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Statistical models of environment-abundance relationships may be influenced by
spatial autocorrelation in abundance, environmental variables, or both. Failure to
account for spatial autocorrelation can lead to incorrect conclusions regarding both
the absolute and relative importance of environmental variables as determinants of
abundance. We consider several classes of statistical models that are appropriate for
modeling environment-abundance relationships in the presence of spatial autocorrela-
tion, and apply these to three case studies: 1) abundance of voles in relation to
habitat characteristics; 2) a plant competition experiment; and 3) abundance of
Orbatid mites along environmental gradients. We find that when spatial pattern is
accounted for in the modeling process, conclusions about environmental control over
abundance can change dramatically. We conclude with five lessons: 1) spatial models
are easy to calculate with several of the most common statistical packages; 2) results
from spatially-structured models may point to conclusions radically different from
those suggested by a spatially independent model; 3) not all spatial autocorrelation in
abundances results from spatial population dynamics; it may also result from
abundance associations with environmental variables not included in the model; 4)
the different spatial models do have different mechanistic interpretations in terms of
ecological processes – thus ecological model selection should take primacy over
statistical model selection; 5) the conclusions of the different spatial models are
typically fairly similar – making any correction is more important than quibbling
about which correction to make.
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The environment-abundance relationship has been fea-
tured as a central topic throughout the history of
ecology. Classically, it was a main topic in order to
understand limits to species’ distributions, and species’
responses to environmental gradients. More recently,
understanding how qualitative and quantitative aspects
of environment affects abundance and distribution has
taken on a more acute practical dimension, because of
the conservation implications of anthropogenic habitat
loss and climate change. The critical link is that in

order to predict the effects of anthropogenic or other
changes, we need reliable measures of the association
between abundance and environmental variables. The
estimation of these associations is the topic of this
paper – the statistical complication is that classical
methods used to quantify environment-abundance asso-
ciations assume independence of observations. How-
ever, the distribution or abundance of a species is
typically spatially autocorrelated due to locomotory
constraints (e.g., Orians and Pearson 1979, Abrahams
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1986), social organization (e.g., Stamps 1988, Morris et
al. 1992), or aggregative responses to cues from conspe-
cifics (Turchin and Kareiva 1989, Turchin and Thoeny
1993). At the same time the environment is usually also
spatially autocorrelated (e.g., Manly 1986, Leduc et al.
1992, Legendre 1993). Careless regression (or correla-
tion) of autocorrelated variables across an explicit or
implicit spatial surface may, as a consequence, highlight
spurious associations (Lennon 2000). Thus, models of
abundance-environment relationships that ignore auto-
correlated spatial pattern may place undue emphasis on
environmental factors that in truth have little or no
bearing on a species’ distribution and abundance. Per-
haps more importantly, models that ignore spatial au-
tocorrelation may fail to place sufficient emphasis on
true abundance-environment relationships, and thus
lead to omission of important variables during model
selection.

A variety of methods have been applied to quantify
species-habitat associations. These methods fall gener-
ally into two classes: regression methods and multivari-
ate ordination techniques. Regression methods include
simple linear regression on log or square root trans-
formed count data, Poisson regression on raw count
data and logistic regression on presence-absence data
(e.g., Guisan et al. 1999). Additive regression models
(Hastie and Tibshirani 1987) have also be used to
model complex, non-parametric relationships between
abundance and environmental predictors (Yee and
Mitchell 1991). Multivariate techniques include canoni-
cal correlation (Gittens 1980) and Canonical Corre-
spondence Analysis (Ter Braak 1987, Palmer 1993).
These models seek linear combinations of environmen-
tal factors that are correlated to linear combinations of
species’ abundances. Both ordination and regression
methods can be used to map abundance and distribu-
tion in space (see Guisan and Zimmermann 2000 for a
comprehensive review with additional methods for dis-
tribution mapping). Whereas these techniques represent
significant progress in modeling environment-abun-
dance associations, in their standard form they fail to
take into account the possibility that either the environ-
ment or the abundance may be spatially autocorrelated,
and therefore these models may fail to provide an
accurate representation of the environmental factors
governing abundance.

