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Preface

Means for optimally analyzing hyperspectral data has been the topic of a study of ours
since 19861. The point of departure for this study has been that of signal theory and
the signal processing principles that have grown primarily from the communication
sciences area over the last half century. The basic approach has been to seek a more
fundamental understanding of high dimensional signal spaces in the context of the
remote sensing problem, and then to use that knowledge to extend the methods of
conventional multispectral analysis to the hyperspectral domain in an optimal or near
optimal fashion. The purpose of this white paper is to outline what has been learned
so far in this effort.

The introduction of hyperspectral sensors which produce much more complex data
than those previously should provide much enhanced abilities to extract useful
information from the data stream they produce. However, it is also the case that this
more complex data requires more complex and sophisticated data analysis
procedures if their full potential is to be achieved. Much of what has been learned
about the necessary procedures is not particularly intuitive, and indeed, in many cases
is counter-intuitive. In what follows, we shall attempt not only to illuminate some of
these counter-intuitive aspects, but to make them clear and therefore acceptable.

1 work leading to the material presented here was funded in part by NASA Grants NAGW-925(1986-94), NAG5-3975
(1994-97), and ongoing Grant NAG5-3975.
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A System Overview
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Figure 1. A system overview.

It is important to see the data analysis process not in isolation, but as a part of the
whole process of the scene, sensing, and deriving the desired information. For this
reason, we begin with a broad system overview of multispectral remote sensing
system2. See Figure 1. The entire system consists of three distinctly different parts.
These are:

1. The scene.
2. The sensor system.
3. The processing system.

The scene refers to that part of the system which is in front of the sensor. It includes not
only the Earth’'s surface but also the sun for passive optical systems and the
atmosphere through which the energy passes both on the way to the Earth's surface
from the sun and on the return passage back to the sensor. The distinguishing
characteristics of this part of the system are that a) there is no human control over it,
either on the part of the system designer before construction or of the system operator
after, and b) it is by far the most complex part of the entire system. Thus, in devising an
optimal data analysis procedure, one must adequately account for this complexity,
since it cannot be otherwise changed or controlled. Indeed, the complexity of the
scene and the dynamic nature of it is so dominant, that, except for the extraction of
relatively simple information, supervision of classifiers must be redone for every new
data set collected.

The second part, the sensor system, functions to gather the main body (but not all) of
the data about the scene. Its design parameters must be selected so that the scene
and its complexity will be adequately represented by the data for purposes of
extracting the needed information.

2 p.H.Swain, S. M. Davis (Eds.), Remote Sensing: The Quantitative Approach, Chapt. 7, McGraw-Hill, 1978.
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All of the remainder of the system, occurring after the sensor system in the data stream,
we will refer to as the processing system.

Key System Parameters

In using an optimum systems approach, an important element is to have an adequate
model of the system that is to be optimized34. Such quantitative models for
multispectral remote sensing systems have been devised. While it would seem
inappropriate to include them in this overview discussion, it is useful to provide a bit
more detail on the overall system than above, this time focused more on the
information content of a data stream. For this purpose, we next list the key parameters
of such an information system. They are,

1. The spatial sampling scheme. How is the scene to be sampled spatially?

2. The spectral sampling scheme. How are the pixels to be sampled spectrally?

3. The signal-to-noise ratio, S/N. What is the relation of the information-bearing
aspects of the sensed data to the non-information-bearing aspects.

4. The ancillary information available. How will the classification process be
supervised?

5. The informational classes desired and their interrelationships. What information
is desired as output and how complex is it.

An important characteristic of this list is that all five members of this list are interrelated.
For example, the first three are obviously related through the principle of conservation
of energy. The amount of energy emanating from the surface per unit area and per unit
wavelength is finite. If one asks for very fine spatial resolution and at the same time a
very narrow spectral band, then there is very little energy per pixel to overcome the
noise generated in the sensor detector. The interrelationship of the last two in this list
with the first three is perhaps a little less obvious. This relationship will be made clear
shortly.

As a practical matter, how well an analysis process can work depends also on the

analyst, his/her expectations, initial assumptions, and point of view. We will comment
only briefly on these to demonstrate there impact on the analysis process.

Initial Assumptions About Multispectral Data Analysis
Some key questions to illuminate this issue are the following.
A. How does one visualize or view multispectral data?

B. What does the data really look like in N-dimensional feature space?
C. What is the explanation for the scatter of the data in N-dimensional space?

3 John Kerekes and David Landgrebe "Modeling, Simulation, and Analysis of Optical Remote Sensing Systems;,”
(PhD Thesis) Technical Report TR-EE 89-49, Purdue School of Electrical Engineering, August 1989.

4 John P. Kerekes and David A. Landgrebe, "Simulation of Optical Remote Sensing Systems" IEEE
Transactions on Geoscience and Remote Sensing, Vol. 27, No. 6, pp. 762-771, November 1989.
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D. What relationship between the data complexity and the type of analysis
algorithm is most appropriate?

We will briefly examine each of these.

The matter of how the variations are represented mathematically and conceptually is
an important first step in defining how the analysis process should proceed. There
have been three principal ways in which multispectral data is represented
guantitatively and visualized. See Figure 2 below.

* Inimage form, i. e., pixels displayed in geometric relationship to one another,
» As spectra, i. e., variations within pixels as a function of wavelength,
* In feature space, i. e., pixels displayed as points in an N-dimensional space.

We will refer to these three as image space, spectral space and feature space, and
next summarize some of the ramifications of these three perspectives.

___ Weqetation
——- Soil

® ‘egetation
- - - Water

® Soil

Fesponse at AQ

® ‘Water

Fesponse at l1

Image Space Spectral Space Feature Space

Figure 2. The forms for representing multispectral data.

Image Space. Though the image form is perhaps the first form one thinks of when first
considering remote sensing as a source of information, its principal value has been
somewhat ancillary to the central question of deriving thematic information from the
data. Data in image form serve as the human/data interface in that image space helps
the user to make the connection between individual pixel areas and the surface cover
class they represent. It also provides for supporting area mensuration activities usually
associated with use of remote sensing techniques. Thus, it becomes very important as
to how accurately the true geometry of the scene is portrayed in the data. However, it is
the latter two of the three means for representing data that have been the point of
departure for most multispectral data analysis techniques.

Spectral Space. Many analysis algorithms which appear in the literature begin with a
representation of a response function as a function of wavelength. Early in the work,
the term "spectral matching” was often used, implying that the approach was to
compare an unknown spectrum with a series of pre-labeled spectra to determine a
match, and thereby to identify the unknown. This line of thinking has led, at various
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times, to attempts to construct a "signature bank," a dictionary of candidate spectra
whose identity had been pre-established.

A second example of the use of spectral space is the "imaging spectrometer”" concept,
whereby identifiable features within a spectral response function, such as absorption
bands due to resonances at the molecular level, can be used to identify a material
associated with a given spectrum. This approach, arising from the concepts of
chemical spectroscopy, which has long been used in the laboratory for molecular
identification, is perhaps one of the most fundamentally cause/effect based
approaches to multispectral analysis.

