The CNS response to axonal injury A non-permissive environment for regeneration is produced Shlomo Rotshenker Dept. of Medical Neurobiology Hebrew University Faculty of Medicine

A mature scar develops at the lesion in two to four weeks - macrophage/microglia invasion – myelin clearance - meningeal cells - oligodendrocyte precursor cells - reactive astrocytes produce inhibitory molecules (Semaphorins, CSPG) There is a time window of opportunity

How can regeneration be promoted?

- change the environment from non-permissive to permissive
 - remove inhibitory factors/molecules
 - provide growth promoting factors/molecules
 - transplant Schwann cells or olfactory ensheathing glia cells (OEG)
- change the response of growth-cones to inhibitory factors/molecules from collapse to growth
 - elevate cAMP levels
 - inhibit RhoA/ROCK signaling

Changing the environment: the astrocytic scar

- neutralize chondroitin sulfate proteoglycans
 - enzymatic digestion by Chondroitinase ABC
- neutralize semaphorins
 - neutralize semaphorin by function blocking antibodies
 - neutralize semaphorin receptors on growth-cones by function blocking antibodies

Changing the environment: myelin

- · remove myelin by phagocytosis
 - activate resident microglia
 - transplant activated macrophages

Changing the environment: myelin

- remove myelin by phagocytosis
 - activate resident microglia
 - transplant activated macrophages
- neutralize inhibitory molecules on myelin
 - introduce anti-myelin antibodies
 - introduce Fc-NGR (decoy soluble receptor)

Changing the environment: myelin

- remove myelin by phagocytosis
 - activate resident microglia
 - transplant activated macrophages
- neutralize inhibitory molecules on myelin
 - introduce anti-myelin antibodies
 - introduce Fc-NGR (decoy soluble receptor)
- neutralize myelin receptors on growth cones
 - introduce anti-NGR antibodies
 - introduce NEP₁₋₄₀

Change the environment

- transplant Schwann cells
- transplant olfactory ensheathing glia cells (OEG)

Transplant cells which promote regeneration (Schwann & olfactory ensheathing glia)

Change the response of growth-cones to inhibitory factors/molecules from collapse to growth

- elevate cAMP levels pharmacologically or by neurotrophins
- inhibit RhoA/ROCK signaling