Fortunately, there are a growing number of statistical
methods that can incorporate spatial autocorrelation
into environment-abundance models. Many of these
techniques have received exhaustive review and techni-
cal discussion elsewhere (e.g., Haining 1990, Cressie
1993, Griffith and Layne 1999) and it is not our aim to
repeat these general efforts. Rather we wish to focus the
discussion on models for spatial autocorrelation in
abundance and how they might improve modeling envi-
ronment-abundance relationships. In particular, we em-
phasize the effect of spatial autocorrelation on

parameter estimates, and the interpretation of parame-
ter values for understanding population level processes,
as opposed to the effect of autocorrelation on signifi-
cance tests, which have typically received more atten-
tion in the literature (see also other papers, this issue).

We illustrate the various statistical methods using
three case studies: 1) habitat selection in bank voles
Clethrionomys glareolus, 2) an experimental study of
competition between a C3 and C4 grass, and 3) habitat
associations for three species of Oribatid mites. Finally,
we review possible extensions of our models to include
scenarios more complex than the relatively simple re-
gression models presented in the case studies.

Methods

Since we are primarily interested in parameter estima-
tion, we restrict our discussion to a specific set of
models for which interpretation of estimated parame-
ters is relatively straightforward, specifically linear re-
gression models for log-abundance data. Within the
class of linear log-abundance models we focus our
discussion on four classes of models (Table 1). These
are 1) standard regression models that ignore spatial
dependence, 2) spatial autoregression models, 3) geo-
statistical correlation models, and 4) random block
models for designed experiments.

The independence model is the familiar regression
model whose errors are distributed independently and
identically across all observations. The independence
model is of course the standard choice when predictor
or response variables are not spatially patterned. The
independence model is usually a good place to start
when first exploring relationships. If there are strong
spatial signatures in the data, then one should assess
the degree of spatial dependence in the residuals. Gen-
erally, plotting a correlogram of the residuals is suffi-
cient to detect important patterns.

When violations of independence do occur, alterna-
tive models that account for dependence in the residu-
als should be used. This is true despite the fact that
ordinary least squares estimates of the independence
model parameters remain asymptotically unbiased in
the presence of spatial autocorrelation. In any real
situation, however, sample sizes will be finite; hence,
appeals to asymptotic behavior are not terribly useful.
Alternative models that explicitly account for spatial
autocorrelation can reduce bias, as well as increase
precision, relative to the independence model with sam-
ple sizes typical of ecological studies (see Krämer and
Donninger 1987). An added dividend is the explicit
characterization of spatial patterns, opening the oppor-
tunity for ecological interpretation.

Alternative models include autoregressive models
(AR, CAR, SAR; see Table 1), which augment the
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standard linear model with an additional term that
accounts for patterns in abundance that are not pre-
dicted by local habitat variables, but are instead related
to abundance in neighboring locations (or, more often,
the ‘‘residual’’ in neighboring locations). In the AR
model, the autoregressive term is independent of the
environmental predictors, and is thus most appropri-
ately applied when correlations in abundance result
from endogenous population processes that are unre-
lated to environmental conditions, such as conspecific
attraction or spatially contagious population growth.

The CAR and SAR models are similar to the AR
model, except that abundances within the specified
neighborhoods are deviations from the expected abun-
dance given the habitat conditions (viz. the ‘‘residual
variation’’) at each location. The CAR model only
considers first-order neighborhood effects, whereas the
SAR model allows for recursive, higher order neighbor-
hood effects. Both CAR and SAR are appropriate
when residual abundance patterns depend strongly on
latent environmental variables, or in situations where
individuals entertain contiguous home ranges upon
completing their habitat selection.

Geostatistical models (EA, GA) account for spatial
pattern by modeling the correlation between errors
directly as a function of distance. (We consider only
two functions, exponential and Gaussian, but others
may be appropriate as well.) The choice of geostatisti-
cal error-model can be based upon either biology or the
nature of your data. The geostatistical models mainly
have an advantage in the flexibility with which one can
specify error structure, and may be more appropriate
when observed patterns do not correspond to clearly
defined neighborhoods.

Although not typically used for modeling environ-
ment-abundance relationships, the Random Blocks
model is conceptually similar to the geostatistical mod-
els. In the Random Blocks model, two sets of errors,
within-block and between-block, are computed. Be-
tween-block errors are assumed to be spatially indepen-
dent, whereas within-block errors have a single pooled
covariance. This model corresponds to an experimental
design where treatments are randomized within larger
sampling blocks.