Feature Space. The third basis for data representation also begins with a spectral
focus, i.e., that energy or reflectance vs. wavelength contains the desired information,
but it is less related to pictures or graphs. It began by noting that the function of the
sensor system inherently samples the continuous function of emitted and reflected
energy vs. wavelength and converts it to a set of measurements associated with a
pixel which constitute a vector, i.e., a point in an N-dimensional vector space. This
conversion of the information from a continuous function of wavelength to a discrete
point in a vector space is not only inherent in the operation of a multispectral sensor, it
is very convenient if the data are to be analyzed by a machine-implemented algorithm.
It, too, is quite fundamentally based, being one of the most basic concepts of signal
theory. Further, it is a convenient form if a more general form of feature extraction is to
precede the analysis step, itself. As will be seen below, of the three data
representations, the feature space provides the most powerful one from the standpoint
of information extraction.

Next, consider how multispectral data typically appears in feature space. We will use a
particularly simple situation to illustrate this. The graph below shows a scatter plot of
two bands of Landsat Thematic Mapper data for an agricultural area. The area
involved contains a small number of agricultural fields containing different species of
agricultural crops. One sees from this graph that, even though agricultural crop
responses are separable by appropriate means, this is not apparent from the scatter
plot. The different crop responses do not manifest themselves as relatively distinct
clusters. Rather, the data distributes itself more or less in a continuum over this space.
This is typical of multispectral data, and indicates that the characteristics that allow
discrimination between classes are more subtle than such straightforward examination
would permit.
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Figure 3. Scatter plot of TM Channel 4 (0.76-0.90 pm) vs. Channel 3 (0.63-0.69 pm)
for an agricultural area containing a small number of crop types.

It also makes clear why entirely unsupervised classification schemes are not adequate
for multispectral discrimination purposes. Without guidance from the user as to what
classes are desired to be identified, an unsupervised scheme will partition the space
in an unpredictable way. Further, we note that what appears to be random scatter is
not "noise,” meaning harmful or even useless variability. This scatter is indeed
information-bearing, if appropriate means are used to model it.

Another key characteristic which is fundamental to the engineering task of optimally
designing a data analysis system is the basis for the mathematical representation of
the data. A number of approaches have been considered for multispectral data over
the years. The following are some examples.

* Deterministic Approaches

» Stochastic Models

* Fuzzy Set Theory

» Dempster-Shafer Theory of Evidence

* Robust Methods, Theory of Capacities, Interval Valued Probabilities
» Chaos Theory and Fractal Geometry

* Al Techniques, Neural Networks

All of these approaches have been examined to varying degrees, and each has
certain facets which are attractive. Deterministic approaches, for example, tend to be
the most intuitive. This is important in a multidisciplinary field such as remote sensing,
where different workers have different backgrounds. However, deterministic methods
tend not to be as powerful, and may have other disadvantages such as being more
sensitive to noise than is necessary.
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Having investigated each, we have based our work on the stochastic or random
process approach®.6. This approach has the advantage of rigor and power, and, due to
its maturity, has a large stable of tools that prove of pivotal usefulness in the work.

On the Significance of Second order Statistics

Use of a stochastic process approach for modeling the spectral response of a ground
scene requires determining the necessary parameters for each given data set. Using a
parametric model for such modeling thus reduces the problem to that of accurately
determining the mean vector and the covariance matrix in N-dimensional feature
space for each class of ground cover to be identified. Because of the central
importance of this point, we shall illustrate this fact with several brief illustrative
arguments.

1. First, as previously indicated, one of the advantages of the stochastic process
approach is the wealth of mathematical tools available using this method. For
example, it is frequently the case that one would like to calculate the degree of
separability of two spectral classes in order to project the accuracy it is possible to
achieve in discriminating between them. There are available in the literature a number
of "statistical distance" measures for this purpose. They measure the statistical
distance between two distributions of points in N-dimensional space. One with
particularly good characteristics for this purpose is the Bhattacharyya Distance. In
parametric form it is expressed as follows.

_ 1| %[31+82] |
Fua-p2] +5 n— —e (1)
VIS1l Sz

where ; is the mean vector for class i and Sjis the corresponding class covariance
matrix. This distance measure bears a nearly linear, nearly one-to-one relationship
with classification accuracy. Examining this equation, one sees that the first term on
the right indicates the part of the net class separability due to the difference in mean
values of the two classes, while the second term indicates the portion of the total
separability due to the class covariances. This makes clear from a quantitative point of
view what the relationship is between first order variations (the first term on the right)
and second order variations (the second term on the right) is. This illustrates, for
example, that two classes can have the same mean value, in which case the first term
is zero, and still be quite separable. Note that methods which are deterministically
based only make use of separability measured by the first term.

1 S1+So
B=g MKl 5

2. A second way of seeing the importance of the second order variations in a more
graphical fashion is via the following example spectral data’. Shown in Figure 4 is a
plot in spectral space of data from two classes of vegetation. These data were
measured in the laboratory under well controlled circumstances so that the data

5 Cooper, G. R. & C. D. McGillem, Probabilistic Methods of Signal and System Analysis, Second Edition,
Holt, Rinehart & Winston, 1986, Chapter 7.

6 papoulis, A., Probability, Random Variables, and Stochastic Processes, Second Edition, McGraw-Hill 1984.

7 P.H.Swain, S. M. Davis (Eds.), Remote Sensing: The Quantitative Approach, p. 14 ff, McGraw-Hill, 1978.
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spread at each wavelength is not noise, but is due to the natural variability of
reflectance present from the leaves of such vegetation.
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Figure 4. Spectral responses for a typical pair of classes, showing the interval at each
wavelength into which they fall.

It would appear from this spectral space view that the two classes are separable only
in the region around 1.7 um. However, even in the region around 0.7 um where there
is maximum overlap of the two classes, they are separable classes if a method based
upon both the first and the second order effects is utilized.

To illuminate this further, in Figure 5 is shown the actual data values plotted in spectral
space for bands at 0.67 and 0.69 um. It is clear from this presentation of the data that
the reflectances do heavily overlap in these two bands.

Scatter of 2-Class Data

24

22 A

20 A

%
EOONEDIIOO0 o

18 4 Class 1 - 0.67 urr
Class 2 - 0.67 pmr
Class 1 - 0.69 un

Class 2 - 0.69 um

16 1

14 1
12 1 I
10 T —TrTTrTTT

065 066 067 068 069 070 071 0.72

o O e ®m

Reflectance -

Wavelength - pm |

Figure 5. Data points for two vegetation classes in two spectral bands.

However, by plotting the same data in feature space as shown in Figure 6. it can be
seen that the data are highly separable even via a simple linear classifier. Analyzing
this situation as to what allows this separability, one sees first that the data for both
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classes, being distributed in a 45° direction, are highly correlated in these two bands.
This correlation plus only a small difference in the class mean values makes the two
classes separable. Note that the correlation in this case is seen as providing
information about the shape of the class distributions rather than seeing it merely as
indicating redundancy. It is this class shape information, as indicated by the
correlation, a second order statistic, taken together with the class mean values, a first
order statistic, that determines the degree of separability.

Samples from Two Classes
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Figure 6. Data points for two vegetation classes in two dimensional feature space.

