammalian enzymes that modify
proteins posttranslationally by a specific type of gly-
cosylation, termed tetratricopeptide repeat-containing
Ser and Thr-O-linked GlcNAc transferases (OGT).
OGT transfers the single sugar moiety GlcNAc from
UDP-GlcNAc to specific Ser/Thr residues via an
O-linkage. This posttranslational modification can af-
fect protein localization, phosphorylation, interaction
with other proteins, and/or stability (Wells et al.,
2001). While there is no direct biochemical evidence
for the interaction of SPY with the DELLA proteins,
genetic evidence suggests that SPY is required for
DELLA’s GA response suppression activity (Hartweck
and Olszewski, 2006; Silverstone et al., 2007).

INTERACTION OF GA WITH OTHER HORMONES

The mode of GA action in planta is still far from
being understood, as numerous positive and negative
functional interactions with other endogenous and
environmental cues affect GA responses (Fig. 1).
Nemhauser et al. (2006) have identified robust target
genes that are affected specifically by a single hor-
mone. However, in the case of GA-induced genes, no
specific robust targets were identified. This may sug-
gest that interactions with other hormones play major
roles in GA action, which necessitates the existence of
efficient and sensitive cross talk mechanisms among
the corresponding signaling pathways. Recently, sev-

eral studies have focused on the molecular machinery
behind the interactions between GAs and other hor-
mones, uncovering a complex network.

MECHANISM OF THE ANTAGONISTIC
INTERACTION BETWEEN GA AND ABA

GA and ABA play antagonistic roles in the regula-
tion of numerous developmental processes. Whereas
GA is associated with the promotion of germination,
growth, and flowering, ABA inhibits these processes.
Moreover, the antagonistic relationship and the ratio
between these two hormones regulate the transition
from embryogenesis to seed germination (Razem et al.,
2006). Several different mechanisms have been shown
to underlie this antagonistic interaction in different
developmental processes (Fig. 2). During cereal seed
germination, the developing embryo releases GAs to
the aleurone cells where they induce the transcription
of several genes encoding hydrolytic enzymes, includ-
ing a-amylase. These enzymes are then secreted to
the endosperm and hydrolyze starch and proteins,
supplying nutrients to the developing embryo. In con-
trast, ABA suppresses a-amylase expression. The GA-
induced, ABA-suppressed transcription of a-amylase
in the aleurone layer of cereal seeds was classically
used as an experimental system to study the interac-
tion between GA and ABA. The a-amylase promoter
contains a GA response element, required for both its
activation by GA and suppression by ABA (Rogers

Figure 1. GA interacts positively and negatively with
other plant hormones throughout the plant’s life cycle.
Some of the effects are shown. CK, Cytokinin.
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and Rogers, 1992). Gubler et al. (1995) identified a GA-
induced Myb-like protein (GAMyb) that binds to the
GA response element box of the a-amylase promoter.
Induction of GAMyb and a-amylase transcription was
shown to be mediated by the DELLA protein SLR1, as
both are up-regulated in slr1 mutants, even in the
absence of GA. How does ABA affect this pathway?
The induction of GAMyb and a-amylase by GA is sup-
pressed by an ABA-induced Ser/Thr protein kinase,
PKABA1. ABA and PKABA1 inhibited the up-regula-
tion of GAMyb and a-amylase in slr1 mutants as well,
suggesting that the inhibition of GAMyb and a-amylase
by PKABA1 occurs downstream of DELLA (Gómez-
Cadenas et al., 1999, 2001). However, a more recent
study has shown that when PKABA1 is suppressed by
RNAi, ABA still inhibits the GA-induced a-amylase
expression. This finding indicates that ABA affects this
process through an additional, PKABA1-independent
pathway (Zentella et al., 2002). A candidate alternative
ABA-signaling pathway to suppress GA responses in
rice may involve two ABA-induced WRKY transcrip-
tional regulators (Xie et al., 2006). These proteins sup-
press GA-induced a-amylase transcription, but their
interaction with PKABA1 is not yet clear.

A different mechanism of interaction between GA
and ABA in the regulation of root growth was de-
scribed by Achard et al. (2006). In Arabidopsis, GA
promotes and ABA suppresses root growth, and both
effects seem to be mediated by the DELLA proteins.
ABA application increased the stability of RGA and
blocked its GA-induced degradation. Moreover, the
quadruple-DELLA mutant (loss of GAI, RGA, RGL1,
and RGL2) is relatively resistant to the growth-inhibitory
effects of ABA. Therefore, while during cereal seed
germination ABA seems to act downstream of DELLA,
it affects Arabidopsis growth via DELLA. It is thus

possible that distinct mechanisms of interaction be-
tween GA and ABA are utilized for different devel-
opmental decisions.

