EGU General Assembly 2009 19 - 24 April 2009, Vienna, Austria

A 3D finite-element operational model for a part of the Baltic Sea

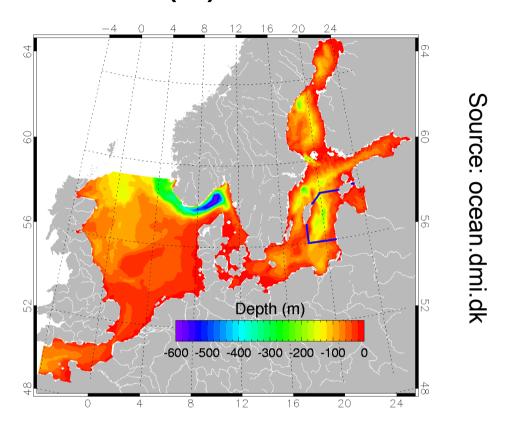
J. Sennikovs, M. Igonin*, and U. Bethers

Laboratory for Mathematical Modelling of Environmental and Technological Processes, Department of Physics and Mathematics, University of Latvia, Riga, Latvia

*E-mail: migonin@latnet.lv

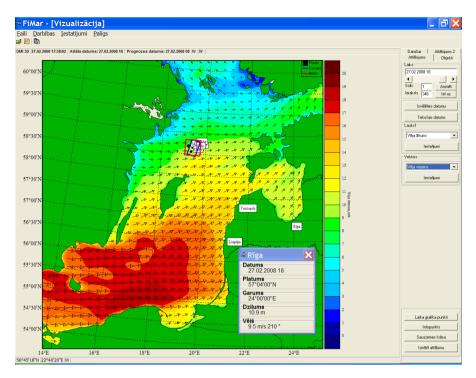
Brief introduction (1)

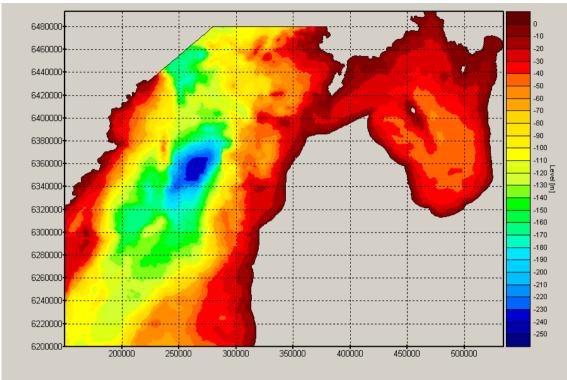
Where we are on the map...



The Danish Meteorological Institute (DMI) routinely runs a suite of models, including a version of BSHcmod (at a resolution of 11 km for the Baltic Sea) and DMI-Hirlam. Sea state forecast is given 60 hours ahead.

Brief introduction (2)





We provide sea-state forecasts and track drifting objects using both Baltic-wide DMI forecasts and output from our nested model FiMar for WLJ.

The bathymetry of the modelling region for the operational model for waters of Latvian jurisdiction (WLJ)

The model for WLJ

- Finite-element (continuous Galerkin) with horizontal resolution of (1–2) km
- Sigma-coordinate with 30 equidistant sigma levels
- Free-surface
- Hydrostatic
- Time-split
 no split-out external mode;
 1st order in time;
 with a time step of 450 s



The stabilized level equation (1)

- Both velocity \dot{U} and level s are discretized using the same linear P1-P1 continuous elements (unstaggered mesh, an analogue to the Arakawa A grid).
- $\frac{\partial s}{\partial t} = -\operatorname{div}(h\vec{U}_{\text{avg}})$, where h = s(x, y, t) b(x, y), and $\frac{\partial}{\partial t}\vec{U}_{\text{lev}} = -g\vec{\nabla}s$, where $\vec{U}_{\text{avg}} = \vec{U}_{\text{lev}} + \text{constant terms...}$
- Stabilization is needed because of the spurious modes: Le Roux *et al.*, Mon. Wea. Rev. (1998) 126, 1931.

$$\frac{s^{n+1}-s^n}{\Delta t} = -h^n (\operatorname{div} \vec{U}_{\operatorname{avg}})^{n+1} - \vec{U}_{\operatorname{avg}}^n \cdot \vec{\nabla} s^n = \\ -h^n (\operatorname{div} \vec{U}_{\operatorname{avg}})^n - \vec{U}_{\operatorname{avg}}^n \cdot \vec{\nabla} s^n + g h^n (\Delta t) \Delta s^{n+1} = \\ -\operatorname{div} (h \vec{U}_{\operatorname{avg}})^n + g h^n (\Delta t) \Delta s^{n+1} \quad \text{(to the 1st order)}$$

The stabilized level equation (2)

- Small-scale level fluctuations (including numerical modes) are suppressed. A quite similar approach was used by Ambrosi et al., J. Hydraul. Egng. 122 (1996), 735.
- The stabilization is consistent at small Δt ; cf. Hanert *et al.*, Ocean Model. 5 (2002), 17.
- The stabilization becomes relatively unimportant for level fluctuations of a larger scale Δx when $\Delta x \gg \sqrt{gh} \Delta t$

This is not too restrictive near the shore.