As presented, these models assume linear responses
to environmental gradients. In many cases, a non-lin-
ear, modal response may be more appropriate. In such
cases, a regression of log-abundance against a second-
order polynomial (modeling a Gaussian response in the
raw abundances) could be used. (In the examples be-
low, we found that the environment-abundance rela-
tionships were approximately linear, indicating that the
extents of the gradients within the study area may have
been insufficient to capture the entire species’ response
to these variables, i.e., our models were fit over ranges
of environmental variables where abundance was only
either increasing or decreasing. We therefore only mod-
eled linear responses.)

Furthermore, in deference to simplicity and illustra-
tion, all the models we consider here also assume
Gaussian error distributions. However, alternative
models are available that allow for other error distribu-
tions. The autologistic model (e.g., Augustin et al.
1995), for example, can be used to model presence-ab-
sence data. A more general approach estimates the
parameters of a Generalized Linear Model (McCullagh
and Nelder 1989) with correlated errors using the
method of ‘‘Generalized Estimating Equations’’. Recent
studies have used this approach with binary (Albert and

Table 1. Summary of the statistical models linking the vector of log-abundance, Y, to a matrix of covariates X, and the resultant
structure of dependence in the errors (�). � is the vector of coefficients (to be estimated) that describes the strength of the
association between the abundance and the various habitat variables. W and C are matrices that flags neighboring observations;
d is the spatial distance between the observations; u represents a dummy-variable, flagging which observation belongs to which
block; I represents the identity matrix; � is the measure of spatial dependence.

Name Model Error covariance matrix

Independent Errors �2IY=X�+�
(no spatial dependence)

Autoregressive (AR) Y=X�+�WY+� �2[(I−�W)T(I−�W)]−1 where W is a (possibly)
asymmetric neighbor connection matrix.

�2[(I−�W)T(I−�W)]−1 where W is a (possibly)Y=X�+�W(Y−X�)+�Simultaneous Autoregressive (SAR)
asymmetric neighbor connection matrix.

Conditional Autoregressive (CAR) Y=X�+�C(Y−X�)+� �2(I−�C)−1 where C is a symmetric neighbor
connection matrix.

Exponential Autocorrelation (EA) Y=X�+� �2�(d) where �ij(dij)=e−dij/� and dij is the
distance between i and j.

Gaussian Autocorrelation (GA) Y=X�+� �2�(d) where �ij(dij)=e−(dij/�)2
and dij is the

distance between i and j.

Random Blocks (for ith observation Y=X�+u+v �(�b
2+�e

2) where �ij=1 if i= j, �ij=�b
2/(�b

2+�e
2)

Var(u)=�b
2, Var(v)=�e

2 if i and j are in the same block, and �ij=0 if iin k(i)th block)
and j are in different blocks.
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Fig. 1. The spatial map of total captures of female bank voles
on the trapping grid. The minimum number of captures is
zero, and the maximum is 17. The size of the symbols is
proportional to the number captured.

Example 1: spatial autocorrelation in bank vole
habitat selection

Bjørnstad and Ims (unpubl.) conducted a study to
examine the influence of environmental factors on bank
vole abundance in central Norway (see Ims 1987 for a
description of the study site). The data record the
number of female bank voles captured in each of 71
pitfall live-traps. The traps were arranged in a rectangu-
lar grid with ca 15 m between each trap (Fig. 1).
Vegetation and habitat variables were measured in four
one-square-meter quadrats surrounding each trap. The
average of these four were used for the analyses. The
capture data represent eight experimental bank vole
introductions between 1991 and 1994. Because female
bank voles are central place foragers (Bondrup-Nielsen
and Ims 1986), and have home ranges of sufficient size
to encompass multiple traps (typical home range area
based on data collected within the study-area is 45×45
m; Bjørnstad and Ims unpubl.) we suspected the abun-
dance data to be spatially autocorrelated. This is con-
firmed by plotting correlograms of abundance (Fig. 2a)
and habitat variables (Fig. 2b, c). The spatial correla-
tion in rodent abundance is initially high and drops off
to zero around 35 m.