The complexity of the interaction between GA
and ABA and its possible organ-specific mechanism
were recently demonstrated in Arabidopsis. Both ABA
and GA induce the accumulation of microRNA159
(miR159), which targets the MYB33 mRNA. Interest-
ingly, MYB33 promotes ABA responses in seeds and
GA responses in flowers. Thus, these two antagonistic
hormones exert their action through a common medi-
ator, MYB33, and desensitize their signaling through
the same homeostatic mechanism, miR159, at different
developmental stages (Achard et al., 2004; Reyes and
Chua, 2007). Whether miR159 and MYB33 are part of
the mechanism of interaction between the two hor-
mones or are just used by both in a development-
specific manner is not yet clear.

AUXIN INTERACTS POSITIVELY WITH GA

The activities of GA and auxin overlap with respect
to the regulation of cell expansion and tissue differen-
tiation. Auxin affects GA signaling as well as GA
biosynthesis (Fig. 3). In Arabidopsis, GA stimulation
of root elongation has been shown to require auxin.
GA-induced root elongation was inhibited by the re-
moval of the shoot apex that is a major auxin source,
and this effect was reversed by auxin application.
Moreover, application of the auxin-transport inhibitor
1-N-naphthylphthalamic acid or mutation in the auxin-
efflux regulator AtPIN1 suppressed the effect of GA
on root elongation and on RGA degradation in the

Figure 2. Network of interactions between GA and ABA. ABA sup-
presses GA responses through DELLA-dependent and -independent
pathways. Interactions mediated by changes in protein activity or stabil-
ity are in gray and those mediated by gene expression are in black.
Numbers in parentheses indicate the respective reference as follows: 1,
Achard et al., 2004; 2, Achard et al., 2006; 3, Gomez-Cadenas et al.,
1999; 4, Gomez-Cadenas et al., 2001; 5, Gubler et al., 1995; 6, Reyes
and Chua, 2007; 7, Rogers and Rogers, 1992; 8, Xie et al., 2006.

Figure 3. Network of interactions between GA and auxin. Auxin
promotes GA responses by destabilizing DELLA and by promoting
the expression of GA biosynthetic genes. Interactions mediated by
changes in protein activity or stability are in gray and those mediated by
gene expression are in black. Numbers in parentheses indicate the
respective reference as follows: 1, Frigerio et al., 2006; 2, Fu and
Harberd, 2003; 3, O’Neill and Ross, 2002; 4, Ross et al., 2000; 5,
Wolbang and Ross, 2001.
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root cells. GA-induced RGA degradation was also
inhibited in the mutant axr1 in which auxin signaling
is compromised. These results suggest that auxin pro-
motes the degradation of DELLA in root cells in re-
sponse to GA, which is a prerequisite for GA-induced
root elongation (Fu and Harberd, 2003). Thus, the
DELLA protein RGA seems to act as an integrator of
GA and auxin signals in the root.

In addition to its requirement for GA signaling in
the root, auxin also affects GA production in the stem
by positively regulating the expression of GA biosyn-
thetic genes (Nemhauser et al., 2006). Decapitation of
pea (Pisum sativum) and tobacco (Nicotiana tabacum)
shoot apices reduced the level of active GAs in the
stems, and this effect was reversed by auxin applica-
tion (Ross et al., 2000; Wolbang and Ross, 2001). Auxin
was shown to induce the expression of the GA bio-
synthetic gene GA20ox in tobacco and Arabidopsis,
whereas in pea, the hormone induced the expression
of GA3ox and suppressed the expression of GA2ox,
which is involved in GA deactivation (O’Neill and
Ross, 2002; Frigerio et al., 2006). Loss of the DELLA
genes GAI and RGA had no effect on the induction of
GA20ox by auxin. Thus, auxin induces GA biosynthe-
sis through a DELLA-independent pathway or via
other DELLA proteins. Addressing this problem in rice,
which contains only a single DELLA, or in Arabidopsis
plants completely lacking DELLA activity may help
distinguish between these possibilities. The effect of
auxin on GA biosynthesis was shown to transduce
via the degradation of auxin signaling suppressors
Aux/IAA proteins (for review, see Teale et al., 2006)
and the resulting activation of the transcription fac-
tor AUXIN RESPONSE FACTOR7 (ARF7). Moreover,
loss of the auxin receptor TIR1, an F-box protein that
mediates Aux/IAA degradation and the consequent
ARF activation, suppressed auxin regulation of GA
biosynthetic gene expression (Frigerio et al., 2006).
Therefore, auxin positively interacts with GA either
at the biosynthesis level or by promoting DELLA
degradation.