• Recent estimate of the effects of stabilization: Danilov et al., Ocean Dyn. 58 (2008) 365: "stabilization does not lead to noticeable effects if its strength is kept within certain limits".

Vertical velocity (1)

- → is diagnosed from the horizontal velocity field by virtue of continuity; one obtains the difference of vertical velocities at adjacent sigma-levels;
- → therefore relates the kinematic boundary conditions (BC) at bottom and surface one to another (the BC's are not independent: having satisfied any of them, the other is recovered automatically);
- → is therefore related to the level evolution.
- The exact correspondence should be observed *exactly* in the discrete formulation; see [White et al., Mon. Wea. Rev. 136 (2008), 420] on the details of the discrete-compatibility issue.

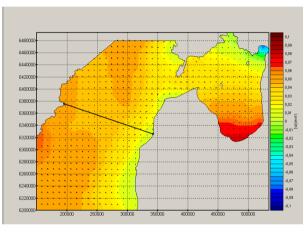
Vertical velocity (2)

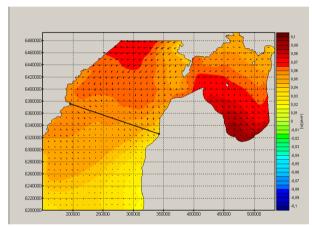
6:00 03.06.2008 The initial state 9:00 07.06.2008

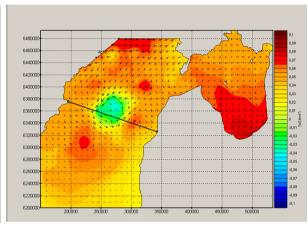
The end state

Compatible Other

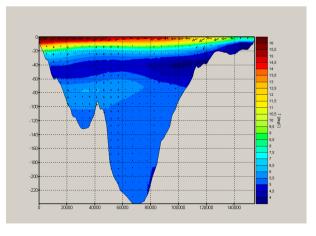
Level

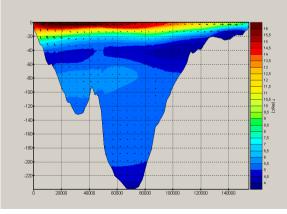


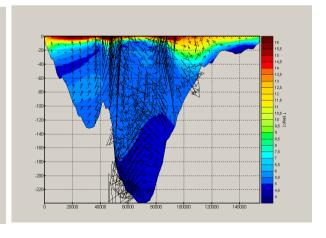




Temperature



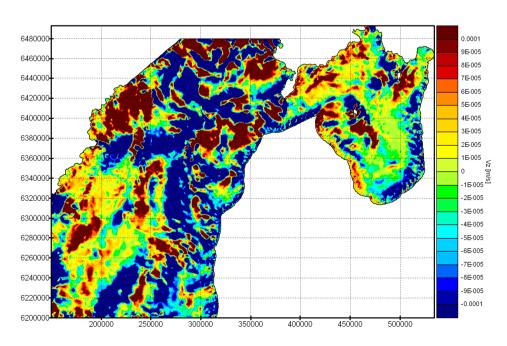




Vertical velocity (3)

- The incompatibility can be (and often is?) masked by adjusting velocities to match both BC's.
- The incompatibility can result in artificial currents along the (closed) isobaths in stratified sea similarly to the pressure-gradient problem.