We used linear regression to relate log-abundance
(log c captures per trap+1) to characteristics of the
local environment. After a preliminary screening, we
retained five independent variables in the model: 1)
vegetation height – providing shelter from predators; 2)
Cladonia – cover of a lichen which indicates dry habi-
tat; 3) Empetrum – cover of crowberry; 4) moss – cover
of the dry-habitat Pleurozium ; 5) ground structure –
heterogeneity in soil and litter. Cladonia and ‘‘ground
structure’’ exhibits short-range spatial dependence com-
parable to that seen in the rodent counts (Fig. 2b). The
other environmental variables are less clearly spatially
structured.

Conclusions about the importance of each environ-
mental variable depend on the assumption of indepen-
dent errors (Table 2). If spatial correlation is ignored,
bank vole abundance is concluded to increase with
increased vegetation height, decrease Cladonia cover,
and decreased moss cover. The partial regression coeffi-
cients for Empetrum and ground structure were not

McShane 1995), multinomial (Fahrmeir and Pritscher
1996) and Poisson data (Yasui and Lele 1997).

Results

We present three case studies to illustrate the methodol-
ogy; two that deal directly with abundance-environ-
ment relationships, and a third that examines
abundance-environment relationships indirectly using
data from a competition experiment.

Table 2. The analysis of habitat selection in the bank vole. The parameter estimates and their standard errors are estimated
assuming independence, or a variety of spatially-correlated error models. See main text for details.

AR SARVariable Independence CAR EA

−0.06�0.710.06�0.71Intercept 0.22�0.71−0.46�0.710.32�0.73
Vegetation height (1) 0.06�0.02** 0.06�0.02** 0.05�0.02** 0.05�0.02** 0.06�0.02**

−0.48�0.24*Cladonia (2) −0.44�0.23* −0.37�0.23 −0.39�0.23 −0.34�0.23
0.14�0.17Empetrum (3) 0.16�0.17 0.14�0.160.29�0.17 0.28�0.16

−0.32�0.14* −0.24�0.14 −0.25�0.14 −0.28�0.14*Moss (4) −0.31�0.14*
0.18�0.09*Ground structure (5) 0.19�0.09*0.12�0.09 0.15�0.09 0.19�0.09*

AIC 266.4268.09267.7NA§269.38

* p�0.05, ** p�0.01. § We omit the AIC for this model because the likelihood was scaled differently in this case.
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Fig. 2. The spatial correlation functions for the vole data. A)
The captures and the residuals from the independence model.
The exponential model is superimposed on the observed. B)
and C) Spatial correlation in the habitat variables. The spatial
correlation functions are estimated using spline correlograms
with 15 degrees of freedom (Bjørnstad and Falck 2001).

will under this dependence range from 0.16 to 0.47
(depending on the exact distance between pairs of
traps).

The results from all the spatial dependence models
(with the exception of the AR model) are roughly the
same. Compared to the independent errors model, ex-
plicit consideration of spatial correlations reduced the
importance of two variables (2, 3), and increased the
importance of another (5). Notably, the last variable,
which is insignificant at the 10% level when assuming
independence, is really one of the more important
covariates as judged from the model accounting for the
spatial autocorrelation. This is not really counter-intu-
itive: autocorrelation is like reading some of the data
several times. The fact that estimates and levels of
significance are altered when you effectively duplicate a
subset of your observations stands to reason. (As an
analogy, consider tossing two unbiased coins that give
– according to expectation – one tail and one head. If
the ‘‘tail’’ is inadvertently recorded twice, and the
‘‘head’’ is accurately recorded only once, the estimated
odds are shifted by �30% relative to the true odds.)
An important take-home message from Table 2 is that
the main difference is between models assuming inde-
pendence and other models. Once some concession is
made for interdependence, the conclusions appear to be
relatively insensitive to the details of the spatial model.