DEVELOPMENTAL AND ENVIRONMENTAL
CIRCUMSTANCES DETERMINE WHETHER
INTERACTIONS BETWEEN GA AND ETHYLENE
ARE POSITIVE OR NEGATIVE

The interaction between GA and the stress-related
gaseous hormone ethylene is rather complex, as both
negative and positive reciprocal effects have been
demonstrated (Fig. 4). Ethylene inhibits growth in a
GA-antagonistic manner. Achard et al. (2003) have
shown that at least part of the inhibitory effect of
ethylene on growth and its interaction with GA in this
regard is mediated by the DELLA proteins. GA pro-
motes seedling root elongation in Arabidopsis, and
this effect is inhibited by ethylene. However, in gai rga
double mutants, GA stimulated root elongation also in
the presence of ethylene, suggesting that ethylene acts
through these DELLA proteins in this process. In

agreement with this, ethylene inhibited RGA degra-
dation in root-cell nuclei in response to GA. The effect
of ethylene on RGA stability was mimicked by the loss
of its signaling suppressor CONSTITUTIVE TRIPLE
RESPONSE1 (CTR1), suggesting that ethylene’s RGA-
stabilizing signal is transduced via a CTR1-dependent
pathway (for review, see Guo and Ecker, 2004).

Negative interaction between ethylene and GA was
also shown in mature plants. The induction of several
GA-responsive genes by GA was enhanced in the
Arabidopsis ethylene-resistant mutant etr1 or when
plants were pretreated with the ethylene perception
inhibitor 1-methylcyclopropene. Thus, ethylene in-
hibits GA response in mature Arabidopsis plants (De
Grauwe et al., 2007). Furthermore, ethylene delayed
the transition to flowering in Arabidopsis under short
days, and this effect was suppressed by GA treatment
and in gai rga double mutant (Achard et al., 2007).
While in seedlings, ethylene was shown to affect
DELLA stability directly, during the transition to
flowering, it affected GA biosynthesis. The resulting
reduction in the level of biologically active GAs re-
pressed the expression of two central flowering genes,
LEAFY and SUPPRESSOR OF OVEREXPRESSION OF
CONSTANS1 and the consequent transition to flower-
ing. This effect of ethylene on the accumulation of
active GA is transduced via CTR1 and the downstream
transcriptional regulator ETHYLENE INSENSITIVE3.
This study suggests that the antagonistic interaction
between ethylene and GA mediates the timing of the
decision to flower in response to changing environ-
mental conditions.

Figure 4. Network of positive and negative interactions between GA and
ethylene. Ethylene represses GA biosynthesis or suppresses GA responses
via DELLA stabilization. GA promotes ethylene responses in dark- and
light-grown seedling (apical hook formation in the dark and hypocotyl
elongation in the light). Submergence promotes ethylene and GA synthe-
sis in deepwater rice and R. palustris, and GA promotes ethylene-induced
internode elongation. Interactions mediated by changes in protein activity
or stability are in gray and those mediated by gene expression are in black.
Numbers in parentheses indicate the respective reference as follows: 1,
Achard et al., 2003; 2, Achard et al., 2007; 3, Benschop et al., 2006;
4, Sabio et al., 2003; 5, Sauter et al., 1995; 6, Vriezen et al., 2004.
EIN3, ETHYLENE INSENSITIVE3; LFY, LEAFY; SOC1, SUPPRESSOR OF
OVEREXPRESSION OF CONSTANS1.
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While ethylene is classically considered to be a
growth inhibitor that antagonizes GA responses, pos-
itive interactions have also been described. In etiolated
seedlings, ethylene induces a triple response that in-
cludes the formation of an apical hook and the inhi-
bition of hypocotyl and root growth. The apical hook
is formed by asymmetric elongation of the inner and
outer sides of the hypocotyl and helps the young
seedling grow through the soil. Induction of the apical
hook by ethylene requires GA activity (Achard et al.,
2003; Vriezen et al., 2004). Ethylene-treated hypocotyls
of the GA-deficient mutant ga1-3 did not form an
apical hook, but the response to ethylene was restored
by GA treatment or when ga1-3 was combined with
the loss of both RGA and GAI. A synergistic promotive
effect of GA and ethylene was also shown in light-
grown Arabidopsis seedlings (Saibo et al., 2003); while
GA is the major factor controlling cell elongation in
light-grown hypocotyls, ethylene enhances this effect.
Whether this positive interaction is mediated by the
DELLA proteins, i.e. ethylene reduces DELLA stabil-
ity, is not yet known. These studies indicate that GA
and ethylene stimulate each other’s activities recipro-
cally under specific circumstances.