At this point we introduce another parameter in the analysis process, that of the degree
of complexity of the analysis algorithm to be used. Extending the idea just introduced,
it is common for spectral data of scenes to have a substantial degree of correlation
between bands, and, as just seen, rather than seeing this as indicating useless
redundancy, it is to be viewed as providing shape information about the class
distribution. The hypothetical example of Figure 7 illustrates how this relates to
classifier complexity8. Assume the two oval shaped areas of the figure indicate areas
of concentration for two classes. If one were to use a minimum distance to means
classifier, which uses only class mean information, the linear decision boundary
marked would be the location and orientation assumed by the classifier. A slightly
more complex Fisher Linear Discriminant classifier (see below) provides a slightly

8  Chulhee Lee and David A. Landgrebe, "Analyzing High Dimensional Multispectral Data," |EEE Transactions on
Geoscience and Remote Sensing, 31, No. 4, pp. 792-800, July, 1993.
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shifted decision boundary as shown. The shaded areas would represent the pixels
that would be classified incorrectly in this case.

If, on the other hand, one utilized a standard maximum likelihood Gaussian classifier,
which utilizes both first and second order statistics, the curved decision boundary
marked would be the result with much improved error performance. We shall provide
greater detail with regard to the matter of algorithm complexity shortly.

Decision boundary defined by the
minimum distance classifier

<— Decision boundary defined by

class Wy Fisher's Linear Discriminant

Decision boundary defined by
Gaussian ML classifier

Figure 7. Example sources of classification error for the minimum distance classifier
and maximum likelihood Gaussian classifiers.

3. The above example illustrates a concept in two dimensions, but what about higher
dimensional data? This becomes more difficult to display intuitively, because one
cannot draw in high dimensions. However, consider the following®.

9 David Landgrebe, "Multispectral Data Analysis: A Signal Theory Perspective," 43 pages, ©1994 by David
Landgrebe, Downloadable from http://dynamo.ecn.purdue.edu/~biehl/M ulti Spec/documentation.html
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Figure 8. A typical spectral reflectance curve for soil. Figure 9. Spectral response
showing second order variations.

Shown in Figure 8 is a single spectral reflectance curve for a certain soil type in
spectral space. Except for the two absorption bands, it appears rather featureless, and
indeed, no second order effects can be seen from a single deterministic curve. Shown
in Figure 9 is the result in spectral space of making five measurements on samples of
this soil type. Some variation is now apparent, although its structure cannot be
discerned in this spectral space presentation. However, Figure 10 shows the result of
plotting the data of Figure 9 after have subtracted out the mean of the five samples,
thus separating the first order statistic, the mean value, out so that structure in the
second order variation can be more clearly observed. It is seen that the samples have
a high degree of correlation in the region up to about 0.9 um, in that a sample that is
above the mean at 0.5 pym tends to remain above the mean up to 0.9 um, while one
that is below tends to remain below. Above 0.9 um this structure changes significantly.
If this structure should be diagnostic of this soil type in that no other material in the
same scene would have this same characteristic, then it would indicate a capability to
discriminate this soil type in that scene.
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Figure 10. Second order variations about the mean for the samples of Figure 9

Though it is not possible to show a graph in the needed high dimensional feature
space, it is possible to determine quantitatively its separability from other classes, for
example, by using Bhattacharyya Distance, equation (1) above. Further, an additional
visualization tool for high dimensional data has been devised and is referred to as
"statistics image" 10

10 Chulhee Lee and David A. Landgrebe, "Analyzing High Dimensional Multispectral Data," | EEE Transactions on
Geoscience and Remote Sensing, 31, No. 4, pp. 792-800, July, 1993.
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4. An example classification from a recent paper will further illuminate the matterll. For
this experiment, a multispectral data set with a large number of spectral bands was
analyzed using standard pattern recognition techniques. The data were classified
using first a single spectral feature, then two, and continuing on with greater and
greater numbers of features. Three different classification schemes were used, (a) a
standard maximum likelihood Gaussian scheme, in which both the means and the
covariance matrices, i.e., both first and second order variations, were used, (b) the
same except with the mean values of all classes adjusted to be the same, so that the
classes differed only in their covariances, and (c) using a minimum distance to means
scheme such that mean differences are used, but covariances are ignored. It is seen

from the results shown in Figure 11 below that case (a) produced clearly the best
result, as would be expected.
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Figure. 11. Performance comparison of the Gaussian ML classifier, the Gaussian
ML classifier with zero mean data, and the minimum distance classifier.

In comparing the latter two, though, it is seen that, at first in low dimensional space, the
classifier using mean differences performed best. However, as the number of features
was increased, this performance soon saturated, and improved no further. On the
other hand, while the classifier of case (b) which used only second order effects, was
at first the poorest, it soon outperformed the one of case (c) and its performance
continued to improve as greater and greater numbers of features were used. Thus it is
seen that second order effects, in this case represented by the class covariances, are
not particularly significant at low dimensionality, but they become so as the number of
features grows, to the point that they become much more significant than the mean
differences between classes at any dimensionality. It is, of course, also possible to

11 Chulhee Lee and David A. Landgrebe, "Analyzing High Dimensional Multispectral Data," | EEE Transactions on
Geoscience and Remote Sensing, 31, No. 4, pp. 792-800, July, 1993.
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show other example classifications where the mean vector dominates over the
covariancel?,

These four examples show the added value of second order variations over first order
ones alone, and the usefulness of an N-dimensional feature space view point. Even
though one cannot draw in more than three dimensions, and thus "visualize" what is
taking place, mathematical tools such as Bhattacharyya Distance are available to
guantify what is the case in such spaces.

However, the potential advantage of second order effects can be easily lost if
increased precision in determining the class distributions is not achieved. This is what
is dealt with in the following section.

Ancillary Information and Classifier Supervision.

From the vantage point of the above, it is clear that analysis methods which utilize both
firstand second order statistics can provide superior performance compared to those
which utilize only first order effects. However, in many cases, this is not what is
observed in practice. The explanation for this becomes apparent from the following
additional aspects of signal theory.

With regard to the ability to discriminate between a pair of classes, an illuminating
theoretical result appeared in the literature some years agol3. In this paper, the result
shown in Figure 12 was derived. The ordinate for the curves in this figure is the mean
recognition accuracy for the two class case, averaged over the ensemble of classifiers.
The abscissa is measurement complexity, which in the case of multispectral data, is
directly related to the number of bands and the number of gray values per bands. The
parameter for the different curves of the graph is the prior probability of one of the two
classes. Looking specifically at the case for the prior probability of one half, one sees
that the curve increases with measurement complexity, rapidly at first, but then more
slowly. However the curve does not have a maximum, implying that it continues to
increase.

12 Jimenez, Luis, and David Landgrebe, “Supervised Classification in High Dimensional Space: Geometrical,
Statistical, and Asymptotical Properties of Multivariate Data,” |IEEE Transactions on System, Man, and
Cybernetics To appear January, 1998. Downloadable from

http://dynamo.ecn.purdue.edu/~biehl /M ulti Spec/documentation.html

13 G. F. Hughes, "On The Mean Accuracy Of Statistical Pattern Recognizers," IEEE Trans. Infor. Theory, Vol.
IT-14, No. 1, pp. 55-63, 1968
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Figure 12. Mean Recognition Accuracy vs. Measurement
Complexity for the infinite training case.

The graph of Figure 12 is for the case where there were an infinite number of training
samples available, implying completely precise knowledge of the class distributions.
Dr. Hughes also derived the result for finite training data. The result is shown in Figure
13 for the case of equally likely classes. Here the parameter for the various curves is
m, the number of training samples. It is seen in this case that each curve (except for the

m ® ¥ case) does have a maximum, indicating that there is a best measurement
complexity. It depends upon how many training samples one has, and thus how
precise is the estimate of the class distributions.