Example 2: spatial autocorrelation in a plant
competition experiment

Spatial autocorrelation can influence both experimental
and observational studies. To illustrate how the inter-
pretation of spatial autocorrelation differs between ex-
perimental and observational studies, we analyzed data
from a removal experiment involving the C4 grass
Aristida glauca and a competitor, the C3 grass Stipa
neomexicana (see Fortin and Gurevitch 1993). We ana-
lyzed a subset of the data comparing growth of Stipa in
Aristida-removal plots to the growth in control plots.
The experiment used a randomized block design involv-
ing 10 blocks. Each block was divided into eight units,
of which two were randomly assigned as controls and
two were assigned as Aristida-removal. The other 4
units were used for other treatments not considered
here. The design is depicted and detailed in Fortin and
Gurevitch (1993). In our analysis we investigated the
plant growth rates log(final size/initial size) as a func-
tion of treatment, where size is measured by basal area
in cm2. We used the data in Fortin and Gurevitch
(1993): Table 15.1, except that we have deleted the
outlier in Control 2 Block 5, and assigned a corrected
coordinate (x=23 m, y=4 m) to Control 1 Block 6.

We use the data to illustrate how randomized field
experimental data can be analyzed using independence
models, spatial correlation models, or a more classical

significantly different from 0 (Table 2). However, the
residuals from the independence model are strongly
correlated (Fig. 2a). The model that includes spatial
autocorrelation indicates a range of dependence up to
ca 30 m (Fig. 2a). This corresponds roughly to the
radius of female bank vole home ranges in this habitat.
The estimated correlation between neighboring traps
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Table 3. The experimental test of competition on Stipa
growth in the presence vs the absence of its C4 competitor.
The parameter estimates and their standard errors are esti-
mated assuming independence, using a spatially-correlated
error model, and a random block design. The optimal spatial
error model uses a Gaussian structure with estimated range
around 2 m.

Effect size Independence T p

Independence �0.011.05�0.18 5.87
�0.01¶Spatial error 1.03�0.13 7.41

Block 1.06�0.17 6.31 �0.01†

¶ Gaussian correlation (no nugget) with range: 2.01; LRT:
�2(1)=3.58, p=0.06.
† Random block design; LRT: �2(1)=0.8, p=0.37.

hence be seen as using up ‘‘degrees-of-freedom’’ (by
fitting the block effects), but at the wrong scale relative
to the inherent dependence in the system.

Example 3: habitat associations in Orbatid mites

In the two examples introduced above, the spatial
regression models work very well and produce efficient
analyses and ecologically meaningful conclusions. In
order to illustrate an important potential for confound-
ing, we conducted an analysis of the abundance-envi-
ronment relations in three mite species. The data
represents the abundance of Orbatid mites in a Sphag-
num bog at Lake Geai in Quebec (Borcard et al. 1992,
Borcard and Legendre 1994). Adult numbers of 35
species of Orbatid mites where counted in 70 samples
across a 10×2.6 m transect from the floating vegeta-
tion mat to the forest edge. The dominant gradient is
thus associated with humidity. A suite of environmental
variables was measured at each sampling point. The
relationship between the environment and the whole
mite community has been analyzed and discussed in
detail by Borcard and co-workers (Borcard et al. 1992,
Borcard and Legendre 1994, see also other papers in
this feature). We focus on the ‘‘individualistic’’ response
of three of the more common mites: ONOV (Oppielle
no�a), a very common habitat generalist; LCIL (Lim-
nozetes ciliatus) a hygrophilic species which can show
very large populations under very wet conditions; and
TVEL (Tectocepheus �elatus) a ‘‘panphytophagous’’
habitat generalist (Borcard pers. comm.). In our analy-
sis we include all environmental variables of Borcard
and Legendre (1994), but emphasize the result for two
continuous variables: humidity and substrate density.

In general, the analyses elucidate a strong association
(either positive or negative) with the main humidity
gradient (Table 4). The habitat generalist ONOV (and
TVEL) is negatively correlated with humidity; the hy-
grophilic species (LCIL) is positively correlated with