Ethylene plays a central role in regulating the plant’s
developmental reaction to stress. GA has been shown
to be positively involved in ethylene activity under
conditions of oxygen deficiency. The elongation of
deepwater-rice internodes requires the activity of GA
and ethylene (Sauter et al., 1995). Reduced O2 level
during rice submergence was suggested to induce
ethylene production, which in turn inhibited ABA
synthesis. This changed the balance between ABA
and GA, resulting in GA-induced stem elongation.
In Rumex palustris, submergence induces the expres-
sion of GA3ox, suggesting that ethylene induces GA
synthesis (Benschop et al., 2006). Thus, during sub-
mergence, ethylene affects the GA-to-ABA ratio by
inhibiting ABA production and inducing GA synthe-
sis. Ethylene also induced adventitious root growth in
submerged rice. While GA had no effect on its own on
this process, it acted synergistically with ethylene to
promote root growth (Steffens et al., 2006).

Depending on the developmental process and envi-
ronmental conditions, ethylene thus interacts both
positively and negatively with GA. Furthermore, the
interaction between these two hormones operates at
both the biosynthesis and signal transduction levels,
exhibits reciprocal effects of these hormones on one
another, and involves both additive and synergistic
effects.

RECIPROCAL INTERACTION BETWEEN GA
AND CYTOKININ

GA and cytokinin exert antagonistic effects on nu-
merous developmental processes, including shoot and
root elongation, cell differentiation, shoot regeneration
in culture, and meristem activity (Greenboim-Wainberg
et al., 2005; Jasinski et al., 2005). Several recent studies

have shown development-dependent reciprocal inter-
actions between the two hormones, where cytokinin
inhibits the production of GA and promotes its deac-
tivation and GA inhibits cytokinin responses (Fig. 5).

High cytokinin and low GA signals are required for
normal shoot apical meristem (SAM) function (Sakamoto
et al., 2001; Jasinski et al., 2005; Yanai et al., 2005).
SAM regulators from the KNOTTED1-like homeobox
(KNOXI) protein family were shown to induce expres-
sion of the cytokinin-biosynthesis gene ISOPENTENYL
TRANSFERASE7 and accumulation of the hormone in
the meristem (Jasinski et al., 2005; Yanai et al., 2005).
Proteins from this family were also shown to negatively
control GA level in the SAM by binding to the GA20ox
promoter and directly repressing its transcription
(Sakamoto et al., 2001; Hay et al., 2002; Chen et al.,
2004). KNOXI and cytokinin both induced the expres-
sion of the gene encoding the GA-deactivating enzyme
GA2ox at the base of the SAM, perhaps to block
biologically active GAs transported to the SAM from
flanking tissues (Jasinski et al., 2005). Thus, KNOXI
proteins control the balance between cytokinin and GA
in the SAM by inducing cytokinin production, directly
inhibiting GA synthesis, and indirectly promoting GA
deactivation. Genome-wide expression profiling of cy-
tokinin-treated Arabidopsis seedlings revealed that
cytokinin inhibits the expression of GA20ox and GA3ox
and promotes that of RGA and GAI, further expanding
upon the negative interactions between these hor-
mones (Brenner et al., 2005).

Figure 5. Network of reciprocal interactions between GA and cytoki-
nin. Two major players control the balance between GA and cytokinin.
KNOXI proteins control the balance between the two hormones in the
SAM by inducing cytokinin production, directly inhibiting GA syn-
thesis, and indirectly promoting GA deactivation. SPY regulates the
balance between the response pathways of these two hormones via
suppression of GA signal and promotion of cytokinin responses.
Interactions mediated by changes in protein activity or stability are in
gray and those mediated by gene expression are in black. Numbers in
parentheses indicate the respective reference as follows: 1, Brenner
et al., 2005; 2, Chen et al., 2004; 3, Greenboim-Wainberg et al., 2005;
4, Hay et al., 2002; 5, Jasinski et al., 2005; 6, Sakamoto et al., 2001; 7,
Silverstone et al., 2007; 8, Yanai et al., 2005. IPT, ISOPENTENYL
TRANSFERASE.