Incompatible code, no buoyancy force

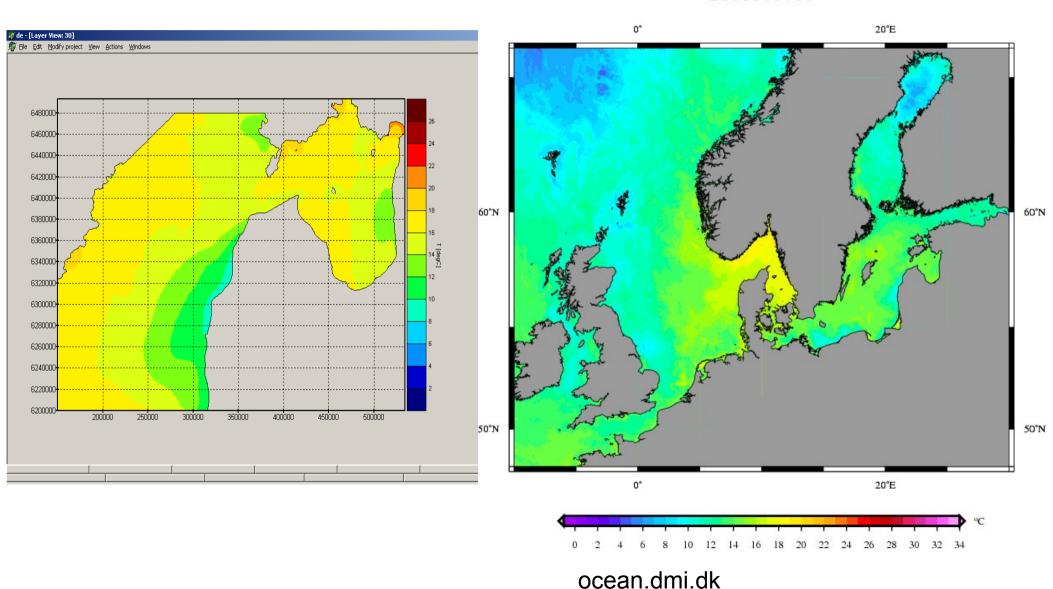


Advection

- A rigorous implementation of the classical streamlineupwind Petrov-Galerkin method (SUPG).
- The evaluation [Budgell et al., Ocean Dyn. 57 (2007) 339] of 24 advection schemes for ocean modelling on unstructured triangular grids revealed that SUPG, due to its robustness, performs quite well in situations where many recent advection schemes just fail.
- Vertical advection needs not to be stabilized.
- Of course, nothing is carried across the σ -surfaces at σ =0 or σ =1.
- Not yet discretely compatible with the vertical velocity equation [White et al., Mon. Wea. Rev. 136 (2008), 420].

SST: model vs. satellite obs

2008060700



The turbulence model (1)

We employ the Mellor-Yamada level 2.5 two-equation q^2 - q^2l model [Mellor & Yamada, 1982] ...

- in its quasi-equilibrium version [Galperin et al., 1988] with the length-scale clipping under stable stratification,
- with enhancements by [Kantha & Clayson, 1994], but with a constant background diffusion of $1 \cdot 10^{-5} \,\mathrm{m}^2/\mathrm{s}$,
- and, optionally, with the enhancements by Craig & Banner and others to take the effect of breaking waves into account (see [Mellor & Blumberg, 2004]).

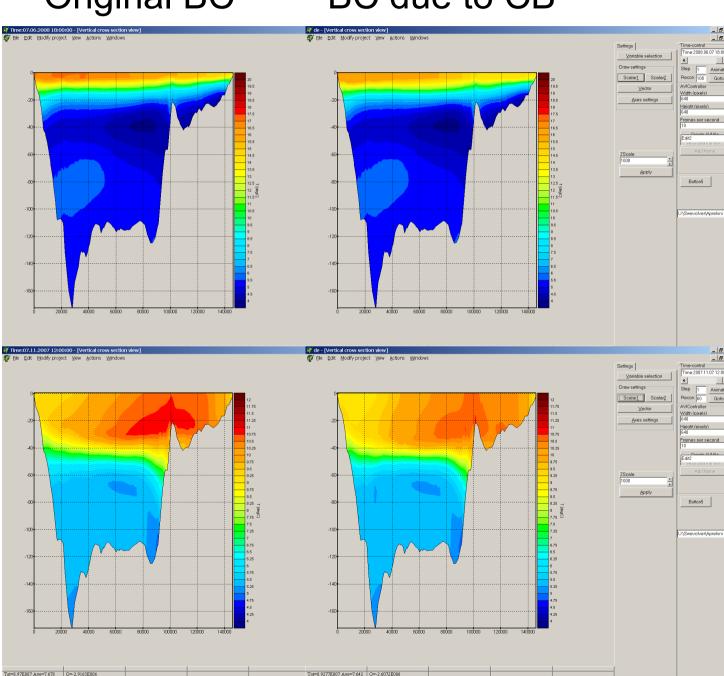
No convective adjustment.

The turbulence model (2)

Original BC BC due to CB

Jun, 108 hrs

Nov, 60 hrs



About to wrap up...

The FiMar operational model for a part of the Baltic Sea has been presented, its build-up and lines of necessary development have been discussed.

Thank, you!