randomized block model. As a contrast to observa-
tional studies, such as that of the rodent, the mean
difference between the removal and control plots is
estimated with good precision regardless of choice of
correlation (or independence) model (Table 3). This
robustness is, of course, at the heart of the randomiza-
tion technique for field experiments, which ensures that
we need only be concerned with precision, rather than
dealing with block-induced biases. The geostatistical
regression model does, however, reveal a strong but
rather localized spatial correlation in the residuals (Fig.
3) (the range in the Gaussian correlation model is 2.01
m). As expected, explicit modeling of spatial autocorre-
lation results in enhanced statistical ‘‘efficiency’’ – we
observe a 25% reduction in standard error of the esti-
mated treatment effect using a Gaussian geostatistical
model for the spatial dependence in the residuals (‘‘spa-
tial error’’ model, Table 3). The analysis using a ran-
dom block design offers a surprising contrast to this as
there is no apparent gain through the blocking. (Several
free parameters are used, but only marginal increase in
efficiency is attained.) This is despite the fact that
‘‘blocking’’ is the classical solution to the problem of
latent variables. However, the 8×2 m a priori selected
blocks are several times larger than the distance over
which observations are correlated. The blocks may

Table 4. The analysis of environmental association of ONOV, LCIV and TVEL. The parameter estimates and their standard
errors as estimated assuming independence, and spatially-correlated error model. The test for spatial error models are
summarized below the table (including the Likelihood-ratio tests for spatial dependence). Note that the two ‘‘independence’’
models for TVEL are the same.

TIndependenceVariable TGeostatistical pp

−0.39�0.08 −4.65 �0.01ONOV: humidity (×100) −0.39�0.08* −4.65 �0.01
substrate (×100) 0.29�0.09 0.34 0.74 0.29�0.09* 0.34 0.74

LCIL: humidity (×100) 0.75�0.15 5.07 �0.01 0.71�0.01§ 3.87 �0.01
0.11−1.61−2.81�1.75§0.23−1.22−1.88�1.54substrate (×100)

−0.48�0.08 −5.44 �0.01 −0.08�0.01¶ −0.95TVEL: humidity (×100) 0.35
substrate (×100) 4.89�0.91 5.33 �0.01 1.29�0.78¶ 1.65 0.10

TVEL: humidity (×100) �0.01−5.44−0.48�0.08 0.10−1.68−0.13�0.08†
5.334.89�0.91Substrate (×100) �0.01 1.70�0.66† 2.57 0.01

* Exponential correlation (no nugget) with range: 4.27E-18; LRT: �2(1)=0.14, p=0.71.
§ Gaussian correlation (nugget=1.20) with range: 2.35; LRT: �2(2)=8.03, p=0.02.
¶ Exponential correlation (no nugget) with range: 6.08; LRT: �2(1)=37.81, p�0.01.
† Gaussian correlation (nugget=0.91) with range: 0.81; LRT: �2(2)=30.51, p�0.01.
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humidity. However, despite there being significant spa-
tial autocorrelation, no clear insights result from the
inclusion of spatial dependence. Indeed the analysis of
TVEL testifies either to strong environmental control
and localized spatial dependence, or limited environ-
mental control and wide-ranging spatial dependence,
depending on the exact spatial model assumed (Table
4).

Discussion

There are many environmental and ecological processes
that can result in spatial autocorrelation in abundance
(Legendre 1993). These can include slow, large-scale
processes such as uplift and erosion that form the
geophysical template in which ecological interaction
occur, mesoscale processes such as fire, local climate
gradients and forest gap dynamics (e.g., Pickett and
White 1985), and fast, fine-scale interactions between
individuals such as territoriality and conspecific attrac-
tion (e.g., Stamps 1988, Ray et al. 1991) and repulsion
(e.g., Bollinger et al. 1993, Lambin 1994a, b) in animal
populations. Distance-limited dispersal and movement
also generate autocorrelations in abundance, and these
can oftentimes interact with broad-scale landscape pat-
terns (e.g., Willson 1992, Keitt and Jonhson 1995).
Some of the more interesting and esoteric (albeit largely
theoretical) sources of spatial autocorrelation stem
from species interactions coupled with dispersal. Mod-
els of predator-prey and host-parasitoid dynamics have
been shown to produce a wide range of autocorrelated
spatiotemporal dynamics, including traveling waves, pe-
riodic checkerboard oscillations and spatial chaos (e.g.
Bascompte and Solé 1998).