It is important to note that the maximum of the curves moves upward and to the right as
m increases, indicating that one can expect, on the average, to see improved
performance as one increases the measurement complexity, but to achieve it, one will
need increased precision in estimating the class distributions.
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Figure 13. Mean Recognition Accuracy vs. Measurement
Complexity for the finite training case.

This result, that shows that more spectral bands is not always better, and indeed, that it
in fact becomes worse, was rather controversial when it was first introduced. The origin
of this phenomenon can be made more understandable by the following simple
drawings illustrating the basic concepts involved.
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If one were to sketch the expected relationship between class separability and
dimensionality, it should look something like Figure 14 (A), i.e. similar to Figure 12.
Further, if one were to sketch the conceptual relationship between the accuracy of
statistics estimation and dimensionality, it should be as in Figure 14 (B). That is, for a
fixed number of training samples, as one increases the dimensionality, one would
expect the accuracy of estimation to decline. For example, 100 samples may be
enough to obtain a reasonably accurate estimate of the elements of a 5 dimensional
mean vector and covariance matrix, but it would not be enough for 500 dimensional

one. Further, if one increases the number of training samples, N1® Ny, one would
expect the curve to shift to the right.

Separability —»
Accuracy of g
Statistics Estimation

Dimensionality —= Dimensionality —

(A) (B)

Accuracy —»

Classification

Dimensionality —m=
(©)
Figure 14. Effects which result in the Hughes Phenomenon.

Taken together, these two factors would produce an overall relationship as shown in
Figure 14 (C), a relationship not unlike that of Figure 13.

On Classifier Complexity

The Hughes result above again reflects not only on the need for precise class
distribution determination, but indirectly to a relationship between dimensionality and
the complexity of the classifier algorithm to be used. There is now a large array of
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different types of classifier algorithms that appear in the literature. Often it is difficult to
discern from their description the extent to which they make use of the various
information-bearing attributes of the multispectral or hyperspectral data. Thus it seems
useful to have a generic list of classifier algorithms given in an ascending hierarchical
order according to the portion of the spectral attributes that they utilize. Then, as new
or specialized algorithms are encountered, they can be compared with the hierarchy to
better understand what portion of the possible signal attributes they utilize. In doing so,
we shall assume that the data are in feature space vector form, and will not take into
account attributes other than spectral ones.

A standard way of describing a classification rule is to use the discriminant function.
For the m-class case, where the pixel to be classified is specified as X, a vector in
feature space, assume we have m functions of X, {g4(X), g>(X), . . . gn(X)} such that
0i(X) is larger than all others whenever X is from class i. These functions g;(X) are
referred to as discriminant functions. Then the classification rule becomes

Let w; denote the ith class. Then decide X is in class w; if and only if
gi(X)2 g(X) forallj=1,2,...m.

For those classifiers in the list which specifically involve the parameter estimators, we
shall specify them in terms of the appropriate discriminate function.

1. Ad hoc and deterministic algorithms.

The nature of variations in spectral response which are usable for discrimination
purposes is quite varied. They may extend all the way from the general shape of the
response function spread across many bands to very localized variations in one or a
small number of narrow spectral intervals. Many algorithms have appeared in the
literature which are designed to take advantage of specific characteristics on an ad
hoc basis. Example algorithms of this type extend from simple parallelepiped
algorithms or spectral matching schemes based upon least squares difference
between an unknown pixel response that has been adjusted to reflectance and a
known spectral response from a field spectral data base, on to an imaging
spectroscopy scheme based upon one or more known molecular absorption features.

Such algorithms are sometimes motivated by a desire to take advantage of
perceivable cause/effect relationships. These algorithms are usually of a nature that
the class is defined by a single spectral curve, i.e., a single point in feature space.
When this is the case, by that fact, they cannot utilize second order class information.

In the following parametric methods, X is the observed (vector-valued) pixel, pjis the

mean vector for class i and S; is the corresponding class covariance matrix. It is
assumed there are m classes, and, for simplicity for present purposes, the classes are
assumed equally likely. In this case, given the additional assumptions specific to each
case, these schemes are Bayes optimal in the sense that they will provide minimum
error for the class statistics given. They are suboptimal only to the extent that the
various assumptions are not, in fact, met, and that the finite training sets do not
completely precisely determine the class statistics.
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2. Minimum Distance to Means

gi(X) = (X = u)T(X —) (2)
choose class i if gi(X) £ gi(X) forallj=1,2,...m.

In this case, pixels are assigned to whichever class has the smallest Euclidean
distance to its mean. The classes are, by default, assumed to have common
covariances which are equal to the identity matrix. This is equivalent to assuming the
classes all have unit variance in all features and the features are all uncorrlated to one
another. The decision boundary in feature space will be linear and located equidistant
between the class means and orthogonal to a line joining their means. See Figure 7.

3. Fisher's Linear Discriminant
gi(X) = (X — ) TS™HX —pj) 3)
choose class i if gi(X) £ gi(X) forallj=1,2,...m.

In this case, the classes are assumed to have a common covariance specified by S.
This is equivalent to assuming the classes do not have the same variance in all
features, the features are not necessarily uncorrlated, but both classes have the same
variance and correlation structure. In this case the decision boundary in feature space

will be linear, but its location between the class mean values will depend upon S.

4. Quadratic (Gaussian) Classifier
gi(X) = - (1/2)In[S;| - (1/2)(X-u)TSi (X)) (4)

choose class i if gi(X) ® gi(X) forallj=1,2,...m.

In this case, the classes are not assumed to have the same covariance, each being

specified by S;. The decision boundary in feature space will be a second order
hypercurve (or several segments of second order hypercurves if more than one
subclass per class is assumed), and its form and location between the class mean

values will depend upon the Sj's.

5. Nonparametric Methods
&
sy = L X=Xji
6i(X) = -alK( ) )
J:

choose class i if gi(X) 2 gi(X) forallj=1,2,...m.

Nonparametric classifiers take on many forms, and their key attractive feature is their
generality. As represented above, K() is a kernel function which can take on many
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forms. The entire discriminate function has N; terms, each of which may contain one or
more arbitrarily selected parameters. Thus, the characteristic which gives a
nonparametric scheme its generality is this often large number of features. However,
every detailed aspect of the class density must be determined by this process, and this
can quickly get out of hand. For example, while Fukunagal4 proves that in a given
circumstance, the required number of training samples is linearly related to the
dimensionality for a linear classifier and to the square of the dimensionality for a
guadratic classifier, in a nonparametric case, it has been estimated that as the number
of dimensions increases, the sample size needs to increase exponentially in order to
have an effective estimate of multivariate densities1®.16, It is for this reason that
nonparametric schemes, including the currently popular neural network methods, are
less attractive for the remote sensing circumstance, than they might at first appear. In
addition, for neural network methods, which use iterative training, the large amount of
computation required in the training process detract from their practical value, since
training must be redone for every data set. As a result, we will focus on parametric
methods hereafter.

We again note that methods which use multiple samples for training have a substantial
advantage over deterministic methods that utilize only a single spectrum to define a
class. The latter tend to require very high signal-to-noise ratios, where as those based
upon multiple sample training sets tend to be more immune to the effects of noise.