Weiss and Ori

1244 Plant Physiol. Vol. 144, 2007



Whereas SAM activities require high cytokinin and
low GA signals, later stages of cell maturation and elon-
gation require the opposite: low cytokinin and high
GA signals. A reverse antagonistic interaction, in
which GA inhibits cytokinin, has also been demon-
strated. Greenboim-Wainberg et al. (2005) have shown
that GA, or a mutation in the GA-signaling suppressor
SPY, inhibit cytokinin responses in Arabidopsis. Sev-
eral lines of evidence suggest SPY acts directly to
promote cytokinin responses and that GA suppresses
cytokinin responses via SPY. This suggests that in the
absence of GA, SPY represses GA signaling and pro-
motes cytokinin responses, but when cellular GA
levels increase, the hormone suppresses SPY activity
and, therefore, cytokinin responses. How GA sup-
presses the cytokinin response via SPY is not yet clear.
Recent results have suggested that GA has no effect on
SPY activity toward the inhibition of GA responses
(Silverstone et al., 2007). It is possible, however, that
GA inhibits a component that interacts with SPY to
specifically promote cytokinin responses. How might
SPY promote cytokinin responses? Because GA and
spy inhibited the induction of the cytokinin primary-
response genes TYPE-A RESPONSE REGULATORs, it
was suggested that SPY interacts with, and perhaps
modifies (via O-GlcNAc modification), elements of
the cytokinin phosphorelay cascade (for review of the
cytokinin-signaling pathway, see Hutchison and Kieber,
2002; Kakimoto, 2003; Ferreira and Kieber, 2005). How-
ever, elucidation of the mechanism by which SPYaffects
the cytokinin pathway still requires intensive study.

Despite the pronounced effect of spy on cytokinin
responses, the spy phenotype is much less severe than
that of the triple mutant of the cytokinin receptors
(Higuchi et al., 2004). This could result from functional
redundancy with either GA-related or nonrelated com-
ponents. The Arabidopsis genome contains one addi-
tional OGT gene, SECRET AGENT (SEC; Hartweck
et al., 2002). While sec mutations do not show any
obvious phenotypic alteration, the sec spy double
mutant is lethal (Hartweck et al., 2002). As high GA
levels or signal do not cause lethality, this lethality
could result from an effect of the double mutant on
both GA and cytokinin pathways.

Interestingly, GA and spy suppress phenotypes
caused by KNOXI overexpression (Hay et al., 2002).
Although GA and spy may simply restore the inhibi-
tion effect of KNOXI on GA biosynthesis, it is also
possible that they inhibit KNOXI-induced cytokinin
responses or that SPY is required directly for KNOXI
activity, the latter representing another possible level
of interaction between GA and cytokinin.

Hence, cytokinin and GA act mostly in an antago-
nistic manner. The reciprocal interaction is regulated at
both the biosynthesis and signal transduction levels.

CONCLUSION AND PERSPECTIVES

GA interacts with all other plant hormones, in some
cases reciprocally, whereby GA affects but is also being

affected by the other hormone. The direction and type
(positive or negative) of the interaction depends on the
biological process, tissue, developmental stage, and/
or environmental conditions. The network likely fea-
tures further levels of complexity, as interactions be-
tween more than two hormones to regulate specific
developmental processes have been documented. For
example, GA, auxin, and ethylene interact to promote
elongation of light-grown seedlings (Saibo et al., 2003),
and GA, cytokinin, and auxin are all involved in SAM
development (Shani et al., 2006). This naturally results
in a seemingly infinite number of possible combina-
tions for regulation, which may contribute to the plant’s
ability to cope with a constantly changing environment
with high flexibility (Brady and McCourt, 2003). It is
clear, however, that the current knowledge is just the
tip of the iceberg in a complex network of interactions
between the various plant hormones.
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CORRECTIONS

Vol. 144: 682–694, 2007

Pislariu C. and Dickstein R. An IRE-Like AGC Kinase Gene, MtIRE, Has Unique Expression
in the Invasion Zone of Developing Root Nodules in Medicago truncatula.

On Page 687, the first full sentence in the right column should read as follows: ‘‘Plants were
inoculated with rhizobia carrying a constitutive lacZ gene, and nodulated roots were
harvested at 15 dpi.’’
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Vol. 144: 1240–1246, 2007

Weiss D. and Ori N. Mechanisms of Cross Talk between Gibberellin and Other Hormones.

In Figure 3 of this Update, the inhibition bar from Aux/IAA to DELLA should be an arrow.
The corrected figure is below.
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