In the first two examples given above, we find biolog-
ically meaningful spatial patterns that significantly ef-
fect our interpretation of the predictive models for
habitat abundance relations. In both cases, we were
able to model spatial patterns by incorporating models
of spatial autocorrelation into our statistical frame-
work. In the case of bank voles, spatial correlations in
abundance reflected a number of factors. Bank voles
are territorial, central-place foragers. Thus we expect
that there will be autocorrelation at the scale of the
territory width, and this indeed appears to be the case
(Fig. 2). In addition, we expect vegetation structure to
influence vole abundance. Bank voles also experience
significant predation, this gives rise to a dual effect of
vegetation height on abundance. First, increased food
abundance in the more lush vegetation leads to greater
abundance, and second, taller vegetation serves as refu-
gia from predation. Initially, when fitting the indepen-
dence model, it appeared that vegetation had a mixed
effect on vole abundance. Both Cladonia and moss
cover were negatively correlated with abundance, sug-

Fig. 3. The spatial correlation functions for the plant competi-
tion data. The dotted line represents the residuals from the
independence model, the Gaussian model is superimposed.
The spatial correlation function is estimated using a spline
correlogram with 10 degrees of freedom (Bjørnstad and Falck
2001).

gesting that voles avoid dryer areas. However, when
fitting the spatial autocorrelation models, neither Cla-
donia nor moss was significantly related to vole abun-
dance (although we did observe a weak effect of moss
in the EA model). Instead, it appears that ground
spatial structure was more important, indicating that
voles respond positively to heterogeneity in their
environment.

Whereas the SAR, CAR and EA models showed
significant differences in parameter estimates, the AR
model showed little difference when compared to the
independence model. This suggests a cautionary note.
Selecting an appropriate model requires some thought
about ecological sources of spatial dependence. The AR
model would be a natural choice if the spatial correla-
tions in abundance were independent of patterns in
habitat variables – this could arise if offspring were
highly philopatric creating a secondary aggregate of
individuals. At the scale of this experiment on bank
voles, however, this is clearly not the case since the
dominant cause of autocorrelation is the spacing behav-
ior of each individual (each home range encompasses
multiple traps). Fortunately, all ecologically sensible
spatial models result in identical conclusions.

In the case of the plant competition experiment, we
found an intriguing example of a mismatch in scales of
the experimental design and the extent of the underly-
ing spatial dependence (Fig. 3). The original block
design of the experiment missed the important spatial
pattern, because the blocks were too large. A geostatis-
tical model was able to detect significant patterns of
spatial dependence in the residuals, but at scales consid-
erably less than the original block size. From a biologi-
cal standpoint, this indicates that growth rates probably
varied according to a fine-scale spatial mosaic in mois-
ture, competition with other plant species, and perhaps
nutrient concentrations (or some combination of these).
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Another possibility is herbivory which would tend to
cause fine-scale patchiness. This type of mismatch be-
tween experimental design and underlying spatial de-
pendence was in fact the catalyst for the earliest spatial
regression model – the Papadakis method. Interested
readers should consult Wilkinson et al. (1983).

Our analysis of Orbatid mites illustrates a final im-
portant inferential point; one that is made particularly
clear by the two candidate spatial models for TVEL. In
the narrow transect that parallels the dominant envi-
ronmental gradient (the transect measures 10 m along
the humidity gradient but only 2.5 m across it), the
‘‘effect of space’’ and the effect of the habitat drivers
are strongly confounded. In this way it is almost impos-
sible to distinguish between the scenario in which the
spatial dependence in abundances is largely generated
by dispersal and density-dependence, with little envi-
ronmental control (TVEL model 1), versus the scenario
in which spatial patterns in abundance largely reflect
strong environmental control instead of endogenous
population processes (TVEL model 2). This parallels
the conclusion from the community analysis of Borcard
and Legendre (1994). Their CCA variance partitioning
indicated that of the 57 percent-units explicable, more
than half (31 percent-units) could be explained either
through spatial constraints or through environmental
controls.

The potential confounding between internally gener-
ated low-frequency autocorrelation vs low-frequency
environmental ‘‘forcing’’ (i.e., the controlling environ-
mental factors have long-range spatial dependence)
may be particularly acute in the presence of important
‘‘latent’’ variables. Ecological studies rarely include
measures of all the important variables because we do
not know all that ought to be measured. If the omitted
(latent) variables are structured in space, the data them-
selves will be spatially autocorrelated.