The means for quantitatively describing a class distribution from a finite number of
training samples commonly comes down to estimating the elements of the class mean
vector and covariance matrix, as has been seen. Sound practice dictates that the
number of training samples must be large compared to the number of elements in
these matrices. When the number of training samples is limited, as it nearly always is
in remote sensing, and the dimensionality of the data becomes large, the needed
relationship between the training set size and the number of matrix elements that must
be estimated quickly becomes strained even in the parametric case. This is especially
true with regard to the covariance matrix, whose element population grows very
rapidly with dimensionality. For example, the following table illustrates the number of
elements in the various covariance matrix forms which must be estimated for the case
of 5 classes and several different numbers of features, p.

14 Fukunaga, K. "Introduction to Statistical Pattern Recognition.” San Diego, California, Academic Press, Inc.,
1990.

15 scott, D. W. "Multivariate Density Estimation.” John Wiley & Sons, pp. 208-212, 1992.
16 Hwang, J, Lay, S., Lippman, A., "Nonparametric Multivariate Density Estimation: A Comparative Study.”,
|EEE Transactions on Signal Processing, Vol. 42, No. 10, 1994, pp. 2795-2810.
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No. of Class Covar. Diagonal Class Common Diagonal
Features Common Covar. Covar. Common Covar.
P 5{p2 — [(p-1)> +(p-1)]/2} 5p {p? — [(p-1)* +(p-1)]/2} P
5 75 25 15 5
10 275 50 55 10
20 1050 100 210 20
50 6375 250 1275 50
200 100,500 1000 20,100 200

Table 1. Number of elements in various covariance matrix forms
to be estimated. A case for 5 classes is assumed.

The relationship between training set size and dimensionality has been examined
quantitativelyl’, and it has been found that, as the dimensionality goes up (or the
number of samples available goes down), it may be advantageous to reduce the
number of elements that must be estimated by reducing the algorithm complexity, i.e.,
by deciding between using individual class covariance matrices, a common
covariance matrix, and a diagonal common covariance matrix. This allows for a more
precise estimation of the parameters needed. The tradeoff of gaining precision by
reducing complexity when the training sets are limited, can result in improved
accuracy of classification. It has been codified into a scheme referred to as LOOC
(Leave One Out Covariance) estimation which is relatively transparent to the user. The

scheme is as follows. The quantity to be estimated is Cj(aj), where,

i(l-ai)diag(Si)+aiSi O£a|£1

ci(ai):l(z a;)s, +(a; - 1S 1<a;£2 (6)

|’ -
{(3-a;)s+(a; - 2)diag(S) 2<a; £3
S; is the sample covariance matrix, estimated for class i from the training samples. The

L
common covariance is defined by the average sample covariance matrix Sz—ﬁé S
i=1
where a total of L classes are assumed. The variable a; is a mixing parameter that
determines which estimate or mixture of estimates is selected. If a; =0, the diagonal
sample covariance is used. If a; =1, the estimator returns the sample covariance
estimate. If a; =2, the common covariance is selected, and if a; =3 the diagonal
common covariance results. Other values of a; lead to mixtures of two estimates.

Projected accuracy is estimated a priori by the well-known leave-one-out method
using the available training samples.

Another way of looking at the analysis process is that it compares an unknown sample
to known data or information. Deterministic methods, for example, have this

17 Hoffbeck, Joseph P. and David A. Landgrebe, “Covariance Matrix Estimation and Classification with Limited
Training Data,” |EEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, no. 7, pp. 763-767,
July 1996.
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comparison taking place at the pixel to pixel or spectrum to spectrum level. The next
step up in the effective utilization of reference data is a scheme which compares a
pixel to a class distribution. This is the function of procedures 2 through 5 above, and
is the most common form of pixel classifiers. One can take the process one step further
by using a scheme which results in distribution to distribution comparison. This
scheme, sometimes called a sample classifier, requires that one have as the unknown
a set of pixels which are all assumed to be members of the same class. Classifiers
which utilize spatial as well as spectral information can be arranged to operate in this
way. The ECHO classifier'8,19 is an example of this case. It proceeds by first
segmenting the scene on a multivariant basis into statistically homogeneous objects
using spatial information, then classifying the objects using a distribution to distribution
comparison. Using the same class descriptions as a pixel classifier, it nearly always
achieves higher accuracy and usually does so with less computation time.

In addition to these methods, additional aspects of classifier design have been
investigated, including more complex decision logic20.21 and ways to speed the
classification computation22,23, With the rapid increase of computational processor
speeds in recent years, processing speed has turned out not to be the pressing
problem it once was, and until the more pressing problems of the analysis process are
solved, complex decision logic potentials can also reasonably be postponed. Thus
these aspects are being pursued at a lower priority.

One additional aspect of classifier design which appears to have significant utility has
also been investigated. It has been shown24.25 that by adding unlabeled samples to
the classifier design process, better estimates for the discriminant functions can be
obtained. This has resulted in an algorithm referred to as "statistics enhancement.” The
algorithm iterates between the labeled (training) samples and unlabeled (all other)
samples from the data set to modify the class statistics so that a better fit to the overall
data distribution is obtained. In this way, the ability of the classifier to generalize
beyond its training samples is improved. In mathematical terms, what is desired is to

18 R.L.Kettigand D. A. Landgrebe, "Computer Classification of Remotely Sensed Multispectral Image Data by
Extraction and Classification of Homogeneous Objects," |EEE Transactions on GeoscienceElectronics, Volume
GE-14, No. 1, pp. 19-26, January 1976.

19 D. A. Landgrebe, "The Development of a Spectral-Spatial Classifier for Earth Observational Data," Pattern
Recognition, Vol. 12, No. 3, pp. 165-175,1980.

20 B.Kimand D. Landgrebe, "Hierarchical Classifier Designin High Dimensional Numerous Class Cases," |EEE
Transactions on Geoscience and Remote Sensing, Vol. 29, No. 4, July 1991, pp. 518-528.

21 5 Rasoul Safavian and David Landgrebe, "A Survey of Decision Tree Classifier Methodology,” |EEE
Transactions on Systems, Man, and Cybernetics, Vol. 21, No. 3, May/June 1991, pp. 660-674.

22 Chulhee Lee and David A. Landgrebe, "Fast Likelihood Classification,” |EEE Transactions on Geoscience and
Remote Sensing, Vol. 29, No. 4, July 1991, pp. 509-517.

23 Byeungwoo Jeon and David A. Landgrebe, “ Fast Parzen Density Estimation Using Clustering-Based Branch and
Bound,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 9, pp. 950-954,
September 1994.

24 Behzad M. Shahshahani and David A. Landgrebe, “The Effect of Unlabeled Samples in Reducing the Small
Sample Size Problem and Mitigating the Hughes Phenomenon,” IEEE Transactions on Geoscience and Remote
Sensing, Vol. 32, No. 5, pp. 1087-1095, September 1994.

25 Behzad M. Shahshahani, “Classification of Multi-Spectral Data By Joint Supervised-Unsupervised Learning,”
PhD Thesis and School of Electrical Engineering Technical Report TR-EE-94-1, January, 1994.
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have the density function of the entire data set modeled as a mixture of class densities,
ie.,

p(xja) = & aipi(x|fi) (7)
i=1

where x is the measured feature (vector) value, p is the probability density function
describing the entire data set to be analyzed, q symbolically represents the
parameters of this probability density function, pjis the density function of class i
desired by the user with its parameters being represented by fj, aj is the weighting
coefficient or probability of class i, and m is the number of classes. Basically, the
training classes define the pj's, while the data to be classified defines p(x|q). What is
needed then is to bring the two sides of the equation to equality. An iterative scheme
adjusting the fi's and determining aj's is used to accomplish this. The process thus

improves the generalization capabilities of the classifier, i.e., improves the accuracy
performance on samples in the scene other than the training samples.

