

Adult CNS axons fail to regenerate – why?

- Adult CNS neurons cannot regenerate their severed axons
- Adult CNS neurons are able to regenerate their severed axons but are prevented from doing so by the CNS environment

- Growth-cones lead axonal growth regeneration
- Growth-cones "test" the environment by extending and retracting filopodia and lamelliodia and then decide if and where to grow
- Several growth-cones for a single axon, each can grow in a different direction – "local" decisions by the growth-cone
- The environment can send "grow", "stop", "retract" and "collapse" signals

Guidance / Navigation

- Attraction
 - fixed & diffusible molecules
- Repulsion
 - fixed & diffusible molecules

Attraction by fixed extracellular matrix adhesion molecules

- Collagen, laminin and fibronectin:
 - extracellular matrix molecules produced by non-neuronal cells
- Integrins (α/β) :
 - receptors in growth cone

Attraction by fixed cell surface molecules

cell surface receptors – by homophilic interactions

N-CAM – nerve cell adhesion molecule

Ng-CAM – nerve glia cell adhesion molecule, also known as Nr-CAM

Attraction by diffusible molecules

NGF – Nerve Growth Factor (a member of the neurotrophin family of neurotrophic factors)

NGF – produced by target cells that are innervated by NGF responsive nerve cells and by non-neuronal cells

NGF receptors – TrkA and p75^{NTR} in growth-cone

- TrkA high affinity and NGF specific
- p75^{NTR} low affinity and shared with other neurotrophins

Attraction by diffusible molecules Attraction by diffusible molecules - NGF (TrkA receptor in growth-cone) - Netrin-1 (DCC receptor in growth-cone)

Repulsion by fixed molecules

- Myelin of oligodendrocytes & Schwann cells
 - MAG [myelin associated glycoprotein] (PNS & CNS)
 - Nogo (CNS)
 - OMgp [oligodendrocyte-myelin glycoprotein] (CNS & PNS)
- Astrocytes
 - Chondroitin sulfate proteoglycans

$Nogo\; receptor - NgR - and\; its\; ligands \\ {\footnotesize (NgR1,\,NgR2\; and\; NgR3)}$

- Nogo, MAG and OMgp inhibit regeneration in-vitro
- NgR1 binds Nogo-66, MAG and OMgp; NgR2 binds MAG
- NgR1 forms a receptor complex with Lingo-1 and either p75^{NTR} or TROY; the latter two are members of TNF receptor family
- p75^{NTR} and TROY generate signaling transduction that inhibits regeneration by activating RhoA/ROCK
- Inhibition of RhoA overrides inhibition of regeneration

PirB inhibits regeneration after binding Nogo, MAG and OMgp

cAMP regulates myelin-induced inhibition

- High cAMP levels in embryonic DRG cells that normally regenerate in the presence of myelin
- Low cAMP levels in adult DRG cells that normally do not regenerate in the presence of myelin
- Elevation of cAMP levels overrides growth inhibition in adult axons
- Neurotrophins override inhibition by elevating cAMP levels

Axonal growth is regulated by the environment (neurons, non-neuronal cells & extracellular matrix)

- Molecules from the environment direct axonal growth by attraction and/or repulsion
- Molecules from the environment maintain axons in place
- Molecules from the environment induce growth-cone collapse and axon elimination