When spatial autocorrelation is due to unobserved
and unmodeled environmental variables, a SAR or
CAR model may be the more appropriate choice of
model (Griffith and Layne 1999). In such models, the
value at a location depends on the residuals (Yi−Xi B)
at nearby locations (Table 1). Although the CAR and
SAR models share comparable model formulations,
they represent slightly different biological mechanisms
and describe different patterns of correlation between
observations. As reviewed above, the CAR model is a
first order spatial model where the value at a location
depends on the values at other locations only if there is
a non-zero connection between them, i.e. only if the
appropriate value in the neighbor connection matrix, C,
is non-zero. There are no spatially indirect effects. The
SAR model, in contrast, is a second order spatial model
that allows for propagation of effects to neighbors of
neighbors, and so on. While the models are very simi-
lar, there are some subtle differences. When the data
sets are large (e.g. hundreds or thousands of locations),

for instance, it is much more difficult to fit the SAR
model than the CAR model. At the same time, because
the SAR model includes indirect effects, it is often more
appropriate when spatial dependence extends to broad
scales.

The exponential and Gaussian models are geostatisti-
cal models that directly specify the correlation matrix,
R, between the residuals. These models are thus empir-
ical, not mechanistic, in their attempt to describe the
spatial dependence. The exponential and Gaussian
models are two of many possible correlation models. In
the geostatistical models, the correlation between two
locations are assumed to depend on the distance be-
tween them and not on some neighborhood connection
matrix (as in the CAR or SAR). Even so, there are
connections between geostatistical models and the au-
toregressive models. The CAR model with a ‘‘neigh-
bor’’ connection matrix gives essentially the same
correlation matrix as an exponential geostatistical
model (Griffith and Csillag 1993). The SAR model
leads to a correlation matrix that is similar to the Bessel
variogram model (Griffith and Layne 1999). There is no
geostatistical equivalent to the AR model.

The randomized block model assumes that the area is
divided into smaller blocks, each with a different aver-
age. There are thus two sources of variability in the
observations (and residuals), the variability between the
block means, �2

b, and the variability between locations
in a block, �2

e. In the random block model, both
sources of variability are assumed to be mutually inde-
pendent. The correlation between observations in the
same block is �2

b/(�2
b+�2

e), because two observations in
the same block share the same block mean. This model
thus assumes that there is no other source of spatial
autocorrelation. This may be appropriate if the blocks
are well separated and scaled according to the depen-
dence inherent in the underlying ecological process, but
not necessarily otherwise – as is illustrated by the mite
analysis.

It is important to remember that the geostatistical
models describe the correlation between the model
residuals. Overall, the different spatial regression mod-
els works well to correct spurious effects of autocorrela-
tion as long as the ‘‘spatial scale of variation’’ (in some
vague sense of the word) is not too similar between the
dependent variable, the independent variable, and the
‘‘errors’’. If they are similar, it is easy to get confound-
ing between the environmental effect and the spatial
effect as illustrated by the mite data where we could not
distinguish between weak versus strong environmental
controls on abundance.

Two decades ago, Hurlbert (1984) made an extremely
important reminder about how randomization and ma-
nipulations provide the only ‘‘true path’’ to causal
inference in ecology. Our review should in no way be
read as parting with this overarching principle. How-
ever, ecology is a tricky science in that manipulation (at
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the correct scale) may not always be possible. The good
news – that we have reviewed and illustrated – is that
recent methodological innovations provide a variety of
possibilities for post-experimental (statistical) correc-
tions to provide correct inference in the presence of
autocorrelation. Our five rules of thumb are that 1)
spatial models are easy to calculate with several of the
most common statistical packages (we used both SAS
and S-plus in our examples, however an increasingly
large collection of statistical routines, including al-
gorithms for fitting many of the models considered in
this paper, is freely available in R; see �http://www.r-
project.org/�); 2) results from spatially-structured mod-
els may point to conclusions radically different from
those suggested by a spatially independent model; 3)
not all spatial autocorrelation in abundances results
from spatial population dynamics; it may also result
from abundance associations with latent environmental
variables; 4) the different spatial models do have differ-
ent mechanistic interpretations in terms of ecological
processes – thus ecological model selection should take
primacy over statistical model selection; 5) the conclu-
sions of the different spatial models are typically fairly
similar – making any correction is more important
than quibbling about which correction to make.
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