Geometrical, Statistical and Asymptotical Properties of High Dimensional
Spaces

The previous sections of this paper are primarily in the context of conventional
multispectral data. In this section26, we will describe some of the unique or unusual
aspects of hyperspectral data, in order to illuminate some of the circumstances which
must be accounted for in dealing with hyperspectral data in an optimal fashion.

For a high dimensional space, as dimensionality increases:
A. The volume of a hypercube concentrates in the corners?’

It has been shown?28 that the volume of a hypersphere of radius r and dimension d is

given by the equation:
d
2

d
V(r) = volume of a hypersphere = ap - (8)
d G@O
€20
and that the volume of a hypercube in [-r, r]OI is given by the equation:
V (r) = volume of a hypercube = (2r)* (9)

The fraction of the volume of a hypercube contained in a hypersphere inscribed in it is:

26 Material in this section is taken from Luis O. Jimenez, “High Dimensional Feature Reduction Via Projection
Pursuit,” PhD Thesis and School of Electrical & Computer Engineering Technical Report TR-ECE 96-5, April
1996. See also reference [10].

27 scott, D. W. "Multivariate Density Estimation.” New Y ork: John Wiley & Sons, 1992.

28 Kendall, M. G., A Course in the Geometry of n-dimensions, Hafner Publishing Co., 1961.
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V() _  p?

di — Vc(r) - d2d-1e(%)

where d is the number of dimensions. We see in Figure 15 how fg1 decreases as the
dimensionality increases.

1
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dimension d

Figure 15. Fractional volume of a hypersphere inscribed in a hypercube as a
function of dimensionality.

f (10)

Note that lim,, f ;, = 0 which implies that the volume of the hypercube is increasingly
concentrated in the corners as d increases.

B. The volume of a hypersphere concentrates in an outside shell2930

The fraction of the volume in a shell defined by a sphere of radius r-einscribed inside a
sphere of radius r is:

_Vd(r)'vd(r'e)_ ‘- - d_ 5
oo g @

In Figure 16 observe, for the case e=r/5, how as the dimension increases the volume
concentrates in the outside shell.

29 Kendall, M. G., A Course in the Geometry of n-dimensions, Hafner Publishing Co., 1961.
30 Wegman, E. J., "Hyperdimensiona Data Analysis Using Parallel Coordinates,” Journal of the American
Statistical Association, Vol. 85, No. 411, pp. 664-675, 1990
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5 6 7 8 9 10 11

dimension d
Volume of a hypersphere contained in the outside shell as a
function of dimensionality for e = r/5.

1 2 3 4

Figure 16.

Note that lim,,,f, =1" >0, implying that most of the volume of a hypersphere is

concentrated in an outside shell.
C. The volume of a hyperellipsoid concentrates in an outside shell

Here the previous result will be generalized to a hyperellipsoid. Let the equation of a
hyperellipsoid in d dimensions be written as:

X2 X2 X2
+=2 e+ 2 =
(A (12)

The volume is calculated by the equation3?:

201,

O

%
(13)

=]

M
[Sek

e

The volume of a hyperellipsoid defined by the equation:

X2 X3
. =1 (14)

> +
(I 1° dl) (I - dz)

0, (:1)

31 Kendall, M. G., A Course in the Geometry of n-dimensions, Hafner Publishing Co., 1961
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where 0£d, <l ," i, is calculated by:

V(l,-d)=—= - (15)

O(1-d)

fom A% do (16)
1 in€ |2
i=1

Let 9 = min(ld—:), then
4 dgy. 4
fu=OJ- O£ O(1- 6,)= (- g,n)’ a7)
i=1 i i=1

Using the fact that f ;; 3 O, it is concluded that (!E@ngf% =0.

The characteristics previously mentioned have two important consequences for high
dimensional data that appear immediately. The first one is that

» High dimensional space is mostly empty,
which implies that multivariate data in a high dimensional feature space is usually in a
lower dimensional structure. As a consequence high dimensional data can be
projected to a lower dimensional subspace without losing significant information in
terms of separability among the different statistical classes. The second consequence
of the foregoing, is that

* Normally distributed data will have a tendency to concentrate in the tails.
Similarly,

» Uniformly distributed data will be more likely to be collected in the corners,
making density estimation more difficult. Local neighborhoods are almost surely
empty, requiring the bandwidth of estimation to be large and producing the effect of
losing detailed density estimation.

Support for this tendency can be found in the statistical behavior of normally and
uniformly distributed multivariate data at high dimensionality. It is expected that as the
dimensionality increases the data will concentrate in an outside shell. As the number
of dimensions increases that shell will increase its distance from the origin as well.

To show this specific multivariate data behavior, an experiment was developed.
Multivariate normal and uniform distributed data were generated. The normal and
uniform variables are independent identically distributed samples from the
distributions N(0,1) and U(-1,1), respectively. Figures 17 and 18 illustrate the
histograms of random variables, the distance from the zero coordinate and its square,
that are functions of normal or uniform vectors for different number of dimensions.
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Histograms of functions of Normally distributed random variables.

©1997 by David Landgrebe

- 25 -

Printed July 25, 1997



Hyperspectral Data Analysis Principles
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Figure 18. Histograms of functions of Uniformly distributed random variables.
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These experiments show how the means and the standard deviations are functions of
the number of dimensions. As the dimensionality increases, the data concentrates in
an outside shell. The mean and standard deviation of two random variables,

d d
r:W’éxf and R =g x>
i=1 i=1

are computed. These variables are the distance and the square of the Euclidean
distance of the random vectors. The values of the parameters and the histograms of
the random variables are shown in Figure 16 and 17 for normal and uniform
distribution of the data. As the dimensionality increases, the distance from the zero
coordinate of both random variables increases as well. These results show that the
data have a tendency to concentrate in an outside shell and how the shell's distance
from the zero coordinate increases with the increment of the number of dimensions.

d
Note thatR = é x? has a chi-square distribution with d degrees of freedom when the
i=1
Xj's are samples from the N(0,1) distribution. The mean and variance of R are32: E(R) =
d, Var(R) = 2d . This conclusion supports the previous thesis.

Under these circumstances it would be difficult to implement any density estimation
procedure and obtain accurate results. Generally nonparametric approaches will have
even greater problems with high dimensional data.

D. The diagonals are nearly orthogonal to all coordinate axes33:34

The cosine of the angle between any diagonal vector and a Euclidean coordinate axis
is:

1
Cos(qd):iﬁ :
Figure 19 illustrates how the angle between the diagonal and the coordinates, qg,
approaches 900 with increases in dimensionality.

32 scharf, L. L. "Statistical Signal Processing. Detection, Estimation, and Time Series Analysis." Massachusetts:
Addison-Wedley, 1991.

33 Scott, D. W. "Multivariate Density Estimation.” John Wiley & Sons, pp. 27-31, 1992.

34 Wegman, E. J., "Hyperdimensiona Data Analysis Using Parallel Coordinates,” Journal of the American
Statistical Association, Vol. 85, No. 411, 1990
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Figure 19. Angle (in degrees) between adiagonal and a Euclidean coordinate vs.

dimensionality.

Note that Iimd®¥cos(qd):o, which implies that in high dimensional space the
diagonals have a tendency to become orthogonal to the Euclidean coordinates.

This result is important because,

* The projection of any cluster onto any diagonal, e.g., by averaging features,
could destroy information contained in multispectral data.

In order to explain this, let adiag be any diagonal in a d dimensional space. Let acj
be the ith coordinate of that space. Any point in the space can be represented by the
form:

d
P=4aac
i=1

The projection of P over adiag, Pdiag is:
d
I:)dialg = (PTadiag)adiag = ia:-lai(aCiTad)ad
But as d increases aciTadia@j » 0 which implies that P,,,» 0. As a consequence Pdiag

is being projected to the zero coordinate, losing information about its location in the d
dimensional space.
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E. The required number of labeled samples for supervised
classification increases as a function of dimensionality.

As previously stated, Fukunaga3®, in a given circumstance, proves that the required
number of training samples is linearly related to the dimensionality for a linear
classifier and to the square of the dimensionality for a quadratic classifier. That fact is
very relevant, especially since experiments have demonstrated that there are
circumstances where second order statistics are more relevant than first order statistics
in discriminating among classes in high dimensional data3®. In terms of nonparametric
classifiers the situation is even more severe. It has been estimated that as the number
of dimensions increases, the sample size needs to increase exponentially in order to
have an effective estimate of multivariate densities37:38,

It is reasonable to expect that high dimensional data contains more information in the
sense of a capability to detect more classes with more accuracy. As a matter of fact,
since the curves of Figure 12 are montonically increasing, ultimately one can expect
100% accuracy, on the average. At the same time the above characteristics tell us that
current techniques, which are usually based on computations at full dimensionality,
may not deliver this advantage unless the available labeled data is substantial. This
was shown in Figure 13 where, with a limited number of training samples, there is a
penalty in classification accuracy as the number of features increases beyond some
point.

F. For most high dimensional data sets, low linear projections have
the tendency to be normal, or a combination of normal distributions,
as the dimension increases.

That is a significant characteristic of high dimensional data that is quite relevant to its
analysis. It has been proved3940 that, as the dimensionality tends to infinity, lower
dimensional linear projections will approach a normal (Gaussian) distribution with
probability approaching one (see Figure 20). Normality in this case implies a normal or
a combination of normal distributions. This lends credence to using Gaussian
classifiers after having reduced the dimensionality via feature extraction and indeed, to
using class mean vectors and covariance matrices in evaluating the separability of
classes. Properly used, parametric classifiers should provide good performance, and
nonparametric schemes, with their higher demands for training data, should not be
needed.

35 Fukunaga, K. "Introduction to Statistical Pattern Recognition.” San Diego, California, Academic Press, Inc.,
1990.

36 Chulhee Lee and David A. Landgrebe, "Analyzing High Dimensional Multispectral Data," |EEE Transactions on
Geoscience and Remote Sensing, 31, No. 4, pp. 792-800, July, 1993.

37 Scott, D. W. "Multivariate Density Estimation.” John Wiley & Sons, pp. 208-212, 1992.

38 Hwang, J,, Lay, S., Lippman, A., "Nonparametric Multivariate Density Estimation: A Comparative Study.",
|EEE Transactions on Signal Processing, Vol. 42, No. 10, 1994, pp. 2795-2810.

39 Diaconis, P., Freedman, D. "Asymptotics of Graphical Projection Pursit." The Annals of Statistics Vol. 12,
No 3 (1984): pp. 793-815.

40 Hall, P., Li, K. "On Almost Linearity Of Low Dimensional Projections From High Dimensional Data" The
Annals of Statistics, Vol. 21, No. 2 (1993): pp. 867-889.
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Low Dimensional Data

High Dimensional Data Linear Projection
(d - dimensions) > A > Y=A"X
X Normal as d -> Infinity

Figure 20. The tendency of lower dimensional projections to be normal.

Feature Extraction.

The findings above point to the importance of finding the lowest dimensional effective
subspace to use for classification purposes. Thus, feature extraction becomes an
important tool in the analysis process for hyperspectral data. As a result, feature
extraction methods already existing in the literature were studied relative to the high
dimensional remote sensing context. The most suitable appeared to be Discriminate
Analysis Feature Extraction (DAFE). The basic concept#! for DAFE is to form a linear
combination of the original features so as to maximize the ratio,

2 .
Sa _between classes variance

S\ZN_ within classes variance

The calculation of the needed linear transformation is fast and straightforward. Even
So, it has several significant shortcomings for this environment, among them being that
it does not perform well for cases where there is little difference in class mean vectors.
It also only generates reliable features up to one less than the number of classes for
the given problem.

For use in problems where these shortcomings would be serious, Decision Boundary
Feature Extraction (DBFE) was created42:43.44, DBFE also determines an optimum
linear transformation to a new feature space. It uses training samples directly to
determine discriminately informative and discriminately redundant features, and
results in eigenfunctions which define the required transformation. The eigenvalues
resulting are directly related to the usefulness of the corresponding features in
discriminating among the given classes. Thus this transformation has the advantage of
showing the analyst directly how many features must be used.

However, both DAFE and DBFE -calculations begin with computation in the full
dimensional space in order to find the optimal transformation to a lower dimensional
space, thus these calculations may, too, suffer from small training set situations. To
deal with this limitation, a class-conditional pre-processing algorithm was designed

41 Richards, John A, Remote Sensing Digital Image Analysis, An Introduction, Second Edition, Springer Verlag,
1993, pp 255 ff.

42 Chulhee Lee and David A. Landgrebe, "Feature Extraction Based On Decision Boundaries," |EEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 15, No. 4, April 1993, pp. 388-400.

43 Chulhee Lee and David A. Landgrebe, "Decision Boundary Feature Selection for Non-Parametric Classification,”
|EEE Transactions on System, Man, and Cybernetics, Vol. 23, No. 2, March/April, 1993, pp. 433-444.

44 Chulhee Lee and David A. Landgrebe, “Decision Boundary Feature Extraction for Neural Networks,” |EEE
Transactions on Neural Networks, Vol. 8, No. 1, pp. 75-83, January 1997.
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based upon a method known as projection pursuit4546, This algorithm does the
necessary calculations in the projected space, rather than the original, high

dimensional space. Figure 21 shows the overall scheme. The data at point F might be
200 dimensional. Through projection pursuit, a subspace of perhaps 20 dimensions
might be determined, and in this case, all calculations are done at a dimensionality of
20. This can then more optimally be followed by DAFE or DBFE to find a subspace of
perhaps 10 dimensions in which to do the classification. In this way, maximal
advantage can be taken of a training set of limited size.

High Dimensional Datd

F Dimension Further Reduced

G Y W

Class Conditioned . e . .
. —= | Feature Extraction [—J®=|Classification/Anal S|s—>
Pre-processing y

Dimension Reduced \
Sample Label
Information

Figure 21. Classification of high dimensional data including reprocessing of high dimensional data.

Summary and Conclusions

What is sought are powerful, general analysis procedures that approach the optimum
in information extraction capabilities and yet are within the reach of and practical for a
broad range of Earth scientists and other remote sensing practitioners. The techniques
must be 1) powerful in terms of accuracy and detail with respect to the classes which
can be discriminated, 2) objective in their performance, 3) robust with regard to the
breadth of discipline problems which can be successfully approached, and yet 4) must
appear sound and practical to scientists with a broad set of discipline backgrounds.
They must be derived with appropriate mathematical rigor, but in the end, they must
meet the practical conditions of the randomness of the scene, noise introduced by the
atmosphere, the scene, and the sensor, and the varied skills and expectations of the
users.

Summarizing to this point, the key conclusions expressed above are,

45 Luis Jimenez and David Landgrebe, “Projection Pursuit For High Dimensional Feature Reduction: Parallel And
Sequential  Approaches,” Presented at the International Geoscience and Remote Sensing Symposium
(IGARSS95), Florence Italy, July 10-14, 1995.

46 |uis Jimenez and David Landgrebe, “Projection Pursuit in High Dimensional Data Reduction: Initial
Conditions, Feature Selection and the Assumption of Normality,” IEEE International Conference on Systems,
Man, and Cybernetics, Vancouver, Canada, October 22-25, 1995.
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* The complexity of the scene and the dynamic nature of it is so dominant,
that, except for the extraction of relatively simple information, supervision of
classifiers must be redone for every new data set collected.

» Ofthe three data space presentations discussed, the feature space is the
most useful for analytical purposes, though the other two are helpful for
visualization purposes.

* The typically rather uniformly distributed nature of data in feature space
makes clear why entirely unsupervised classification schemes are not likely
to produce satisfactory results for multispectral discrimination purposes.

* A stochastic or random process approach for data modeling has been
chosen for reasons of its rigor and power, and the large stable of tools that
prove of pivotal usefulness in the work.

» Both first order variations (e.g. mean values) and second order variations
(e.g. covariance matrices) are found to be significant in the discrimination
process. On a case specific basis, either is likely to provide the most
significant contribution to the ability to discriminate between classes. Neither
should be ignored without good justification.

* A significant relationship has been demonstrated between the number of
spectral bands, the amount of ancillary data available for classifier
supervision, and overall classifier accuracy achievable.

* A significant relationship has also been found between classifier complexity,
the amount of ancillary data available for classifier supervision, and overall
classifier accuracy achievable.

* Given these findings, a generic hierarchy of classifier algorithms has been
given against which to judge more specialized algorithms for their likely
performance robustness.

* A number of novel characteristics of high dimensional spaces are presented
which bear upon the analysis of hyperspectral data. Among them are the
facts that,

- Higher dimensional spaces are mostly empty, because of the rapidity
with which volume increases with dimensionality. This suggests the
importance of feature extraction algorithms to find the lower dimensional
space in which the most important discriminate structure exists.

- Unlike three dimensional space, data in hyperspace tends to concentrate
in the corners of a hypercube, in the outer shell of a hyperellipsoid, and
thus in the corners of a uniform distribution and the tails of a Gaussian
distribution. This increases the importance of having adequate numbers
of training samples when estimating high dimensional density function
parameters, and of using the lowest dimensionality which will provide
best results.
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- The diagonals in high dimensional are nearly orthogonal to all
coordinate axis. This has implications relative to averaging features.

- For most high dimensional data sets, as the dimension increases, lower
dimensional linear projections have a tendency to be normal, or a
combination of normal distributions. Thus, the Gaussian assumption
becomes better justified after feature extraction to a lower dimensional
space.

- The required number of labeled samples for supervised classification
increases as a function of dimensionality, and more so with increased
generality of the classifier algorithm used.

As a result of these findings, feature extraction algorithms assume increased
importance, and a two stage feature extraction process has been put forth in order to
take maximal advantage of the dimensionality available when, as is usually the case
in the remote sensing circumstance, the number of training samples is limited.

Some of these results raise other issues with regard to current and future analysis
procedures. For example, it is seen that second order variations can be and often are
more significant than first order ones in making discrimination between classes
possible. "Data correction" procedures are now common in preparing data for
analysis, but most, if not all, such procedures are directed at adjusting for first order
effects only. Generally, the impact they might have on the second order variations in a
data set have not been considered. The positive value they may have is taken on faith
and has not generally been subject to study. There is some evidence4’ that they may
not always have this assumed positive effect, and indeed, there effect could be
detrimental in some cases. Other such issues of this nature need also to be
addressed.

Substantial progress toward an optimal and robust hyperspectral data analysis
procedure has been made based upon the findings reported in this paper, however,
some key problems remain if such a procedure is to have significant widespread
impact. Among these are the need to,

» Make the analysis process viable for smaller and smaller training sets, down
to one spectrum for some classes, while still retaining optimal characteristics
of both first and second order statistics to the extent possible. It is the case
that no one likes the idea of needing to retrain a classifier for each data set.
On the other hand, the dynamic nature of the Earth's surface requires it if
many of the more complex and challenging information extraction tasks are
to be completed successfully.

* Make the analysis process systematic, making as much of the complexity of
it transparent to the user, so that it appears attractive and reasonable to the
user community. The need is to take advantage of human knowledge and

47 Joe Hoffbeck and David A. Landgrebe, “Effect Of Radiance-To-Reflectance Transformation And Atmosphere
Removal On Maximum Likelihood Classification Accuracy Of High-Dimensiona Remote Sensing Data,”
Proceedingsof the International Geoscience and Remote Sensing Symposium (IGARSS94), CD-ROM pp.
3289-3294, Pasadena, Calif, August 8-12,1994.
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perception while at the same time not requiring analysts to be highly trained
and experienced signal processing engineers.

As an example, the labeling of samples for training sets seems onerous to everyone,
and unreasonable or unnecessary to some. It is certainly desirable to avoid doing this
whenever possible. However, the more challenging information extraction problems
simply require it. There often are ways to mitigate the problem which are situation
specific in any given case. An example in a geologic survey case, making use of
chemical spectroscopy characteristics has been given48 as an illustration in one
circumstance. Any way to make this part of the analysis process acceptable to the
Earth scientist or practitioner would be an important contribution to the field. It is to
these and related objectives that future research needs to be directed.

And finally, it is recognized that a key problem is to deliver the knowledge and
algorithms derived during this research to the potential users. For this purpose, an
application program for personal computers has been created with a basic
multispectral data analysis capability and made available to the community without
charge. Then as new algorithms emerge from the research, they are incorporated into
the program and new versions of it issued. In this way, new algorithms, which may be
quite complex to implement may be tried by users with a minimum of effort on their
part. The program, called MultiSpec, together with substantial documentation is
available for anyone interested to download from the world wide web. The URL for the
web site is
http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/

Some of the algorithms mentioned above which it now contains are, Discriminate
Analysis Feature Extraction (DAFE), Decision Boundary Feature Extraction (DBFE),
Statistics Enhancement, and Statistics Image. It also contains the spatial/spectral
analysis algorithm created some years ago called ECHO, as mentioned earlier. This
algorithm has proven to be easy to use, computationally efficient and effective in
increasing classification accuracy, but it is not simple to implement, and this has no
doubt inhibited its wider use.

48 Hoffbeck, Joseph P. and David A. Landgrebe, “Classification of Remote Sensing Images having High Spectral
Resolution,” Remote Sensing of Environment, Vol. 57, No. 3, pp. 119-126, September 1996.
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